
BGPsec Scalability

Protocol Engineering meets
Software Engineering and Hardware Engineering

1

Experiments

• Take realistic absolute and relative state distribution numbers.

• The overall setup models a route server in a moderately sized IX.

• Instrumented implementation for performance measurement.

• No codepoint hijacks.

• Feeder side is precomputed ahead of time.

• Verification is performed prior to path selection.

• The results should not be generalized and interpreted outside of the experiment context.

• Number of prefixes and paths.

• Number of prefixes sharing the same path.

• Fanout ratio.

• Caching aspects.

2

Experiments

• BGP – 83 s.

• BGPsec – 2049 s.

3

Contemporary compute platforms

• Plenty of raw compute performance capacity

• Memory bandwidth and latency are limiting factors

• Vectorization

• Batching and caching

• Most important – contemporary platforms do not forgive lousy
approaches to software engineering. Protocol engineering needs to
take software and hardware specifics into account seriously.

void memcpy(char *a, char *b, size_t n) {

while (n--)

*a++ = *b++;

}

If you do this to your platform, do not expect
that it will treat you friendly

4

BGPsec receive side processing
rx -> hash -> verify -> process prefix and path

SHA2 for hashing

• Computationally inexpensive – but touches
memory

• Operates on fixed size blocks with 4 byte base
element granularity

• Vectorizes well, constrained by data layout

P-256 for verification

• Computationally significantly expensive – but
does not touch memory

• Vectorizes well, little data dependency

• Batching – ECDSA*

5

Path + SKI + Sig N Path + SKI + Sig 2 Path + SKI + Sig 1 Prefix...

100 (6 + 94) 100 100 5+

Vectorized SHA2 and P-256
Linear code block operating on different data
sets in parallel

Hash multiple blocks in parallel
Sign/verify multiple hashes/signatures in
parallel

Vector lanes of fixed width

Gather operations place significant restrictions
on data format

+20% latency results in +1500% throughput

If data structures allow.

Path + SKI + Sig N Path + SKI + Sig 2 Path + SKI + Sig 1 Prefix...

HN H... H2 H1

SN

H2

SN S... S2 S1

Keys

100 (6 + 94) 100 100 5+

6

Wire format impact

Memory access is expensive

SHA2 latency is linearly
proportional to block length

SHA2 operation width is 4 bytes

ECDSA signing is computationally
expensive but constant, no memory
access

ECDSA verification is even more
computationally expensive but
constant, no memory access

BGPsec wire format is incompatible with computation format.

7

Path + SKI + Sig N Path + SKI + Sig 2 Path + SKI + Sig 1 Prefix...

PN ... P2 P1 Sig N ... Sig 2 Sig 1

100 (6 + 94) 100 100 5+

BGPsec transmit side processing
{Prefix, Path and signature elements, Target} -> hash -> sign -> tx

SHA2, same as for the receive side.

• Additional blocks need to be added, different layout for hashing and for
wire encoding

• Target ASN position prevents caching

P-256 for signing

• Computationally expensive – but does not touch memory

• Vectorizes well

8

T Path + SKI + Sig N Path + SKI + Sig 2 Path + SKI + Sig 1 Prefix...

100 (6 + 94)4 100 100 5+

Experiments

• BGP – 83 s.

• BGPsec – 2049 s.

• BGPsec plus magic – 272 s.

9

Is BGPsec broken?

No.

As specified now, it is suboptimal and not aligned to contemporary
hardware platform usage patterns.

10

What can be done then?

• BGPsec has some extensibility mechanisms inbuilt

• Protocol is versioned

• Algorithm identifiers could have different meaning in different
versions

• Hashed block layout needs to be rearranged

• Wire format needs to be rearranged

11

Questions

• Can a smart compiler help here?

• Can a fashionable programming language help here?

• Vectorization availability?

• Memory system evolution trends?

12

Discussion

Do we care?

13

