Hybrid key exchange in TLS 1.3 draft-ietf-tls-hybrid-design-04

Douglas Stebila, Scott Fluhrer, Shay Gueron

WATERLOO

IETF 113 TLS Working Group • 2022-03-23

Motivation

- Permit simultaneous use of traditional and post-quantum key exchange
 - Enable early adopters to get post-quantum security without discarding security of existing algorithms
- Reduce risk from break of one algorithm
- Maintain standards compliance during transition

Goals

Define data structures for negotiation, communication, and shared secret calculation for hybrid* key exchange

Non-goals

- Hybrid/composite certificates or digital signatures
 - (LAMPS working group)
- Selecting which postquantum algorithms to use in TLS
 (NIST, CFRG)

Mechanism

Idea: Each desired combination of traditional + postquantum algorithm & parameter set will be a new (opaque) key exchange "group"

- **Negotiation**: new named groups for each desired combination will need to be standardized
- Key shares: concatenate key shares for each constituent algorithm
- Shared secret calculation: concatenate shared secrets for each constituent algorithm and use as input to key schedule
 - Concatenation is a NIST-approved combiner [1]

Is it safe to use concatenation? ss = H(k1 || k2)

Aviram et al.:

lf:

- a) H is not collision-resistant
 - (and H-collisions can be found within lifetime of TLS session)
- b) k_1 is adversary-controlled and variable length
- c) ephemeral keys are reused

then it possible to learn k_2 .

 Based on attack on APOP (MD5-based challenge response protocol); similar to CRIME attack.

- Possible but significant assumptions:
 - Need long session timeout
 - Ephemeral key reuse
- Assumption (b) not satisfied:
 - k₁ is fixed-length for all standardized TLS 1.3 DH groups
- => No changes made to this draft
- Worthwhile exercise: given long-lived hard-to-upgrade implementations, how robust should our protocol designs be to algorithm failure?

Aviram, Dowling, Komargodski, Paterson, Ronen, Yogev. Concatenating secrets may be dangerous, August 2021. <u>https://github.com/nimia/kdf_public</u>

Next steps

- No known pending tasks for this draft
- Several interoperable implementations:
 - Open Quantum Safe OpenSSL and BoringSSL forks [1]
 - wolfSSL [2]
 - s2n-tls [3]
- Specific PQ algorithms to be identified outside of this document
 NIST Round 3 conclusion → CFRG → TLS
- Could move to Working Group Last Call?

[1] <u>https://github.com/open-quantum-safe/openssl</u> • <u>https://github.com/open-quantum-safe/boringssl</u>

2] <u>https://www.wolfssl.com/hybrid-post-quantum-groups-tls-1-3/</u>

[3] https://github.com/aws/s2n-tls/blob/main/pq-crypto/README.md