Cloud desires hyper-speed networking

Today, clouds have

bigger data to compute & store
faster compute & storage devices
more types of compute and storage resources

High-performance storage

• Storage-compute separation is norm
• HDD→SSD→NVMe
• Higher-throughput, lower latency
• 1M IOPS / 50~100us

High-performance computation

• Distributed deep learning, HPC
• CPU→GPU, FPGA, ASIC
• Faster compute, lower latency
• E.g. latency <10us

Resource disaggregation

• More network load
• Need ultra-low latency: 3-5us, >40Gbps (Gao et al. OSDI’16)
Hyper-speed network chips to form hyper-speed networking

Hardware-offloading (e.g., RDMA)
Traditional software-based networking stacks cannot keep with the speed

Real-time Congestion Control (CC)
Lots of data and communication => more pressure on the network
Challenges in CC in high-speed networks

• Convergence upon congestion
• Running multiple applications over converged network
 ➢ QoS and buffering are scarce resources
• Parameter tuning
In-band Telemetry

- New networking ASICs have in-band telemetry capabilities
- Packets can collect telemetry on their route
- Various efforts to define inband telemetry
 - IETF IOAM
 - INT/P4.org
 - IFA
Can we use inband telemetry as precise feedback for congestion control?

- Adjust rate
- Change entropy

Sender <-> Notification pkts/ACKs <-> Receiver

Telemetry
In-band telemetry format

- HPCC++ defines the algorithm of using telemetry information
 - including queue length, transmitted bytes, timestamp, link capacity, etc.
- Yet, the actual packet format is up to the environment

<table>
<thead>
<tr>
<th>Bits</th>
<th>31-24</th>
<th>23-16</th>
<th>15-8</th>
<th>7-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Device-ID</td>
<td></td>
<td></td>
<td>PT</td>
</tr>
<tr>
<td>1</td>
<td>TID</td>
<td>congestion</td>
<td>Tx Bytes Cnt[39:32]</td>
<td>TTL</td>
</tr>
<tr>
<td>2</td>
<td>Rx Timestamp Sec - Upper</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Rx Timestamp Sec</td>
<td>Rx Timestamp Nano Upper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Rx Timestamp Nano</td>
<td>Tx Timestamp Nano Upper</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Tx Timestamp Nano</td>
<td>Egress Queue Cell Cnt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Src-Sys-Port</td>
<td>Dest-Sys-port</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Tx Bytes Cnt[31:0]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example format of in-band telemetry used by HPCC++
HPCC++ Addresses all the discussed challenges

Using in-band telemetry as the precise feedback

• Fast convergence
 ➢ Sender knows the precise rate to adjust to

• Near-zero queue
 ➢ Feedback does not only rely on queue

• Few parameters
 ➢ Rich and precise feedback, so no need for heuristics which requires many parameters
So, What HPCC++ Actually Is?

- It is a service
- This service can be utilized by a given transport
- This service can also be utilized by a routing engine
Your Feedback is Appreciated!
Thank You