
draft-loffredo-regext-epp-over-http
M. Loffredo, L. Luconi Trombacchi, M. Martinelli

IIT-CNR/Registro.IT

J. Romanowski, M. Machnio

NASK/.pl Registry 

IETF 113 RegExt Session, Vienna, March 22nd, 2022



• HTTP is loosely coupled with the network

• HTTP provides client-server cross-platform technology communication

• HTTP simplicity reduces the development time

• The speed gap between HTTP and TCP is actually not so large as in the past

• Load balancing can be more easily implemented at Layer 7 than at Layer 4

• Migrating an HTTP server to cloud requires less effort than a TCP server

Motivations of EPP over HTTP



• A client MUST use the HTTP POST method to issue an EPP command 

through the request body

• A server receiving a request MUST return an EPP message in the 

response body 

• The Content-Length header indicates the byte length of the entity 

body

• No EPP message information MUST be issued through any other part of 

the request or the response

Message Exchange



• The EPP session is implemented by using the mechanism described in RFC 6265

• A server receiving an EPP <login> command MUST use the "Set-Cookie" response 

header to send a token, a.k.a session ID, that the client will return in future requests 

within the scope of the EPP session

• The name of the cookie attribute identifying the session ID is not relevant and depends on 

the implementations

== Server -> Client == 

Set-Cookie: SID=52ceb07c2a824f09a1c6f9c45574097d

== Client -> Server == 

Cookie: SID=52ceb07c2a824f09a1c6f9c45574097d 

Session Start



• An EPP session is ended by the client issuing an EPP <logout> 

command

• A server receiving an EPP <logout> command MUST end the EPP 

session invalidating it after having issued the response

• EPP sessions that are inactive for more than a server-defined period 

MAY be ended by the server

Session End



• A client MAY issue the <hello> command outside an EPP session

• In such case, the server MUST return the <greeting> response without 

starting a session:

• no cookie is returned

• an expired cookie is returned

• A client MAY issue the <hello> command within an EPP session (e.g. 

to keep it alive)

<hello> Command



• HTTP error codes MUST be used for signaling HTTP requests failure

• EPP error codes MUST be used for signaling EPP commands failure

• The HTTP return code 200 is used for both successful and 

unsuccessful EPP requests

Return Codes



• IIT-CNR/Registro.it EPP server

• NASK/.pl Registry EPP server

Implementations



• HTTP over TLS (RFC 8740) MUST be used to protect sensitive information 
(e.g. credentials, authInfos, contact details) from disclosure while in transit

• Servers are RECOMMENDED to implement additional measures to verify the 
client:

• IP whitelisting

• locking the session ID to the client's IP address

• Servers MAY require clients to present a valid X.509 digital certificate, issued 
by a recognized Certification Authority (CA), as described in RFC 8446

Security Considerations (1)



• Session IDs SHOULD be randomly generated and be long enough to prevent 
them from being hijacked

• Servers MAY:

• limit the lifetime of active sessions 

• control cookies usage by setting the cookie attributes (e.g. “Path”, “Max-

Age”)

• Servers are RECOMMENDED to control the rate of both open EPP sessions 
and HTTP connections to mitigate the risk of resource starvation

Security Considerations (2)



• Using sticky sessions:

• the load balancer assigns an identifier to each client issuing a request

• according to such identifier, the load balancer can route all of the requests of 
a given client to the backend server that started the session

• Each backend server must maintain the EPP information about the sessions 
opened by that server

• When a backend server is stopped and then restarted, all the EPP sessions 
currently active are lost

Load Balancing (1)



• Releasing the sessions from the server pool:

• every session is stored somewhere outside the server pool

• the load balancer distributes the request based on the load of each backend server

• when a server receives a request, it first retrieves the session data by the session ID

• Sessions are normally stored in a cluster of NO-SQL databases

• Only the ongoing requests are lost when a backend server is stopped and restarted

• Maintaining the sessions on a persistent data storage results in supporting a virtually 
unlimited number of concurrent sessions

Load Balancing (2)



Thanks for the attention!
Q & A


