
A Symbolic Analysis of Privacy for 
TLS 1.3 with Encrypted Client Hello

Karthikeyan Bhargavan1

Vincent Cheval1

Christopher Wood2

(1) INRIA Paris

Equipe Prosecco

(2) Cloudflare

TLS Deployment Scenario

The basic TLS 1.3 handshake

ClientHello

+Key Share

+Signature Algorithm

+Pre share key ServerHello

+Key Share

+Pre share key

{EncryptedExtensions}

{CertificateRequest}

{Certificate}

{CertificateVerify}

{Finished}

[Application Data]

{Certificate}

{CertificateVerify}

{Finished}

[Application Data] [Application Data]

In green: Not always sent { X } : Encrypted with Handshake traffic key

[X] : Encrypted with Application traffic key

Diffie-Hellman key exchange

Several features

Negotiating Connection Parameters : HelloRetryRequest

Certificate-based Client Authentication

Pre-Shared Keys and Tickets

0RTT

Post Handshake Authentication

Other TLS extensions (e.g. SNI)

Verifying TLS requires to
consider many scenarios

Security goals

Authentication and Integrity Goals

Server Authentication

Client Authentication

Key and Transcript Agreement

Data Stream Integrity

Key Uniqueness

Downgrade Resilience

Confidentiality

Key Secrecy

Key Indistinguishability

1RTT Data Forward Secrecy

0RTT Data Secrecy

Security goals

Authentication and Integrity Goals

Server Authentication

Client Authentication

Key and Transcript Agreement

Data Stream Integrity

Key Uniqueness

Downgrade Resilience

Confidentiality

Key Secrecy

Key Indistinguishability

1RTT Data Forward Secrecy

0RTT Data Secrecy

Automated verification to
the rescue

1. CryptoVerif

2. F*

3. Tamarin

4. ProVerif

(1,3,4)

(1,3,4)

(1,3,4)

(1,2,3,4)

(3,4)

(4)

(1,2,3,4)

(1)

(1,3,4)

(1,2,3,4)

Security goals

Authentication and Integrity Goals

Server Authentication

Client Authentication

Key and Transcript Agreement

Data Stream Integrity

Key Uniqueness

Downgrade Resilience

Confidentiality

Key Secrecy

Key Indistinguishability

1RTT Data Forward Secrecy

0RTT Data Secrecy

Automated verification to
the rescue

1. CryptoVerif

2. F*

3. Tamarin

4. ProVerif

(1,3,4)

(1,3,4)

(1,3,4)

(1,2,3,4)

(3,4)

(4)

(1,2,3,4)

(1)

(1,3,4)

(1,2,3,4)

These models do
not cover all

features

Security goals

Privacy

Client Identity Privacy

Client Unlinkability

Server Identity Privacy

Client Extension Privacy

Server Extension Privacy

Security goals

Privacy

Client Identity Privacy

Client Unlinkability

Server Identity Privacy

Client Extension Privacy

Server Extension Privacy

Extension in ClientHello

SNI in ClientHello

No automated proofs

Security goals

Privacy

Client Identity Privacy

Client Unlinkability

Server Identity Privacy

Client Extension Privacy

Encrypted Client Hello guarantees
all these privacy goals

Server Extension Privacy

Extension in ClientHello

SNI in ClientHello

No automated proofs

ECH

Goal: Privacy of the identity of the backend server

Main idea: Encrypt sensitive informations (e.g. server identity of the backend server) 
with a public key of the client-facing server

Not so easy: Several previous designs were vulnerable

First draft: Encrypt the SNI and ClientHello.random

Hybrid Public  
Key Encryption

Not so easy: Several previous designs were vulnerable

First draft: Encrypt the SNI and ClientHello.random

Main idea: Encrypt the whole Client Hello destined for the backend server
(inner) and bind it with the Client Hello for the Client-Facing server (outer)

Hybrid Public  
Key Encryption

Not so easy: HelloRetryRequest
Inner Client

Hello

New Inner Client
Hello independent
from the first one

Not so easy: HelloRetryRequest

The encryption of the second Inner Client Hello must be
linked to the first Inner Client Hello

Inner Client
Hello

New Inner Client
Hello independent
from the first one

Encrypted Client Hello (ECH)

ctx

(ctx′￼, ctx′￼′￼)

The context
is updated after  
each encryption

ctx

(ctx′￼, ctx′￼′￼)

The context
is updated after  
each decryption

Attacker model

The attacker can…

Read / Write

Intercept

But they do not…

Break cryptograhy

Use side channels

Dolev-Yao models
Concurrent systems where dishonest parties have

complete control over network communication

but cryptography is idealised

Automated Verification Tool :
ProVerif

Our model
Focus only on TLS 1.3 (no version negociation)
Model all features presented before (e.g. HRR, PHA, PSK, Ticket, ECH, 1RTT and 0RTT Data)
Model all security properties presented before (i.e. Authentication, Integrity, Confidentiality

and Privacy goals)

Proving all properties with all features is too taxing on
ProVerif in computation time or memory consumption

OOT = 48H and OOM = 100GB

Our model
Focus only on TLS 1.3 (no version negociation)
Model all features presented before (e.g. HRR, PHA, PSK, Ticket, ECH, 1RTT and 0RTT Data)
Model all security properties presented before (i.e. Authentication, Integrity, Confidentiality

and Privacy goals)

Proving all properties with all features is too taxing on
ProVerif in computation time or memory consumption

OOT = 48H and OOM = 100GB

Parametrized model

Simple configuration file allows us to activate/
deactivate:

• Features

• Compromised keys

• Server and client behavior

621 runs of ProVerif

Our results (Authentication, Integrity, Confidentiality)

Sanity Checks

Security
preservation

: Feature enabled : Feature disabled

Downgrade
resilience w.r.t. ECH

Computation time

Assumptions for Privacy of Server Identity

1 HPKE private key of Client-facing server is uncompromised

If not: The can directly decrypt the ECH extension to obtain the identity of the backend server

2 BS1 and BS2 both have a certificate long term key or none of them have one.

Equivalence
between two

scenarios

fs*

If not : The basic handshake where the server must send its certificate will only succeed in one
of the scenarios

3 A share a (different,uncompromised) PSK with both BS1 and BS2 or with neither of them.

If not : The number of messages sent will differ

Our results (Privacy)

For Privacy properties, 1RTT and 0RTT are disabled

: Feature enabled : Feature disabled

Privacy properties requires more time and
memory

Ongoing work: Improve ProVerif to reduce
memory consumption

Thank you !

Questions ?

