informatiques g mathématiques
é CLOUDFLARE &1/260/-

A Symbolic Analysis of Privacy for
TLS 1.3 with Encrypted Client Hello

Karthikeyan Bhargavan?
Vincent Cheval’
Christopher Wood?

(1) INRIA Paris (2) Cloudflare
Equipe Prosecco

TLS Deployment Scenario

Clients Public Client-Facing Backend
Network Server Servers

The basic TLS 1.3 handshake

ClientHello Diffie-Hellman key exchange

+Key Share
+Signature Algorithm
+Pre sh k _—

o onerE ey ServerHello {EncryptedExtensions}
+Key Share {CertificateRequest}
+Pre share key ~ {Certificate}

{CertificateVerify]}
{Finished}
S [Application Data]
{Certificate}
{CertificateVerify}
{Finished} _———)
[Application Data] —> [Application Data]
In green: Not always sent { X'}: Encrypted with Handshake traffic key

[X]: Encrypted with Application traffic key

Several features

Negotiating Connection Parameters : HelloRetryRequest
Certificate-based Client Authentication

Pre-Shared Keys and Tickets

ORTT

Post Handshake Authentication

Other TLS extensions (e.g. SNI)

Verifying TLS requires to

consider many scenarios

Security goals

Authentication and Integrity Goals Confidentiality
Server Authentication Key Secrecy
Client Authentication Key Indistinguishability
Key and Transcript Agreement 1RTT Data Forward Secrecy
Data Stream Integrity ORTT Data Secrecy

Key Uniqueness

Downgrade Resilience

Security goals

Authentication and Integrity Goals Confidentiality
Server Authentication (1,3,4) Key Secrecy (1,2,3,4)
Client Authentication (1,3,4) Key Indistinguishability (1)
Key and Transcript Agreement (1,3,4) 1RTT Data Forward Secrecy (1,3,4)
Data Stream Integrity (1,2,3,4) ORTT Data Secrecy (1,2,3,4)

Key Uniqueness (3,4)

Downgrade Resilience (4)

1. CryptoVerif
2. F*

—» 3. Tamarin
4. ProVerif

Automated verification to

the rescue

Security goals

Authentication and Integrity Goals Confidentiality
Server Authentication (1,3,4) Key Secrecy (1,2,3,4)
Client Authentication (1,3,4) Key Indistinguishability (1)
Key and Transcript Agreement (1,3,4) 1RTT Data Forward Secrecy (1,3,4)
Data Stream Integrity (1,2,3,4) ORTT Data Secrecy (1,2,3,4)

Key Uniqueness (3,4)

Downgrade Resilience (4)

1. CryptoVerit REYYT-Wt¥eYo (=1 -0 [0

2. F*
—» 3. Tamarin

4. ProVerif

not cover all
features

Automated verification to

the rescue

Security goals

Privacy

Client Identity Privacy

Client Unlinkability

Server Extension Privacy

Client Extension Privacy

Server ldentity Privacy

Security goals

Privacy

Client Identity Privacy

Client Unlinkability No automated proofs

Server Extension Privacy

Client Extension Privacy

Extension in ClientHello

Server Identity Privacy SNI in ClientHello

Security goals

Privacy

Client Identity Privacy

Client Unlinkability No automated proofs

Server Extension Privacy

Client Extension Privacy

Extension in ClientHello

Server Identity Privacy SNI in ClientHello

Encrypted Client Hello guarantees

all these privacy goals

ECH

Clients Public Client-Facing Backend
Network Server Servers

Goal: Privacy of the identity of the backend server

Main idea: Encrypt sensitive informations (e.g. server identity of the backend server)
with a public key of the client-facing server

Not so easy: Several previous designs were vulnerable

First draft: Encrypt the SNI and ClientHello.random

Client (C)

Adversary (A)

CH s |Gaigs] o)

Server (F, S, S

Long-term Keys: (dkp, ekr), (sks,pkg), (sk's, pk's)

T cier, B (G o" |[hpker (S)ler) | K eryio
ServerHello(sr,G, g¥) y yp

tx1 ------ . —— nlliely tx1
Computes: Computes:
hs = kdf,,(kdfo, g*') hs = kdf,(kdfg, g*'¥)
ms, kn ¢, kn s, -+ = kdf s (hs, tz1) msS, knc, ks, - = kdf s (hs, tz1)

<

enc®ns(Extensions(...),Certificate(S, pkg))

Learns that C tried to connect
to S from Certificate(S’, pks)

*

Not so easy: Several previous designs were vulnerable

First draft: Encrypt the SNI and ClientHello.random

Client (C)

Adversary (A)

CH s |Gaigs] o)

Main idea: Encrypt the whole Client Hello destined for the backend server

(inner) and bind it with the Client Hello for the Client-Facing server (outer)

Server (F, S, S

Long-term Keys: (dkp, ekr), (sks,pkg), (sk's, pk's)

CH(cr, F,[G, g"]| hpke* 7 (S)[er]) | <

ServerHello(sr,G, gY)

tx1 ------ <

Computes:

hs = kdfy, (kdfg, g=¥)
ms, kn ¢, kn s, -+ = kdf s (hs, tz1)

enckhr.s

<

Computes:
hs = kdf,(kdfg, g*'¥)

ms, kh,m kh,87 e kdfms(hsa t.fEl)

(Extensions(...),Certificate(S, pkg))

Learns that C tried to

to S from Certificate(S’, pks)

connect

*

Hybrid Public
Key Encryption

Not so easy: HelloRetryRequest

Client (C)

Adversary (A) Inner Client

Hello

CH(cr, F, [(Goyg®), G1], hpke™” (CH(cry, S, [(Go, g™), G1])))

Server (F,S,S’)

Long-term Keys: (dkp, ekp),
(SkSaka)7 (Skfgapkfg)

t.’EO -

HRR(G1, accept ;.
t.’El —————— < (= & hrr)

CH(cr, F, [(G1,9%)], hpke®** (CH(cr}, S, [(G1, 9%)])))

t$2 ————— - - - - = -
SH(sr, G, g¥)
lxg ------ «——————————— OO+ tr3
Computes: Computes:
hs = kdf(es, g%i¥) hs = kdf(es, g*i¥)
ms, kp s, . . . = kdf s (hs, tz3) ms, kp,s, . . . = kdf s (hs, tzs)
g e (enckh’s (Extensions(...),...,Certificate(S,pkg)) | 24
s i enchs(CertVerify(sign™s (H(tz4)))) | b2
Learns that C tried to connect to S
| + |

New Inner Client
Hello independent
from the first one

Not so easy: HelloRetryRequest

Client (C) Adversary (A) Inner Client Server (F,S,S’)
Hello

Long-term Keys: (dkp, ekp),
(3k57pk8’)7 (Skgapkfg)

CH(cr, F, [(Goyg®), G1], hpke™” (CH(cry, S, [(Go, g™), G1])))

t.’EO - s niniintaliat t.’E()
HRR(G1, accept,, : .
T < / (G irr) — e New Inner Client
oy - - - CH(cr, F,[(G1, 9")], hpke™” (CH(cr}, S, (G1,9%)]))) | €= Hello independent
SH(sr, G, gV) from the first one
lxg ------ «——————————— OO+ tr3
Computes: Computes:
hs = kdf,(es, g%¥) hs = kdfp,(es, g%¥)
ms, kp s, . . . = kdf s (hs, tz3) ms, kp,s, . . . = kdf s (hs, tzs)
kh.s : . o
g e enc (Extensions(...),...,Certificate(S, pkg)) | 24
Kh,s : onsks
s i enc’ns(CertVerify(sign®s(H(iz4))) | b2

Learns that C tried to connect to S

S R E—

The encryption of the second Inner Client Hello must be

linked to the first Inner Client Hello

Encrypted Client Hello (ECH)

The context ctx
is updated after

each encryption
(ctx’, ctx”)

Client (C)

Long-term Keys: (skc, pkc), pskc,s
|

Supports protocol parameters:
([TLS1.3+ECH, TLS1.3,...], DHE[Go, G1], H(), enc(),..".)
l

Generates (z, g%), (z;, g**) in Gy and computes:
C, ctz = hpkeSetupS(ekr)
ech, ctz’ = hpkeSeal(ctz,ClientHello(cry, S, [(Go, g%), G1]))

Server (5,5, F)

Long-term Keys: (skg, pkg), (sk's, pk's), (dkp, ekp)
|

Supports protocol parameters:
([TLS1.3+ECH, TLS1.3], DHE[G1], H(),enc())

ClientHello(cr, F', [(Go, g%), G1], (C, ech))
texg ----- > - ---- txo
Computes: ctx = hpkeSetupR(C, skr) and decrypts
ClientHello(cr;, S, [(Go, %), Gi]), ctz’ = hpkeOpen(ctz, ech)
HelloRetryRequest(G1, accept; ' (tz1))
t.’L'l ----- < - . t.’l?l
Generates (', g%), (}, g%) in Gy
Computes: es = kdfy and encrypts
ech’, ctz” = hpkeSeal(ctz’,ClientHello(cr!, S, [(G1, g%))))
g - - - - ClientHello(cr', F,[(G1,¢%)], eck’) | 20
Decrypts ClientHello(cr), S, [(G1,9%)]), ctz” = hpkeOpen(ctz’, ech’)
Generates: (y,¢Y) in G1, and computes: es = kdfy
crl
by - ServerHello(sr,G1,9Y, accept ,*(tz3)) | 25

Computes:
hs = kdfy,(es, g%¥)
mS, K¢y Kh sy km,cs km,s = kdf ;s (hs, tz3)

Computes:
hs = kdfs(es, g%¥)
mS, kn.c, kb5, km,cs km,s = kdf ms(hs, tz3)

The context ctx
is updated after

each decryption
(ctx’, ctx")

Attacker model

The attacker can... But they do not...
/ Read / Write /'O Break cryptograhy
W Intercept Z Use side channels

Dolev-Yao models

Concurrent systems where dishonest parties have
complete control over network communication
but cryptography is idealised

Automated Verification Tool :

ProVeritf

Our model

Focus only on TLS 1.3 (no version negociation)

Model all features presented before (e.g. HRR, PHA, PSK, Ticket, ECH, 1RTT and ORTT Data)
Model all security properties presented before (i.e. Authentication, Integrity, Confidentiality
and Privacy goals)
Proving all properties with all features is too taxing on

ProVerif in computation time or memory consumption
OOT=48H and OOM = 100GB

Our model

Focus only on TLS 1.3 (no version negociation)
Model all features presented before (e.g. HRR, PHA, PSK, Ticket, ECH, 1RTT and ORTT Data)
Model all security properties presented before (i.e. Authentication, Integrity, Confidentiality

and Privacy goals)

Proving all properties with all features is too taxing on

e ProVerif in computation time or memory consumption
(kkokokokokokokkokokkokkkokkokokkkkkkk) O OT — 4 8 H a n d O O IVI — 1 O O G B

<+ I/F ‘faTlean’ - f T 1ant will 2a7uw: - ecaond itec ko ~hara with 44
(* When ratse , an nonest client will dﬂWdy& sena 1Ts ﬁey share with the group.

_\
-
'S
.
o
k

=
M
U

Moreover, an honest server will never send a HRR request.x)
letfun allow_HRR = false.

Parametrized model

(x When "false', honest clients and servers are not expecting and sending a new

session ticket respectively. *)

letfun allow_PH_new_session_ticket

- =S \ - , , . No) g S, . ° (] [[(]
(x When "false , honest clients and servers will never send or try to receive Slm Ie CO nfl uratlon flle allows us to aCtlvate/
Post Handshake Application Data. x*) I3 g
[]
eactivate:
[]

true.

letfun allow_PH_data = false.

(x When false , honest servers will request post handshake auth

and honest clients will never wait for one. *)

letfun allow_PH_authentication = false. ; ¢ Featu reS
(x When "false', honest clients and servers will never send or try to receive Py C 9 d k
early data. *) O m p ro m Ise eyS
[} []
 Server and client behavior

letfun allow_early_data = false.

(skokok sk Sk ok Sk sk Sk sk sk ok ok sk sk Sk sk sk sk sk sk Sk sk sk Sk sk Sk ok sk sk Sk sk sk Sk sk sk sk Sk sk Sk sk sk sk ok sk sk sk sk)

sk Safetvy of Kevs [’:fr'njh r ci1ite - 'f)" Yrolir %)
(* 2drety OT Aeys, pner suite ana group >k
\ » 4 ! -

(SRR KK KKK KKK KKK KKK KK KKK KKK KK KKK KKK KKK KKK KKK KKKk)

o
(x When "true , private keys of Ech configuration can be compromised. *) 2 1 ru n S Of Prove rlf

letfun allow_compromised_Ech_keys = false.

28

Our results (Authentication, Integrity, Confidentiality)

v : Feature enabled X : Feature disabled
Property |1-RTT|HRR|[CC[PHA[PSK-DHE|TKT[0-RTT| Time Computation time
N
= All A R N v/ v | v |10h7m
SEC,UNIQ | v |V |V | V v /| X |2h48m
Security = SECO v XV v vV | v | 55m
preservation 2 FS,INT | / | X |/ | X / /| X |3h40m
+ X x| v v v/ | v/ [2h39m
2 CAUTH |/ |V X v/ v | X |3h26m
HISAUTH, AGR| v | v |V | X v v | X |3h26m
DOWN | v x] X v v/ | X [34h16m

Downgrade

resilience w.r.t. ECH

Assumptions for Privacy of Server Identity

Equivalence He(c1, fs1,081) | -.. | He(cn, fSn,pn) | He(A, fs*,BS1) | ...
between two and
scenarios H(ci, fs1,bs1) | ... | He(cn, fSn,pn) | He(A, fs*, BSs) | ...

0 HPKE private key of Client-facing server fs* is uncompromised

If not: The can directly decrypt the ECH extension to obtain the identity of the backend server

a BS; and BS:both have a certificate long term key or none of them have one.

If not : The basic handshake where the server must send its certificate will only succeed in one
of the scenarios

e A share a (different,uncompromised) PSK with both BS; and BS: or with neither of them.

If not : The number of messages sent will differ

Our results (Privacy)

For Privacy properties, 1RTT and ORTT are disabled

v : Feature enabled X : Feature disabled
Property |HRR|CC|PHA|PSK-DHE|TKT| Time
IND, CIP
m p)
A UNL, §-EXT oV X / v/ | 17TH15
CIPUNL | / |/ | / / X [10h10m
X |V | X v v |21h16m
IID v [X | X X v | 12h47
qIp X [X | X v v [24h27m
g | X | X X X | 1h13m
&8 X |V | X v X (21h42m
CIP, UNL X | X | X v v |35h22m
X |V | X X | 3h27m
SSEXT,C-EXT| v |/ | X / X [21h20m
Privacy properties requires more time and Ongoing work: Improve ProVerif to reduce

memory memory consumption

Thank you !

Questions ?

