Agenda

- Security Event Tokens?
 - Origin and usage
- Shared Signals
- Use Cases
 - Domain Replication
 - Cross-domain Co-ordination
 - Signals
 - Misc
- Delivery Streams
 - Bus vs. Pont-to-Point SET
- Events
- Discussion
 - Scope of spec
 - Next steps
Origin of Security Event Token

- Originated within the SCIM WG
 - A mechanism to send back-channel messages "triggers"
- In 2015, several groups (SCIM, OAuth, OpenID) considering JWT.
 - The SCIM WG proposed a common standard form which became SET under the newly formed SECEVENTs group.
 - Unfortunately, the SCIM WG was "paused" while this happened as major deliverable deemed complete*
- Profiles the use of JWT for passing Security Events
 - Signable, securable, transportable in many ways
- What is an "Event"?
 - A statement about something that occurred about a subject
 - Interpreted by the receiver for independent action*
- This specification profiles SET for SCIM scenarios
Specifications

- RFC8417 – Security Event Token
- Delivery
 - Support for transfer and acknowledgement
 - Defines publishers and receivers
 - Limited SET recovery due to perceived stream scale (OIDC)
 - Publisher not obliged to retain after ack
 - Receiver implements own recovery once transferred*
 - Delivery Methods
 - RFC8935 – HTTP Push Delivery
 - RFC8936 – HTTP Polling Delivery
 - Includes support for "long-polling" to enable real-time
 - Costly when a publisher has 1k+ streams
SSE is a framework that defines an API to enable:

- https://openid.net/wg/sse/
- RFC8935/8936 delivery streams plus
- Secure management of the streams (feeds)
- Streams carry events using [RFC 8417](https://tools.ietf.org/html/rfc8417) (Security Event Token)
- 2 events schemas defined: CAEP and RISC

<table>
<thead>
<tr>
<th>RISC Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account Credential Change Required</td>
</tr>
<tr>
<td>Credential Compromised</td>
</tr>
<tr>
<td>Account Purged/Disabled/Enabled</td>
</tr>
<tr>
<td>Identifier Changed/Recycled</td>
</tr>
<tr>
<td>Recovery Activated/Information Changed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAEP Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credential Change</td>
</tr>
<tr>
<td>Session Revoked</td>
</tr>
<tr>
<td>Token Claims Change</td>
</tr>
<tr>
<td>Device Compliance Change</td>
</tr>
<tr>
<td>Assurance Level Change</td>
</tr>
</tbody>
</table>
Example Flow

1. Service Request: request service from a relying party
2. Context Update: Relying party can provide any change notifications
3. Policy Update: a subscriber to CAEP/RISC events can re-evaluate policy
4. Remediative Action: Relying party can enforce an action based on the policy update

Reference implementation: https://sharedsignals.guide/
Major SCIM Use Case

Domain Based Replication
- Common Schema and Resources
- Single administrative domain
- Many nodes to synchronize
- May be multi SCIM implementations
- Acts as a common User repository or directory
- Messages convey transactions

Co-ordinated Provisioning
- Differing Schema and Resources
- May be multi-admin domain
- Point-to-point cross-domain link
- Often has differing implementations
- May be related to cross-domain workflows and entitlements
- Messages convey "triggers"
Sequence for Domain Based Replication

1. SCIM Operation
2. SCIM Response
3. Event SCIM:prov:<op> id:xyz
4. Update local node
Co-ordinated Provisioning
Use Cases...

- Security Signals
 - Receiver MAY be an IDP, or Security AI System
 - Related to the Shared Signals WG
 - Certain SCIM change events are of interest:
 - Password change / reset
 - Authentication factor changes
 - User account status changes (activation, suspension etc)
 - Password validation failure count
Use Cases...

- Miscellaneous
 - Feed control confirmations (subject add/remove)
 - RFC7240 HTTP Respond Async Request
 - Anticipated due to some workflow or long-running operations
 - Useful if SCIM API implementation needs to be async
 - E.g. performance needed for high-update rate
HTTP Async Request Flow

1. SCIM Modify w/Respond Async
2. Accepted Status 202
4. ID: xyz created
SCIM Event

- Defines common attributes
- SET Event Claims
 - toe – "time of event" (may be earlier than SET iat)
 - txn – transaction identifier
 - events – a claim carrying one or more events about a txn
 - Sub, iss, iat, jti, aud, sub, exp also have profiling
- Scim Events Claims
 - sub* – to contain the URL of the SCIM Resource impacted
 - A set of event URIs for (Create, Put, Patch, Delete, etc)
 - Sub-claims: id, externalId, data, attributes
Subject/Identifiers

- CAEP/RISC use a more complex subject identifiers supporting more complex semantics
 - E.g. in OIDC, a SET issued by an OIDC client refers to a "sub" which only has meaning to the OP. Normally "iss" disambiguates, but the SET would have "iss" set to the Client!
- SCIM Profile uses SCIM "id" and "externalId" as the agreement on how to identify a SET subject.
 - Subject Identifiers draft is still in last call after several years
 - It's a tough nut to crack
 - SCIM should have a cross-domain relationship where "id" is understood.
 - common understanding of identifiers
Create Event for Domain Based Replication

```
{
   "jti": "4d3559ec67504aaba65d40b0363faad8",
   "iat": 1458496404,
   "iss":"https://scim.example.com",
   "aud": [
      "https://scim.example.com/Feeds/98d52461fa5bcb879593b7754",
      "https://scim.example.com/Feeds/5d7604516b1d08641d7676e7"
   ],
   "sub": "/Users/44f6142df96bd6ab61e7521d9",
   "events": {
      "urn:ietf:params:event:SCIM:prov:create": {
         "id": "44f6142df96bd6ab61e7521d9",
         "externalId": "jdoe",
         "data": {
            "schemas": ["urn:ietf:params:scim:schemas:core:2.0:User"],
            "emails": [
               {"type": "work", "value": "jdoe@example.com"}
            ],
            "userName": "jdoe",
            "name": {
               "givenName": "John",
               "familyName": "Doe"
            }
         }
      }
   }
}
```
Defined Events

- Feed Mgmt
 - Add and Remove Subject to a Feed
- SCIM API Events
 - Create, Put, Patch, Delete
 - Activate, Deactivate
- Signals
 - AuthMethod, pwdReset
- Misc
 - AsyncResp
Delivery

- SCIM Event Profile does not define delivery streams (nor how to manage it)
- Two common stream patterns expected
 - SECEvents defines SET Push and Poll for Point-to-point
 - Shared Signals Framework builds management and other features into SECEVENTs mechanisms
 - See: https://sharedsignals.guide
 - Lots of message bus systems out there (e.g. Kafka)
 - Difficult to force a single choice
 - Buses useful in they may contain historical record and recovery mechanisms
 - Much easier to do connection management at scale
 - Bi-directional flows possible
Out-of-scope

- How receivers should act
 - This does not impact over-the-wire interop
 - In the security world, this impacts demarcation, proprietary, and confidentiality boundaries
 - An event is just a statement of fact not a command
- Delivery mechanism defined by shared signals and bus systems
 - No need to re-invent a SCIM specific protocol?
Questions for WG

1. Currently sub provides a convenient callback URL
 ○ Do we need it?
2. Feed Management
 ○ Should we use SSE equivalents?
 ■ Note that SCIM has a simple subject identifier agreement
3. Is Async Request Response Useful?
4. Other events? (e.g. signals)
5. Other concerns?
Thank You!