
draft-piraux-tcpls
TCPLS: Modern Transport Services with TCP and TLS

Maxime Piraux, Olivier Bonaventure,
UCLouvain

Florentin Rochet
University of Edinburgh

Content

● Introduction

● Using TLS for transport protocol extensibility

● Opportunities for the transport stack

● The TCPLS protocol

● Conclusion

2

The design of MPTCP

● In 2009, the mptcp WG formed with an initial design involving TCP Options

● In 2013, v0 shipped and enabled
○ Bandwidth aggregation of several TCP subflows

○ Failover in case of network failure

○ Backwards compatibility with TCP

● MPTCP has several issues
○ Address exchange is not secure, improved in MPTCP v1

○ TCP is prone to middlebox interference

○ Can be difficult to implement

■ 7-year journey from specification to mainline Linux

3

The design of QUIC

● In 2016, the quic WG formed to design an UDP-based transport protocol

● In 2021, QUIC v1 shipped and enabled:
○ Stream multiplexing

○ Connection migration, failover

● TLS secures most of the QUIC header and all QUIC payloads

● QUIC can be implemented in user-space and shipped with applications

4

Using TLS for transport protocol extensibility

● TLS is the most used protocol atop TCP

● TLS version 1.3 used encryption to extend the protocol
○ Encrypted TLS records and Encrypted Extensions allows securely exchanging control and

application data

● TCP support in the network and in operating systems remains wider

● Given the ubiquity of TLS, can we provide new transport services with

TCP and TLS ?

5

Opportunities for the transport stack

● Build an encrypted transport protocol
○ Stream multiplexing

■ App-chosen HoL blocking resilience
○ Connection Migration

■ Based on app triggers and network conditions
○ Multipath

■ Scheduling at the TLS record level
● More efficient than the HTTP/2+TLS+MPTCP stack

○ Built on a strict layering assumption

● Clean slate for other transport extensions

6

The TCPLS protocol

● Session establishment

● Exchanging application and control data

● Adding TCP connections

● Record acknowledgements

● Modern Transport Services
○ Stream multiplexing

○ Failover

○ Bandwidth aggregation

7

Session establishment

● TCPLS does not modify the
TCP and TLS handshake

● tcpls is a TLS Extension
indicating the support of TCPLS

● Compatible with TCP TFO and
TLS 0-RTT Handshake

Client Server

SYN

SYN+ACK

TLS ClientHello, Ext.=[tcpls]; ...

TLS ServerHello, EE.=[tcpls]; ...

8

TLS Finished

Both endpoints use TCPLS

Stream multiplexing

● Streams provide concurrent bytestreams to applications
● TCPLS manages the streams and multiplexes them

9

Client
Server

Stream AStream BStream A

TCP Connection

Stream A

Stream B

Multiplexer

Exchanging data

● Application and control data can
then be sent in TLS encrypted
records using TCPLS frames

● Frames compose TLS records

Client Server

SYN

SYN+ACK

TLS ClientHello, Ext.=[tcpls]; ...

TLS ServerHello, EE.=[tcpls]; ...

10

TLS Finished

TLS AppData=[▮▮▮]

TLS AppData=[▮]

Example: A TLS record containing a TCPLS Stream frame

11

O
pa

qu
eT

yp
e

=A
pp

D
at

a

Version
=0x303 Length

TLS Ciphertext header TLS Encrypted record

TCPLS

TLS Ciphertext

TLS Cleartext

Example: A TLS record containing a Stream frame

12

Content

Ty
pe

=A
pp

D
at

a

TLS Application Data record

TCPLS

TLS Ciphertext

TLS Cleartext

Example: A TLS record containing a Stream frame

13

Stream frame

Fr
am

eT
yp

e
=S

tre
am Stream

ID Offset Length FI
N Stream data

TCPLS

TLS Ciphertext

TLS Cleartext

Stream multiplexing

● Streams provide concurrent bytestreams to applications
● TCPLS manages the streams and multiplexes them
● Streams multiplexed on a single connection are subject to HoL blocking

14

Client
Server

Stream AStream BStream A

TCP Connection

Stream A

Stream B

Multiplexer

Stream multiplexing

15

Stream AStream BStream A

Stream CStream CStream D

TCP Connection 0

TCP Connection 1

● TCPLS manages TCP connections and schedules the TLS records
● By mapping streams to connections, the app choose the streams it wants

to protect, and the ones that are bound together

Client
Server

Stream A

Stream B

Stream C

Stream D

Multiplexer &
Scheduler

Adding TCP connections

16

Client Server

Both endpoint can use TCPLS

Fr
am

eT
yp

e
=N

ew
To

ke
n

Sequence Token

New Token frame

TLS AppData=[NewToken={1, “abc”}]● Server gives tokens to the client
● Each token can be used by the

client to open and join an
additional TCP connection

● Server can limit the connections
by limiting the tokens

● The Sequence number of the
Token becomes the Connection
ID

Adding TCP connections

17

● The client put the token in the
tcplsJoin TLS Extension

● The server validates the token and
joins the TCP connection to the
session

Client Server

SYN

SYN+ACK

TLS ClientHello, Ext.=[tcplsJoin=”abc”]; ...

This connection has
Connection ID 1

TLS ServerHello, EE.=[tcpls]; ...

TLS Finished

Adding TCP connections

18

Client Server

Client used token “abc”

● Each TLS record is encrypted with a
unique nonce

● Record sequence is kept implicit
● The record sequence cannot be

shared among TCP connections
● We do not want to do a full TLS

handshake, which is costly

What crypto material should be
used?

TLS 1.3 Initial Vector

Record seq.

N N-32 64 0

XOR

TLS Per-record Nonce

Adding TCP connections

19

Client Server

Client used token “abc”

What crypto material should be
used?

TLS 1.3 Initial Vector

Conn. record seq.

N N-32 64 0

XOR

TCPLS Per-record Nonce

Connection ID

XOR

● Each TLS record is encrypted with a
unique nonce

● Record sequence is kept implicit
● The record sequence cannot be

shared among TCP connections
● We XOR the Connection ID to the

nonce and add a per-connection
record sequence

Failover

● Endpoints can reinject frames from lost records onto
other TCP connections

● They know which records have been received

20

Stream AStream B

TCP Connection 0

TCP Connection 1

Client
Server

Stream A

Stream B

Stream B

Multiplexer &
Scheduler

Record acknowledgements

21

Server Client
CID 1

TLS AppData={▮} (Seq=3)

TLS AppData={?}
(Seq=0)

Client
CID 0

TLS AppData={▮} (Seq=4)

If CID 0 fails, how to know
whether this record was

received?

X

Record acknowledgements

● Each record is identified by:
○ its TLS record sequence number
○ the Connection ID (=Token sequence

number) it was sent on
● ACK frame indicates the sequence

number of the latest record
received over a connection

● As TCP delivers data in sequence,
only cumulative ACKs are needed

22
Fr

am
eT

yp
e

=A
C

K Connection ID
(Token sequence)

ACK frame

Latest record
acknowledged

Record acknowledgements

23

Server Server
CID 1

TLS AppData={▮} (Seq=3)

TLS AppData={▮}
(Seq=0)

Client
CID 0

TLS AppData={▮} (Seq=4)

If CID 0 fails, how to know
whether this record was

received?

X
TLS AppData=[

ACK={CID=0, Seq=3}]
 (Seq=0)

TLS AppData=[
ACK={CID=0, Seq=3},
ACK={CID=1, Seq=0}]

 (Seq=1)

Bandwidth aggregation

● Endpoints can send Stream frames of a given stream on several TCP
connections, benefiting from bandwidth aggregation

24

Stream A

TCP Connection 0

TCP Connection 1

Client
Server

Stream A

Multiplexer &
Scheduler

Stream AStream A

Stream AStream AStream A

draft-piraux-tcpls

● It describes the protocol presented here

● We welcome feedback and comments on the draft
○ For both the protocol and the use-cases

● We will continue working on improving the protocol

● Some parts will be discussed in future versions
○ Congestion control

○ Flow control

● Followed a preliminary version of the TCPLS protocol presented at

CoNEXT’21 [1]

25[1] Rochet, F., Assogba, E., Piraux, M., Edeline, K., Donnet, B., and O. Bonaventure, "TCPLS - Modern Transport Services with TCP and TLS", (CoNEXT'21).

Prototype

● We implemented draft-piraux-tcpls-01 on top of picotls, a TLS 1.3

implementation in C

● We modified 50 lines of picotls for the required TCPLS interface

● The prototype implements stream multiplexing, failover and multipath

● It consists of 2.5k lines of C

● We will release the prototype under an open-source license

26

Conclusion

● TCPLS is a secure, user-space, transport protocol bringing
○ Stream multiplexing

○ Connection migration, Failover

○ Multipath

● TCPLS leverages in-kernel high performance TCP implementations

● We implemented a prototype in 2.5k lines of C
○ We will publish the code

● We are interested pursuing this work within the IETF
○ Should we start with a dedicated mailing list ?

maxime.piraux@uclouvain.be – 27

mailto:maxime.piraux@uclouvain.be

Backup – HTTP/2

● HTTP/2+TLS+MPTCP is built on
strict layering assumption

● TCPLS offers more control to the
application over the TCP
connections of the session

Application

HTTP/2

TLS

MPTCP

IPv4/IPv6

data

? ?

?

Application

TCPLS TLS

IPv4/IPv6

data

TCP TCP

?

How to divide in:
● Frame?
● Record?
● Packets?

TCPLS offers a
better control
and leverages
several TCP
connections

28

