Hybrid key exchange in TLS 1.3

draft-ietf-tls-hybrid-design-04

Douglas Stebila, Scott Fluhrer, Shay Gueron
Motivation

• Permit simultaneous use of traditional and post-quantum key exchange
 • Enable early adopters to get post-quantum security without discarding security of existing algorithms

• Reduce risk from break of one algorithm
• Maintain standards compliance during transition
Goals

Define data structures for negotiation, communication, and shared secret calculation for hybrid* key exchange

Non-goals

• Hybrid/composite certificates or digital signatures
 • (LAMPS working group)
• Selecting which post-quantum algorithms to use in TLS
 • (NIST, CFRG)

* Some people use the word “composite” instead of “hybrid”.
Mechanism

Idea: Each desired combination of traditional + post-quantum algorithm & parameter set will be a new (opaque) key exchange “group”

- **Negotiation:** new named groups for each desired combination will need to be standardized
- **Key shares:** concatenate key shares for each constituent algorithm
- **Shared secret calculation:** concatenate shared secrets for each constituent algorithm and use as input to key schedule
 - Concatenation is a NIST-approved combiner [1]

[1] https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Cr2.pdf#page=10
Is it safe to use concatenation? $ss = H(k1 || k2)$

Aviram et al.:
If:
 a) H is not collision-resistant
 • (and H-collisions can be found within lifetime of TLS session)
 b) k_1 is adversary-controlled and variable length
 c) ephemeral keys are reused
then it possible to learn k_2.

• Possible but significant assumptions:
 • Need long session timeout
 • Ephemeral key reuse
• Assumption (b) not satisfied:
 • k_1 is fixed-length for all standardized TLS 1.3 DH groups
• => No changes made to this draft

• Based on attack on APOP (MD5-based challenge response protocol); similar to CRIME attack.
• Worthwhile exercise: given long-lived hard-to-upgrade implementations, how robust should our protocol designs be to algorithm failure?

Aviram, Dowling, Komargodski, Paterson, Ronen, Yogev. Concatenating secrets may be dangerous, August 2021.
https://github.com/nimia/kdf_public
Next steps

• No known pending tasks for this draft

• Several interoperable implementations:
 • Open Quantum Safe OpenSSL and BoringSSL forks [1]
 • wolfSSL [2]
 • s2n-tls [3]

• Specific PQ algorithms to be identified outside of this document
 • NIST Round 3 conclusion → CFRG → TLS

• Could move to Working Group Last Call?