SCTP Evolution in TSV Area

Michael Tüxen (tuexen@fh-muenster.de)
Münster University of Applied Sciences
Original Use Case

- Provide the transport service for delivering SS7 messages over an IP-based network:
 - Reliable and efficient transport of small user messages only requiring partial ordering.
 - Strict time limits for user message delivery requiring to minimize head of line blocking.
 - Long lifetime of communication relations requiring high level of availability realized by using redundant network connectivity.
Base Protocol Features

- Reliable transport of user messages over IP-based networks.
- Bundling of multiple user messages in one packet.
- Use of multiple streams, number negotiated during association setup.
- Support of unordered user message delivery.
- An end-point uses one or more IP addresses negotiated during association setup.
- Failover in case of path failure detection.
- Supervision of idle paths.
- Allow parametrization at the association / path level.
- Limited support of large user messages (fragmentation and reassembly).
Additional Features

- Dynamic reconfiguration of addresses during the lifetime of the association.
- Increase the number of streams and reset stream during the lifetime of the association.
- Partial reliability.
- Definition of a concrete API, the socket API.
- Improved failover behavior.
- Additional lower layers: IPSec, UDP and DTLS.
- Improved handling for large user messages avoiding head of line blocking.
- Several defined stream scheduler.
- Support for transport layer security.
WebRTC Use Case

- Uses SCTP encapsulated in DTLS.
- SCTP is used to multiplex multiple data channels and provide congestion control for them.
- SCTP allows data channels to be
 - opened and closed
 - ordered or unordered
 - reliable or unreliable by limiting the number of retransmissions or the lifetime of user messages
Failed SCTP Activities in TSVWG

- Parametrization for signaling networks (non-Internet).
- Specification of conformance tests.
- Non-renegable selective acknowledgements (NR-SACK).
- Using multihoming not only for resilience but also for load sharing.
- ECN support.
Ongoing SCTP Activities in TSVWG

- SCTP aware NAT
 - NATs can't change the SCTP port number. How to deal with port number collisions?
 - Linux based container implementations seem to use NAT.

- RFC 6083bis: DTLS for SCTP
 - Remove message size limit.
 - Don't use HMAC with SHA-1 for SCTP AUTH.
 - Support DTLS 1.2 and DTLS 1.3.
 - Don't rely on renegotiation for long living associations.
Potential Future SCTP Activities in TSVWG

• Maintenance
 • RFC 6951bis: UDP Encapsulation of SCTP packets
 • Integrate draft-tuexen-tsvwg-sctp-udp-encaps-cons.
 • RFC 4895bis: Authenticated Chunks for SCTP
 • Only uses HMAC based on SHA-1 and SHA-256.

• New Features
 • Improvements for WebRTC.
 • Association forwarding to allow any-cast like use cases.
 • Full mesh model.