TCP ACK Rate Request (TARR) option

draft-gomez-tcpm-ack-rate-request-03

Carles Gomez
Universitat Politècnica de Catalunya

Jon Crowcroft
University of Cambridge

IETF 113 Vienna, TCPM WG, March 2022
Motivation

• Delayed ACKs
 • Intended to reduce protocol overhead
 • But may also contribute to suboptimal performance

• “Large” cwnd scenarios (i.e. cwnd \gg MSS):
 – Saving up to 1 of every 2 ACKs may be insufficient
 • Performance limitations due to asymmetric path capacity
 • Computational cost and network load

• “Small” cwnd scenarios (i.e. cwnd up to ~ 1 MSS):
 – Data centers: BDP up to ~ 1 MSS
 • Delayed ACKs will incur a delay much greater than the RTT
 – Transactional data exchanges, or when cwnd decreases
 • Immediate ACKs may avoid idle times, allow faster cwnd growth
Status

• Related prior discussion
 • Sender control of TCP ACKs
 • Converged to defining a new TCP option serving two purposes:
 – Requesting a given ACK rate
 – Requesting immediate ACKs

• Version -03
 • Aims to address comments from (many thanks!):
 – Yoshifumi Nishida
 – Michael Scharf
 – Jonathan Morton
 – Bob Briscoe
Updates in -03 (I/V)

• Main format
 • OLD:
 - When R=0, sender requests immediate ACKs for the next N segments
 - However, mostly redundant
 • NEW:
Updates in -03 (II/V)

• Two possible encodings for the R field:

 • OPTION 1:
 – Binary encoding of the requested ACK rate
 – The maximum value of R is 63

 • OPTION 2:
 – 4 leftmost bits represent a mantissa (m)
 – 2 rightmost bits represent an exponent (e)
 – The requested ACK rate is \(R = (m+1) \times 2^{2 \times e} \)
 – The maximum value of R is 1024
Updates in -03 (III/V)

• Section 3:
 • A TARR-option-capable receiving TCP SHOULD modify its ACK rate to one ACK every R received data segments from the sender
 – Reasons why not a MUST: lack of resources, security...
 – R=1: the receiving TCP SHOULD send an ACK immediately
 – R=0: not defined
 • Upon reception of a SYN carrying the TARR option, a TARR-option-capable endpoint MUST include the TARR option in the SYN-ACK sent in response
 – Question: due to lack of SYN space, including TARR only in response to the SYN-ACK?
 • A TCP segment carrying retransmitted data is not required to include a TARR option
 • Question: is the Ignore Order feature considered useful?
 – If RACK not supported, long loss detection time
Updates in -03 (IV/V)

• New section 5: changing the ACK rate during the lifetime of a TCP connection
 • ACK rate may depend on cwnd (may change during a connection)
 – cwnd should settle in congestion-avoidance phase
 – Routing, path capacity, path load changes may impact the BDP (thus cwnd and the ACK rate)
 • Ability to suppress DelACKs to allow measuring the RTT for each packet in some intervals; allow different ACK rate afterwards
 • Linux receiver heuristic to detect slow start and suppress Delayed ACKs until its end
 – Some slow start variants may confuse the heuristics.
 – Explicit end of slow start signal may be useful to avoid slow start sender behavior ossification
 • Reducing ACK load when ACK decimation is detected by the sender
Updates in -03 (V/V)

• Security considerations
 • TCP-AO may be used to protect TCP segment header
 • Guidance and attack mitigation given in RFC 5961 is RECOMMENDED for a TARR receiver
 – TARR option MUST be ignored on a packet deemed invalid
 • A TARR receiver might opt not to fulfill a request to avoid or mitigate an attack:
 – A large number of senders requesting immediate ACKs simultaneously after a large number of data segments sent
Next steps

• Continue improving the document
 • Further feedback will be appreciated

• Looking for collaboration
 • Implementation
 – Running code
 • Co-authorship
Thanks!
Questions? Comments?

Carles Gomez
Universitat Politècnica de Catalunya

Jon Crowcroft
University of Cambridge

IETF 113 Vienna, TCPM WG, March 2022