
Tommy Pauly & Chris Wood

Rate-Limited Issuance

Rate-limiting is a common part of fraud prevention 
and anonymous access

It also often relies on tracking cookies or client IP addresses

A common way to implement this is with "token buckets"

2

Token buckets

Token Bucket
(are there tokens

available?)

Resource Request

Token Replenish

No, don't  
service request

Yes, service

request!

Replenish  
tokens

Consume  
tokens

3

Status quo rate-limiting

Token Bucket

Resource Request

Token Replenish

No, don't  
service request

Yes, service

request!

Mapping Token Count
…. …

1250123010339 N (N + T)
…. …

1. Identity request bucket

2. Increment count by number of tokens

4

Token buckets
Status quo rate-limiting

Token Bucket

Resource Request

Token Replenish

No, don't  
service request

Yes, service

request!

Mapping Token Count
…. …

1250123010339 N (N - 1) > 0?
…. …

1. Identity request bucket

2. Decrement count associated with bucket

3. Process if non-zero, otherwise discard

5

Token buckets
Status quo rate-limiting

Existing rate-limiting schemes break down when clients have more privacy (shared rate-limiting buckets)

Proxies

VPNs

Shared IPs on public networks

A basic Privacy Pass token isn't always enough

Attests to the fact that a device or user passed some check

Does not prevent that legitimate device or user doing too many actions (click farm, or abuse of
metered paywall)

Degenerates to blocking access

6

Why Privacy Pass?

Attests to user/device
legitimacy

Replaces captcha for
improving confidence in

user

7

Private Token variants

Basic Token

(OPRF, RSA Blind

Signature)

Rate-Limited Token

(RSA Blind Signature)

Attests to user/device
legitimacy + access rate

below threshold

Adds mitigations against a
device in a click farm

Allows metered paywall
access

Rate-Limited Tokens

Rate-limited tokens extend the basic issuance protocol with new properties:

1. Attester maintains counters for client + anonymized origin

• Attesters learn stable mapping between per-client secret and per-origin secret,
without learning only per-origin information

2. Issuer provides a rate limit to enforce when issuing tokens

• Issuers learn origin associated with a token challenge, encrypted with HPKE

3. Attesters fail requests if the per-origin rate limit is exceeded

8

Rate-Limited Tokens

Rate-limited tokens extend the basic issuance protocol with new properties:

1. Attester maintains counters for client + anonymized origin

• Attesters learn stable mapping between per-client secret and per-origin secret,
without learning only per-origin information

2. Issuer provides a rate limit to enforce when issuing tokens

• Issuers learn origin associated with a token challenge, encrypted with HPKE

3. Attesters fail requests if the per-origin rate limit is exceeded

9

This is the main challenge for the protocol

The "token buckets" used for rate limiting now are "private token buckets" maintained on the
attester

A stable mapping is a deterministic function between per-client and per-origin information,
e.g., F(client secret, origin secret)

The mapping is used to enforce rate limits based on individual clients for individual origins

Attester uses mapping as index into data structure tracking per-client state

10

Mapping Count

…. …

12311235123 N

…. …

F(client secret, origin secret)

Attester state

Attester

Stable Mappings and Rate Limits

11

Client
pkS, pkI

𝖼𝗁𝖺𝗅𝗅𝖾𝗇𝗀𝖾

𝗍𝗈𝗄𝖾𝗇

Issuer

𝗈𝗋𝗂𝗀𝗂𝗇

skC

𝗋𝖾𝗌𝗉, L𝗈𝗋𝗂𝗀𝗂𝗇

𝗋𝖾𝗊

𝗋𝖾𝗌𝗉

𝗋𝖾𝗊

Drop request

Compute stable mapping, decrement count,
compare against origin limit, accept or reject

response accordingly

Attester

Stable Mappings and Rate Limits

12

Client
pkS, pkI

𝖼𝗁𝖺𝗅𝗅𝖾𝗇𝗀𝖾

𝗍𝗈𝗄𝖾𝗇

Issuer

𝗈𝗋𝗂𝗀𝗂𝗇

skC

𝗋𝖾𝗌𝗉, L𝗈𝗋𝗂𝗀𝗂𝗇

𝗋𝖾𝗊

𝗋𝖾𝗌𝗉

𝗋𝖾𝗊

Drop request

Compute stable mapping, decrement count,
compare against origin limit, accept or reject

response accordingly

Mapping Count
…. …
1234 N —> N-1

…. …

N − 1 < L𝗈𝗋𝗂𝗀𝗂𝗇

1234 = F(𝖼𝗅𝗂𝖾𝗇𝗍, 𝗈𝗋𝗂𝗀𝗂𝗇)

Current Status

Builds on signature schemes with key blinding for private computing the stable
mapping

Requires split deployment model for meaningful privacy

Several interoperable implementations exist and security analysis is underway

https://datatracker.ietf.org/doc/html/draft-dew-cfrg-signature-key-blinding

Is the WG interested in adopting
this draft?

Backup

Rate-Limited Tokens

Rate-limited tokens extend the basic issuance protocol with new properties:

1. Attester maintains counters for client + anonymized origin

• Attesters learn stable mapping between per-client secret and per-origin secret,
without learning only per-origin information

2. Issuer provides a rate limit to enforce when issuing tokens

• Issuers learn origin associated with a token challenge, encrypted with HPKE

3. Attesters fail requests if the per-origin rate limit is exceeded

16

Can we use an OPRF to compute this?...

An OPRF protocol computes for per-origin and per-client

F(k, x) k x

 OPRF

An OPRF Sketch

17

Client Issuer

x k

F(k, x)

Clients can encrypt the origin identifier under the Issuer’s public key

 OPRF

An OPRF Sketch

18

Client Issuer

x k

F(k, x)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(pkI, 𝗈𝗋𝗂𝗀𝗂𝗇)

An Attester can relay the encrypted origin name and complete the OPRF

 OPRF

An OPRF Sketch

19

Client Issuer

x k

F(k, x)

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(pkI, 𝗈𝗋𝗂𝗀𝗂𝗇), x

Attester

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(pkI, 𝗈𝗋𝗂𝗀𝗂𝗇)

… Attester can perform a dictionary attack to learn

F(k, x)

 OPRF

An OPRF Sketch

20

Issuer
x k

F(k, x)

Attester

𝖤𝗇𝖼𝗋𝗒𝗉𝗍(pkI, 𝗈𝗋𝗂𝗀𝗂𝗇′￼)

Rate-Limited Tokens

Rate-limited tokens extend the basic issuance protocol with new properties:

1. Attester maintains counters for client + anonymized origin

• Attesters learn stable mapping between per-client secret and per-origin secret,
without learning only per-origin information

2. Issuer provides a rate limit to enforce when issuing tokens

• Issuers learn origin associated with a token challenge, encrypted with HPKE

3. Attesters fail requests if the per-origin rate limit is exceeded

21

An OPRF alone isn't sufficient because of dictionary
attacks. Computation of the mapping requires proof of

ownership for the per-client secret.

Signature Scheme with Key Blinding

Extend digital signature schemes with two functionalities for signing requests

BlindPublicKey and UnblindPublicKey: Given public key and secret blind,
produce blinded public key

BlindKeySign: Sign message with secret key and secret blind

Draft specification: https://datatracker.ietf.org/doc/draft-dew-cfrg-signature-key-blinding/
22

UnblindPublicKey(BlindPublicKey(pkS, skB), skB) = pkS

Verify(BlindPublicKey(pkS, skB), msg, BlindKeySign(skS, skB, msg)) = true

https://datatracker.ietf.org/doc/draft-dew-cfrg-signature-key-blinding/

Detour: Signature Scheme with Key Blinding

Use signature public key blinding to compute an OPRF*

Let skC (skO) be the per-Client (per-Origin) secret with public key pkC (pkO),
and let skR be a random client-generated blind per request

* Security analysis is underway and results will be published in before IETF 114
23

 F(skC, skO) = Hash(pkC, Blind(pkC, skO))

 = Hash(pkC, Unblind(Blind(Blind(pkC, skR), skO), skR))

Close -- but not identical -- to the OPRF construction
in draft-irtf-cfrg-voprf

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-voprf#section-3.3.1

Rate-Limited Tokens

Client
pkS, pkI

𝖼𝗁𝖺𝗅𝗅𝖾𝗇𝗀𝖾

𝗍𝗈𝗄𝖾𝗇

24

𝗇𝗈𝗇𝖼𝖾 ← {0,1}256, (skB, pkB) ← 𝖪𝖾𝗒𝖦𝖾𝗇

Issuer

(sks, pks), (skI, pkI), sk𝗈𝗋𝗂𝗀𝗂𝗇, …

Attester

𝗈𝗋𝗂𝗀𝗂𝗇

skC

𝖾𝗇𝖼_𝗈𝗋𝗂𝗀𝗂𝗇 = 𝖤𝗇𝖼𝗋𝗒𝗉𝗍(pkI, 𝗈𝗋𝗂𝗀𝗂𝗇, (𝗋𝖾𝗊, pkR))
𝗋𝖾𝗊, 𝗂𝗇𝗏 = 𝖡𝗅𝗂𝗇𝖽(pkS, (𝗇𝗈𝗇𝖼𝖾, 𝖼𝗈𝗇𝗍𝖾𝗑𝗍))

𝖼𝗈𝗇𝗍𝖾𝗑𝗍 = 𝖧𝖺𝗌𝗁(𝖼𝗁𝖺𝗅𝗅𝖾𝗇𝗀𝖾)

𝖺𝗎𝗍𝗁𝖾𝗇𝗍𝗂𝖼𝖺𝗍𝗈𝗋 =
𝖥𝗂𝗇𝖺𝗅𝗂𝗓𝖾(pks, (𝗇𝗈𝗇𝖼𝖾, 𝖼𝗈𝗇𝗍𝖾𝗑𝗍), 𝗋𝖾𝗌𝗉, 𝗂𝗇𝗏)

pkR = 𝖡𝗅𝗂𝗇𝖽𝖯𝗎𝖻𝗅𝗂𝖼𝖪𝖾𝗒(pkR, skB)

𝗌𝗂𝗀 = 𝖡𝗅𝗂𝗇𝖽𝖪𝖾𝗒𝖲𝗂𝗀𝗇(skC, skB, (𝗋𝖾𝗊, pkR, 𝖾𝗇𝖼_𝗈𝗋𝗂𝗀𝗂𝗇))

𝖵𝖾𝗋𝗂𝖿𝗒(pkR, 𝗌𝗂𝗀, (𝗋𝖾𝗊, pkR, 𝖾𝗇𝖼_𝗈𝗋𝗂𝗀𝗂𝗇))

𝗋𝖾𝗌𝗉, pkI

𝖡𝗅𝗂𝗇𝖽𝖯𝗎𝖻𝗅𝗂𝖼𝖪𝖾𝗒(pkR, sk𝗈𝗋𝗂𝗀𝗂𝗇)
𝗉𝗄𝖨 =
𝗋𝖾𝗌𝗉 = 𝖡𝗅𝗂𝗇𝖽𝖲𝗂𝗀𝗇(sks, 𝗋𝖾𝗊)

𝗋𝖾𝗊, pkR, …, 𝗌𝗂𝗀

𝗋𝖾𝗌𝗉

𝖵𝖾𝗋𝗂𝖿𝗒(pkR, 𝗌𝗂𝗀,
(𝗋𝖾𝗊, pkR, 𝖾𝗇𝖼_𝗈𝗋𝗂𝗀𝗂𝗇))

𝗈𝗋𝗂𝗀𝗂𝗇 =
𝖣𝖾𝖼𝗋𝗒𝗉𝗍(skI, 𝖾𝗇𝖼_𝗈𝗋𝗂𝗀𝗂𝗇, (𝗋𝖾𝗊, pkR))

𝗋𝖾𝗊, pkR, …, 𝗌𝗂𝗀

𝗂𝗇𝖽𝖾𝗑 = 𝖴𝗇𝖻𝗅𝗂𝗇𝖽𝖯𝗎𝖻𝗅𝗂𝖼𝖪𝖾𝗒(pkI, skB)

(Enforce state based on index)

Drop request

Create token request, encrypt
origin name, sign package using
blinded key pair, send package

and blind to attester

Verify package using
blinded public key,
forward request to

issuer

Verify package using
blinded public key,

decrypt origin name,
re-blind public key

using per-origin secret,
evaluate token requestUnblind twice-blinded

public key, yielding
stable mapping used for

rate limit check

Finalize token request and
output token

Can’t link two requests to same client

Function of client secret and origin secret

