
Chris Wood

Architecture
draft-ietf-privacypass-architecture

Protocol Structure

Architecture describes two parts of the protocol, which are detailed in two
separate documents:

Redemption is a unified protocol for redeeming tokens, along with the ability
to challenge.

Issuance can support multiple token types. This is the exchange that can be
extended or replaced for new deployment models.

2

Client OriginAttesterIssuer

Issuance
Protocol

Redemption
Protocol

Client ServerAttester

Can you attest to some property?

Proof

Attest to property

Proof

Issuer

Trust

Trust

Proof, please

Proof

Privacy Contexts

Client ServerAttester

Can you attest to some property?

Proof

Attest to property

Proof

Issuer

Trust

Trust

Proof, please

Proof

Privacy Contexts

Redemption Context

Information the Origin
sees about the Client
during Redemption

Client ServerAttester

Can you attest to some property?

Proof

Attest to property

Proof

Issuer

Trust

Trust

Proof, please

Proof

Privacy Contexts

Attestation Context

Information the Attester
sees about the Client

during Attestation

Client ServerAttester

Can you attest to some property?

Proof

Attest to property

Proof

Issuer

Trust

Trust

Proof, please

Proof

Privacy Contexts

Attestation Context
Redemption Context

What is meaningful privacy for Privacy Pass?

Ensure no single entity can link per-Client and per-Server information

Joint Deployment

Client Server

Attestation Context
Redemption Context

Attester

Useful deployment model for "privacy-friendly" attestation, such as a CAPTCHA

Attester and Server are the same entity and share context, including Client IP address, origin name, etc

Meaningful privacy requires context separation over time or over space

• Time separation: Non-interactive tokens with unlinkable token issuance and redemption

• Space separation: Unlinkable Client identity using a proxy to connect to server

Privacy contexts

Split Deployment

Client Server

Attestation Context
Redemption Context

Attester

Useful deployment for "privacy-unfriendly" attestation, such as proof of application account ownership

Attester and Server are different, non-colluding entities with different contexts

Meaningful privacy requires that Attestation context does not contain per-Server information and that Redemption
context does not contain per-Client information

• Attestation constraint: Keep Server (Origin) secret from Attester during issuance (unconditional input secrecy)

• Redemption constraint: Keep Client information (IP address) secret from Server (use of proxy)

Privacy contexts

Next Steps

Address cross-origin tokens and double spend implications (#104)

Update privacy parameterization (#65)

Address centralization (#45)

WGLC?

Tommy Pauly

Auth Scheme
draft-ietf-privacypass-auth-scheme

Status
Newly adopted!

Minor terminology changes on GitHub

Stabilizing challenge/response format

11

Terminology updates
Renamed "redemption_nonce" to "redemption_context"

This really is just a server-chosen context to bind a token to

Doesn't need to be unique

Doesn't require that token issuance is "interactive"

This is not exposed during issuance

Renamed "context" (in Token struct) to challenge_digest

12

Stabilizing formats
Several implementations have been testing interop

To encourage deployment testing and experimentation, let's stabilize the format
of challenges and responses!

13

Challenge
WWW-Authenticate: PrivateToken challenge=abc..., token-
key=123...  
 
struct {
 uint16_t token_type; // Defines Issuance protocol
 opaque issuer_name<1..2^16-1>;
 opaque redemption_context<0..32>; // Optional
 opaque origin_name<0..2^16-1>; // Optional
} TokenChallenge;

14

Redemption context: If present, token presented must be tied to the context
chosen by the server

Origin name: If present, token is restricted to the origin, otherwise it’s cross-origin

Redemption
Authorization: PrivateToken token=abc...
 
struct {
 uint16_t token_type; // Matches challenge
 uint8_t nonce[32]; // Client-generated nonce
 uint8_t challenge_digest[32]; // Hash of TokenChallenge
 uint8_t token_key_id[Nid];
 uint8_t authenticator[Nk]; // From Issuance protocol
} Token;

15

Nonce: Client-chosen nonce, used during issuance

Challenge Digest: Hash of the corresponding challenge

Authenticator: RSA signature, POPRF output, etc.

Origin Behavior
Choose an Issuer & token type

Choose to be per-origin or cross-origin

For cross-origin, double-spend prevention is only as good as the coordination
between origins and the Issuer

Per-origin allows double-spend prevention to be isolated to a single origin; also
prevents the cache of tokens being take up by some other origin

Choose (optional) context

Empty-context tokens only require state to enforce double-spend prevention

Context-based tokens can be tied to client session properties (5-tuple, time window,
etc) or other state to let the server prevent double-spending more easily

16

Context Construction Examples

17

Context-free

Deterministic, cross-session context

Per-session context

redemption_context = nil

redemption_context = SHA256(Client IP address subnet)

redemption_context = random_bytes(32)

Client Behavior
Manage cached tokens

Cached token needs to match issuer, origin name (if present), and context (if present)

Empty-context tokens can always be cached. Issuance batch size can be variable,
depends on attestation burden

Context-based tokens may be cached, or can be generated fresh. Context-based
tokens should be cleared when cookie state is cleared, or across cookie boundaries.

Verify origin name (if present)

Needs to match the origin that issued the challenge

Origin names aren't necessarily seen on the issuance codepath; this is a contract
where origins enforce no cross-origin spending

18

Next Steps

Does anyone see a need to change the formats?

Continue polishing the document

Continue interop testing and experimentation

