Rate-Limited Issuance

Tommy Pauly & Chris Wood

Rate-limiting is a common part of fraud prevention
and anonymous access

It also often relies on tracking cookies or client |IP addresses

A common way to implement this is with "token buckets”

Token buckets

Status quo rate-limiting

Resource Request

Consume
tokens
; .
Yes, service
|
Token Bucket request!
Token Replenish B (are there tokens N
Replenish available?)
tokens

No, don't
service request

\

Token buckets

Status quo rate-limiting

Resource Request

Token Bucket

Yes, service

1. Identity request bucket request!

2. Increment count by number of tokens

Token Replenish ——p

Mapping Token Count

1250123010339

No, don't
service request

Token buckets

Status quo rate-limiting

Token Replenish

Resource Request

Token Bucket

1. Identity request bucket
2. Decrement count associated with bucket
3. Process if non-zero, otherwise discard

Mapping Token Count

1250123010339 N(N-1)>0?

No, don't
service request

Yes, service
request!

Why Privacy Pass?

Existing rate-limiting schemes break down when clients have more privacy (shared rate-limiting buckets)
Proxies
VPNs
Shared |IPs on public networks
A basic Privacy Pass token isn't always enough
Attests to the fact that a device or user passed some check

Does not prevent that legitimate device or user doing too many actions (click farm, or abuse of
metered paywall)

Degenerates to blocking access

Private Token variants

Basic Token

(OPRF, RSA Blind
Signature)

Attests to user/device
legitimacy

Replaces captcha for
improving confidence Iin
user

Rate-Limited Token

(RSA Blind Signature)

Attests to user/device
legitimacy + access rate
below threshold

Adds mitigations against a
device in a click farm

Allows metered paywall
access

Rate-Limited Tokens

Rate-limited tokens extend the basic issuance protocol with new properties:

1. Attester maintains counters for client + anonymized origin

* Attesters learn stable mapping between per-client secret and per-origin secret,
without learning only per-origin information

2. Issuer provides a rate limit to enforce when issuing tokens
* |ssuers learn origin associated with a token challenge, encrypted with HPKE

3. Attesters fail requests if the per-origin rate limit is exceeded

Rate-Limited Tokens

Rate-limited tokens extend the basic issuance protocol with new properties:

1. Attester maintains counters for client + anonymized origin

* Attesters learn stable mapping between per-client secret and per-origin secret,
without learning only per-origin information

2. |Issuer provides a rate [imit

This is the main challenge for the protocol

* |ssuers learn origin associated with a token challenge, encrypted with HPKE

3. Attesters fail requests if the per-origin rate limit is exceeded

Attester state

The "token buckets" used for rate limiting now are "private token buckets" maintained on the
attester

A stable mapping is a deterministic function between per-client and per-origin information,
e.g., F(client secret, origin secret)

The mapping is used to enforce rate limits based on individual clients for individual origins

Attester uses mapping as index into data structure tracking per-client state

Mapping Count

F(client secret, origin secret) —— 12311235123 \

10

Pk, pk;

challenge
—

origin
e

%
—

token

Client

req

Stable Mappings and Rate Limits

resp

Attester

Compute stable mapping, decrement count,

compare against origin limit, accept or reject
response accordingly

req

resp, Lorigin

\
Drop request

11

Issuer

Pk, pk;

challenge
—

origin
e

%
—

token

Client

req

Stable Mappings and Rate Limits

resp

Attester

Compute stable mapping, decrement count,
compare against origin limit, accept or reject
response accordingly

Mapping

L

a

[]
]

N—-1< Lorigin

Count

req

resp, Lorigin

\
Drop request

12

Issuer

Current Status

Builds on signature schemes with key blinding for private computing the stable
mapping

Requires split deployment model for meaningful privacy

Several interoperable implementations exist and security analysis is underway

https://datatracker.ietf.org/doc/html/draft-dew-cfrg-signature-key-blinding

Is the WG interested in adopting
this draft?

Rate-Limited Tokens

Rate-limited tokens extend the basic issuance protocol with new properties:

1. Attester maintains counters for client + anonymized origin

2. |Issuer provides a rate [imit

Can we use an OPRF to compute this?...

* |ssuers learn origin associated with a token challenge, encrypted with HPKE

3. Attesters fail requests if the per-origin rate limit is exceeded

16

An OPRF Sketch

An OPRF protocol computes F(k, x) for per-origin k and per-client x

ﬁ |

Issuer

X

F(k,x)

An OPRF Sketch

Clients can encrypt the origin identifier under the Issuer’s public key

Encrypt(pk;, origin)

X k

F(k,x)

18

An OPRF Sketch

An Attester can relay the encrypted origin name and complete the OPRF

Encrypt(pk;, origin), x Encrypt(pk;, origin)

........................
at uy
at®
a®

llllllllllllllllllllll
at® Ny
at Ny

Attester

Client

F(k,x)

19

An OPRF Sketch

... Attester can perform a dictionary attack to learn F(k, x)

Encrypt(pk;, origin’)

Attester [N

X

F(k,x)

20

Rate-Limited Tokens

Rate-limited tokens extend the basic issuance protocol with new properties:

1. Attester maintains counters for client + anonymized origin

2. |Issuer provides a rate limit

An OPRF alone isn't sufficient because of dictionary

e attacks. Computation of the mapping requires proof of
e |ssuers learn origin assoc(ownership for the per-client secret. HPKE

3. Attesters fail requests if the per-origin rate limit is exceeded

21

Signature Scheme with Key Blinding

Extend digital signature schemes with two functionalities for signing requests

BlindPublicKey and UnblindPublicKey: Given public key and secret blind,
produce blinded public key

UnblindPublicKey(BlindPublicKey(pkS, skB), skB) = pkS

BlindKeySign: Sign message with secret key and secret blind

Verify(BlindPublicKey(pkS, skB), msg, BlindKeySign(skS, skB, msg)) = true

Draft specification: https://datatracker.ietf.orq/doc/draft-dew-cfrg-signature-key-blinding/

22

https://datatracker.ietf.org/doc/draft-dew-cfrg-signature-key-blinding/

Detour: Signature Scheme with Key Blinding

Use signature public key blinding to compute an OPRF*

Let skC (skO) be the per-Client (per-Origin) secret with public key pkC (pkO),
and let skR be a random client-generated blind per request

F(skC, skQ) = Hash(pkC, Blind(pkC, skQ))

— Hash(pkC, Unblind(Blind(Blind(okC, skR), skO), skR))

Close -- but not identical -- to the OPRF construction
In draft-irtf-cfrqg-voprf

* Security analysis is underway and results will be published in before IETF 114

23

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf#section-3.3.1

Rate-Limited Tokens

Can’t link two requests to same client

pk, pk, Client Attester Issuer
. (sks, k), (K, Pkp), SKorigins - - -
challenge
wwl Create token_reques’ic(, encrypt Pl o8 Verify package using
gl Origin name, sign package using blinded public key : :
sk y
— blinded key pair, send package forward request to Vslnfﬁ p(?Ckatge UkSITIg
and blind to attester ssuer 'naed public Key,
decrypt origin name,
re-blind public key
using per-origin secret,
Unblind twice-blinded evaluate token request
Finalize token request and public key, yielding
output token resp stable mapping used for
token) rate limit check

Function of client secret and origin secret

\4
Drop request

24

