Considerations for Protection of SRv6 Networks

draft-liu-rtgwg-srv6-protection-considerations-01

Yisong Liu (China Mobile)(Presenter)

Weiqiang Cheng (China Mobile) Changwang Lin (New H3C Technologies) Xuesong Geng (Huawei Technologies) Yao Liu (ZTE Corp.)

IETF 113

Outline

- Forwarding over SRv6 Network
 - SRv6 BE path
 - SRv6 TE path (with Compressed Segment List encoding)
- Protection of SRv6 Newtork
 - Path Protection
 - Local Protection
 - End-to-End Protection
 - Service Protection
 - Coexistence of Service Protection and Path Protection
- Running Code Status
- Implementation Recommendations
 - SRv6 BE Deployments and Examples
 - SRv6 TE Deployments and Examples

Path Protection

• Local Proctection (performed by the node adjacent to the failed component): TI-LFA can provide a loop free backup irrespective of the topologies. If G-SRv6 Compressed encoding is enabled, the repair node should try to use G-SIDS to encode the TI-LFA repair path.

• End-to-End Protection (the ingress PE node in charge of the failure recovery): In SR Policy for SRv6 TE path, the candidate path with second highest preference can be selected as the hot-standby backup. If all the candidate paths fail, SRv6 BE path may be used.

• Liveness Check:

BFD for interface, BFD/S-BFD between neighbors, BFD/S-BFD for SR Policy (at the level of segment list), Other OAM methods, such as Ping, TWAMP or STAMP, etc.

Service Protection

If egress PE fails, packets should be forwarded to another egress PE of the same service.

• Local Repair:

[I-D.ietf-rtgwg-srv6-egress-protection] provides a method for the adjacent node to encode repair path with Mirror SID.

Ingress Node Switchover:

The ingress node steers the flow to the path belonging to another egress PE node for protection. Liveness Check: BFD for Service SID/Locator/PE address

• Coexistence of Service Protection and Path Protection: Egress-node-first strategy:

TE-first strategy:

Service Protection Strategy

	Egress-node-first strategy	TE-first strategy
Primary Next-hop:	Ì	0
Backup Next-hop of 1st Priority:	2	0
Backup Next-hop of 2nd Priority:	3	Θ
Backup Next-hop of 3rd Priority:	4	0

Running Code Status

Lab Interop-test Status

Hardware devices and software implementations which have passed G-SRv6 protection interoperability tests hosted by China Mobile in 2021:

- China Unitechs Unified Controller
- Huawei NE40E and NE5000E
- H3C CR16010H-FA and CR19000
- ZTE M6000-8S Plus and M6000-3S

Deployment Status

Trials of G-SRv6 protection in three province branch networks of China Mobile in 2021:

- Huawei devices with a China Unitechs Unified Controller, Henan Province.
- H3C devices with a China Unitechs Unified Controller, Zhejiang Province.
- ZTE devices with a China Unitechs Unified Controller, Fujian Province.

Reference Topology

SRv6 BE Deployments

Deployments:

- Next-hop for VPN traffic on PE1:
 - Primary: SRv6 BE path to PE3
 BFD for locator of PE3
- All nodes enable TI-LFA for local protection, BFD for links and neighbors.

SRv6 BE Path Failure

When P7 fails:

- The fail-timer of BFD from P5 to P7 expires, so P5 perceives the failure.
- The TI-LFA repair path is P5->P6->P8->PE3.
- P5 encapsulates the packet in an outer IPv6 Header with SRH carrying the TI-LFA repair list.

When PE3 fails:

- The BFD session from PE1 to locator AA:A3::/32 is down.
- PE1 triggers the switchover to the SRv6 BE path to PE4.

SRv6 TE Deployments

Deployments:

- Next-hop for VPN traffic on PE1 (using egress-node-first strategy):
 - Primary: SR Policy 1 (Strict TE path)
 - Primary Candidate Path: PE1->P1->P3->P5->P7->PE3
 - Backup Candidate Path: PE1->P2->P4->P6->P8->PE3
 - Backup (1st priority): SRv6 BE path to PE3
 - Backup (2nd priority): SR Policy 2 (Loose TE path:)
 - Candidate Path: PE1->...->P4->...->P8->...->PE4
 - Backup (3rd priority): SRv6 BE path to PE4
- All nodes enable TI-LFA for local protection, BFD for links and neighbors.

- ← BFD for SR Policy 1
- ← BFD Reverse Path: PE3->P7->P5->P3->P1->PE1
- ← BFD Reverse Path: PE3->P8->P6->P4->P2->PE1
- BFD for locator of PE3
- ← BFD for SR Policy 2
- BFD for locator of PE4

SRv6 TE Strict Path Failure

When P3 fails:

- The BFD session of the segment list in the primary candidate path of SR Policy 1 is down.
- PE1 triggers the switchover to the backup candidate path of SR Policy 1.

SRv6 TE Policy Failure **VPN** traffic Metric: 5 → CE2 CE1 Metric: 11 BE Path to PE3 P5 P3 Ρ1 PE1 Ρ7 PE3 Primary Strict ath of SR Policy 1 CE1 CE2 Backup Strict Path of SR Policy 1 PE4 PE2 P2 P4 P6 P8

Before the recovery of P3, P6 also fails:

- The BFD session of the segment list in the backup candidate path of SR Policy 1 is also down.
- PE1 triggers the switchover to the 1st priority backup next-hop which is the SRv6 BE path to PE3.

SRv6 TE Service Failure VPN traffic Metric: 5 → CE2 CE1 Metric: 11 P3 BE Path to PE3 P5 Ρ1 PE1 Ρ7 Primary Strict Path of SR Policy 1 Loose Path of SR Policy 2 CE1 CE2 Backup Strict Path of SR Policy 1 PE4 PE2 P2 P4 P6 **P**8

When PE3 fails:

- Both the BFD sessions of SR Policy 1 and locator AA:A3::/32 are down, which means the primary next-hop and the 1st priority backup next-hop are both down.
- PE1 triggers the switchover to the 2nd priority backup next-hop which is the SRv6 TE loose path to PE4.

SRv6 TE Loose Path Failure(Non-Endpoint)

Before the recovery of PE3, assume that P6 fails:

- The fail-timer of BFD from P4 to P6 expires, so P4 perceives the failure.
- The TI-LFA repair path is P4->P3->P5->P7->P8.
- P4 encapsulates the packet in an outer IPv6 Header with SRH carrying the TI-LFA repair list.

SRv6 TE Loose Path Failure (Endpoint)

Before the recovery of PE3, assume that P8 fails:

- The TI-LFA on P6 does not work, since the failed endpoint node P8 is the destination.
- The BFD session of SR Policy 2 is down.
- PE1 triggers the switchover to the 3rd priority backup next-hop which is the SRv6 BE path to PE4.

Next Step

- Any questions or comments are Welcomed
- Seeking for feedback from WG