IETF 113 TEEP Hackathon

March 21, 2022
Akira Tsukamoto (AIST)
Objective and Plan

- **Objective**
 - Find issues or consideration points when adding EAT and COSE in TEEP protocol implementation

- **Plan**
 - Try out SUIT handling in the implementation
 - **EAT**
 - EAT has "Passport Model" and the "Background-Check Model"
 - Pros and cons of above two in TEEP
 - **COSE**
 - CDDL format update
 - Which algorithms to be mandated or optional
Two EAT models from the EAT draft

- https://www.ietf.org/archive/id/draft-ietf-rats-architecture-01.html

Figure 3: Passport Model

Figure 4: Background-Check Model
EAT in TEEP drafts

- TEEP is using background-check model

- TAM will be attesting with Verifier and not the Device
 - The Device does not have to have an implementation of talking with Verifier
 - Desirable for constraint devices

- How to support both in the future?
 - Maybe possible, if the EAT profile format has indication between Evidence or Attestation-Result

- Any reference implementation of Verifier to be used with TAM is helpful
EAT formats in CBOR and JSON

- https://github.com/ietf-teep/teep-protocol/issues/184
- EAT permits both JSON and CBOR
- Current description in the TEEP Protocol draft

```plaintext
query-response = [
    type: TEEP-TYPE-query-response,
    options: {
        ? evidence-format => text,
        ? evidence => bstr,
    }
]
```

- Suggestion for the text string in evidence-format
 "application/jwt" MUST be present if the EAT format is JWT, and
 "application/cwt" MUST be present if the EAT format is CWT.

- Add types of evidence which could have bstr for CBOR and text for JSON

```plaintext
evidence = [
    bstr / text / nil
]
```
Selection of REQUIRED, RECOMMENDED, OPTIONAL in COSE

Choices for implementing on real products

- Preferred to match with SUIT and EAT requirements, since both will be using COSE
- Recommending HSS-LMS for quantum resistance purpose
- Include AES, RSA as options which are commonly used in the market, SHA-3 in the future?

;REQUIRED to implement:
- \texttt{teep-cose-hash-algs} /= cose-alg-sha-256 \textit{required in SUIT also}

;REQUIRED to implement either of one:
- \texttt{teep-cose-sign-algs} /= cose-alg-es256
- \texttt{teep-cose-sign-algs} /= cose-alg-eddsa

;RECOMMENDED to implement:
- \texttt{teep-cose-sign-algs} /= cose-alg-hss-lms

;OPTIONAL to implement:
- \texttt{teep-cose-hash-algs} /= cose-alg-shake128
- \texttt{teep-cose-hash-algs} /= cose-alg-sha-384
- \texttt{teep-cose-hash-algs} /= cose-alg-sha-512
- \texttt{teep-cose-hash-algs} /= cose-alg-shake256
- \texttt{teep-cose-sign-algs} /= cose-alg-ps256
- \texttt{teep-cose-sign-algs} /= cose-alg-ps384
- \texttt{teep-cose-sign-algs} /= cose-alg-ps512
- \texttt{teep-cose-sign-algs} /= cose-alg-rsaeos-oaep-sha256
- \texttt{teep-cose-sign-algs} /= cose-alg-rsaeos-oaep-sha512
- \texttt{teep-cose-encrypt-algs} /= cose-alg-accm-16-64-128
- \texttt{teep-cose-encrypt-algs} /= cose-alg-a128gcm
- \texttt{teep-cose-encrypt-algs} /= cose-alg-a192gcm
- \texttt{teep-cose-encrypt-algs} /= cose-alg-a256gcm
- \texttt{teep-cose-mac-algs} /= cose-alg-hmac-256
RSA require certain key length

- How to specify RSA key length, along side with RSA in COSE?
 - Over 2048 bits required
 - Over 4096 bits recommended

\[
tee-pose-sign-algs /= cose-alg-ps256
tee-pose-sign-algs /= cose-alg-ps384
tee-pose-sign-algs /= cose-alg-ps512
tee-pose-sign-algs /= cose-alg-rsaes-oaep-sha256
tee-pose-sign-algs /= cose-alg-rsaes-oaep-sha512
\]

- Current IANA registration of COSE Algorithms
 - https://www.iana.org/assignments/cose/cose.xhtml
Summary

- Going through SUIT, EAT and COSE support on TEEP which were added after IETF 112
 - Plan to make the implementation public before IETF 114 with at least of SUIT support
- EAT background-check model and passport model for the TEEP
- Pros and cons, should make the draft generic to support both in the future?
- What cipher suite for COSE?
- Permitting RSA with a certain key length
- After 113, runnable code for COSE and EAT

A part of this hackathon presentation is based on results obtained from a project, JPNP16007, commissioned by the New Energy and Industrial Technology Development Organization (NEDO).