BGPsec Scalability

Protocol Engineering meets
Software Engineering and Hardware Engineering



Experiments

* Take realistic absolute and relative state distribution numbers.

* The overall setup models a route server in a moderately sized IX.

* Instrumented implementation for performance measurement.

* No codepoint hijacks.

* Feeder side is precomputed ahead of time.

 Verification is performed prior to path selection.

* The results should not be generalized and interpreted outside of the experiment context.

* Number of prefixes and paths.

* Number of prefixes sharing the same path.
* Fanout ratio.

e Caching aspects.



Experiments

e BGP — 83 s.
* BGPsec — 2049 s.



Contemporary compute platforms

* Plenty of raw compute performance capacity

* Memory bandwidth and latency are limiting factors
* Vectorization

e Batching and caching

* Most important — contemporary platforms do not forgive lousy
approaches to software engineering. Protocol engineering needs to
take software and hardware specifics into account seriously.

void memcpy (char *a, char *b, size_t n) { l If you do this to your platform, do not expect

while (n--) . . ]
*at+ = *bit: that it will treat you friendly

}



BGPsec receive side processing

rx -> hash -> verify -> process prefix and path

SHA2 for hashing

 Computationally inexpensive — but touches
memory

» Operates on fixed size blocks with 4 byte base
element granularity

* Vectorizes well, constrained by data layout

P-256 for verification

e Computationally significantly expensive — but
does not touch memory

* Vectorizes well, little data dependency
e Batching — ECDSA*

100 (6 + 94)

100

100

5+
1

Path+SKI+SigN | ..

Path + SKI + Sig 2

Path + SKI + Sig 1

Prefix




Vectorized SHA2 and P-256

100 (6 + 94) 100 100 5+

— . —  — . Linear code block operating on different data
T sets in parallel

Path + SKI + Sig N Path + SKI +ESig 2 Path + §KI +Sig 1 Prefix

l Hash multiple blocks in parallel
Sign/verify multiple hashes/signatures in
parallel

,,,,,,,,,,,,,,,,,,,,,,, ) Vector lanes of fixed width

Gather operations place significant restrictions
on data format

+20% latency results in +1500% throughput

Keys

If data structures allow.




Wire format impact

PN | .. | P2

Sig N

Sig 2

Sig 1

th+sm£smN

Pah+sm£sgz

: Path+SKI +Sig 1

Prefix

BGPsec wire format is incompatible with computation format.

Memory access is expensive

SHAZ2 latency is linearly
proportional to block length

SHA?2 operation width is 4 bytes

ECDSA signing is computationally
expensive but constant, no memory
access

ECDSA verification is even more
computationally expensive but
constant, no memory access



BGPsec transmit side processing

{Prefix, Path and signature elements, Target} -> hash -> sign -> tx

SHA2, same as for the receive side.

» Additional blocks need to be added, different layout for hashing and for
wire encoding

* Target ASN position prevents caching

P-256 for signing
 Computationally expensive — but does not touch memory
* Vectorizes well

4 100 (6 + 94) 100 100 5+

T | Path+SKI«SigN | .. | Path+SKI+Sig2 |: Path+S$Ki+Sigl: Prefix




Experiments

* BGP — 83 s.
* BGPsec — 2049 s.
* BGPsec plus magic — 272 s.



s BGPsec broken?

No.

As specified now, it is suboptimal and not alighed to contemporary
hardware platform usage patterns.



What can be done then?

* BGPsec has some extensibility mechanisms inbuilt
* Protocol is versioned

* Algorithm identifiers could have different meaning in different
versions

* Hashed block layout needs to be rearranged
* Wire format needs to be rearranged



Questions

* Can a smart compiler help here?

e Can a fashionable programming language help here?
* Vectorization availability?

* Memory system evolution trends?



Discussion

Do we care?



