
LPWAN Working Group A. Pelov
Internet-Draft Acklio
Intended status: Informational P. Thubert
Expires: 1 January 2023 Cisco Systems
 A. Minaburo
 Acklio
 30 June 2022

 LPWAN Static Context Header Compression (SCHC) Architecture
 draft-ietf-lpwan-architecture-02

Abstract

 This document defines the LPWAN SCHC architecture.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 1 January 2023.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Pelov, et al. Expires 1 January 2023 [Page 1]

Internet-Draft LPWAN Architecture June 2022

Table of Contents

 1. Introduction . 2
 2. LPWAN Technologies and Profiles 3
 3. The Static Context Header Compression 3
 4. SCHC Applicability . 4
 4.1. LPWAN Overview . 4
 4.2. Compressing Serial Streams 4
 4.3. Example: Goose and DLMS 4
 5. SCHC Architecture . 4
 5.1. SCHC Endpoints . 4
 5.2. SCHC Instances . 5
 5.3. Layering with SCHC Instances 6
 6. SCHC Data Model . 7
 7. SCHC Device Lifecycle . 9
 7.1. Device Development 9
 7.2. Rules Publication . 10
 7.3. SCHC Device Deployment 10
 7.4. SCHC Device Maintenance 10
 7.5. SCHC Device Decommissionning 10
 8. Security Considerations 10
 9. IANA Consideration . 11
 10. Acknowledgements . 11
 11. References . 11
 11.1. Normative References 11
 11.2. Informative References 12
 Authors’ Addresses . 13

1. Introduction

 The IETF LPWAN WG defined the necessary operations to enable IPv6
 over selected Low-Power Wide Area Networking (LPWAN) radio
 technologies. [rfc8376] presents an overview of those technologies.

 The Static Context Header Compression (SCHC) [rfc8724] technology is
 the core product of the IETF LPWAN working group. [rfc8724] defines a
 generic framework for header compression and fragmentation, based on
 a static context that is pre-installed on the SCHC endpoints.

 This document details the constitutive elements of a SCHC-based
 solution, and how the solution can be deployed. It provides a
 general architecture for a SCHC deployment, positioning the required
 specifications, describing the possible deployment types, and
 indicating models whereby the rules can be distributed and installed
 to enable reliable and scalable operations.

Pelov, et al. Expires 1 January 2023 [Page 2]

Internet-Draft LPWAN Architecture June 2022

2. LPWAN Technologies and Profiles

 Because LPWAN technologies [rfc8376] have strict yet distinct
 constraints, e.g., in terms of maximum frame size, throughput, and/or
 directionality, a SCHC instance must be profiled to adapt to the
 specific necessities of the technology to which it is applied.

 Appendix D. "SCHC Parameters" of [rfc8724] lists the information
 that an LPWAN technology-specific document must provide to profile
 SCHC for that technology.

 As an example, [rfc9011] provides the SCHC profile for LoRaWAN
 networks.

3. The Static Context Header Compression

 SCHC [rfc8724] specifies an extreme compression capability based on a
 state that must match on the compressor and decompressor side. This
 state comprises a set of Compression/Decompression (C/D) rules.

 The SCHC Parser analyzes incoming packets and creates a list of
 fields that it matches against the compression rules. The rule that
 matches best is used to compress the packet, and the rule identifier
 (RuleID) is transmitted together with the compression residue to the
 decompressor. Based on the RuleID and the residue, the decompressor
 can rebuild the original packet and forward it in its uncompressed
 form over the Internet.

 [rfc8724] also provides a Fragmentation/Reassembly (F/R) capability
 to cope with the maximum and/or variable frame size of a Link, which
 is extremely constrained in the case of an LPWAN network.

 If a SCHC-compressed packet is too large to be sent in a single Link-
 Layer PDU, the SCHC fragmentation can be applied on the compressed
 packet. The process of SCHC fragmentation is similar to that of
 compression; the fragmentation rules that are programmed for this
 Device are checked to find the most appropriate one, regarding the
 SCHC packet size, the link error rate, and the reliability level
 required by the application.

 The ruleID allows to determine if it is a compression or
 fragmentation rule.

Pelov, et al. Expires 1 January 2023 [Page 3]

Internet-Draft LPWAN Architecture June 2022

4. SCHC Applicability

4.1. LPWAN Overview

4.2. Compressing Serial Streams

 [rfc8724] was defined to compress IPv6 [rfc8200] and UDP; but SCHC
 really is a generic compression and fragmentation technology. As
 such, SCHC is agnostic to which protocol it compresses and at which
 layer it is operated. The C/D peers may be hosted by different
 entities for different layers, and the F/R operation may also be
 performed between different parties, or different sub-layers in the
 same stack, and/or managed by different organizations.

 If a protocol or a layer requires additional capabilities, it is
 always possible to document more specifically how to use SCHC in that
 context, or to specify additional behaviours. For instance,
 [rfc8824] extends the compression to CoAP [RFC7252] and OSCORE
 [RFC8613].

4.3. Example: Goose and DLMS

5. SCHC Architecture

5.1. SCHC Endpoints

 Section 3 of [rfc8724] depicts a typical network architecture for an
 LPWAN network, simplified from that shown in [rfc8376] and reproduced
 in Figure 1.

 () () () |
 () () () () / \ +---------+
 () () () () () () / \======| ^ | +-----------+
 () () () | | <--|--> | |Application|
 () () () () / \==========| v |=============| Server |
 () () () / \ +---------+ +-----------+
 Dev RGWs NGW App

 Figure 1: Typical LPWAN Network Architecture

Pelov, et al. Expires 1 January 2023 [Page 4]

Internet-Draft LPWAN Architecture June 2022

 Typically, an LPWAN network topology is star-oriented, which means
 that all packets between the same source-destination pair follow the
 same path from/to a central point. In that model, highly constrained
 Devices (Dev) exchange information with LPWAN Application Servers
 (App) through a central Network Gateway (NGW), which can be powered
 and is typically a lot less constrained than the Devices. Because
 Devices embed built-in applications, the traffic flows to be
 compressed are known in advance and the location of the C/D and F/R
 functions (e.g., at the Dev and NGW), and the associated rules, can
 be pre provisioned in the system before use.

 The SCHC operation requires a shared sense of which SCHC Device is
 Uplink (Dev to App) and which is Downlink (App to Dev), see
 [rfc8376]. In a star deployment, the hub is always considered Uplink
 and the spokes are Downlink. The expectation is that the hub and
 spoke derive knowledge of their role from the network configuration
 and SCHC does not need to signal which is hub thus Uplink vs. which
 is spoke thus Downlink. In other words, the link direction is
 determined from extrinsic properties, and is not advertised in the
 protocol.

 Nevertheless, SCHC is very generic and its applicability is not
 limited to star-oriented deployments and/or to use cases where
 applications are very static and the state provisioned in advance.
 In particular, a peer-to-peer (P2P) SCHC Instance (see Section 5.2)
 may be set up between peers of equivalent capabilities, and the link
 direction cannot be inferred, either from the network topology nor
 from the device capability.

 In that case, by convention, the device that initiates the donnection
 that sustains the SCHC Instance is considered as being Downlink, IOW
 it plays the role of the Dev in [rfc8724].

 This convention can be reversed, e.g., by configuration, but for
 proper SCHC operation, it is required that the method used ensures
 that both ends are aware of their role, and then again this
 determination is based on extrinsic properties.

5.2. SCHC Instances

 [rfc8724] defines a protocol operation between a pair of peers. A
 session called a SCHC Instance is established and SCHC maintains a
 state and timers associated to that Instance.

 When the SCHC Device is a highly constrained unit, there is typically
 only one Instance for that Device, and all the traffic from and to
 the device is exchanged with the same Network Gateway. All the
 traffic can thus be implicitly associated with the single Instance

Pelov, et al. Expires 1 January 2023 [Page 5]

Internet-Draft LPWAN Architecture June 2022

 that the device supports, and the Device does not need to manipulate
 the concept. For that reason, SCHC avoids to signal explicitly the
 Instance identification in its data packets.

 The Network Gateway, on the other hand, maintains multiple Instances,
 one per SCHC Device. The Instance is derived from the lower layer,
 typically the source of an incoming SCHC packet. The Instance is
 used in particular to select from the rule database the set of rules
 that apply to the SCHC Device, and the current state of their
 exchange, e.g., timers and previous fragments.

 This architecture generalizes the model to any kind of peers. In the
 case of more capable devices, a SCHC Device may maintain more than
 one Instance with the same peer, or a set of different peers. Since
 SCHC does not signal the Instance in its packets, the information
 must be derived from a lower layer point to point information. For
 instance, the SCHC session can be associated one-to-one with a
 tunnel, a TLS session, or a TCP or a PPP connection.

 For instance, [I-D.thubert-intarea-schc-over-ppp] describes a type of
 deployment where the C/D and/or F/R operations are performed between
 peers of equal capabilities over a PPP [rfc2516] connection. SCHC
 over PPP illustrates that with SCHC, the protocols that are
 compressed can be discovered dynamically and the rules can be fetched
 on-demand by both parties from the same Uniform Resource Name (URN)
 [rfc8141], ensuring that the peers use the exact same set of rules.

 +----------+ Wi-Fi / +----------+
 | IP | Ethernet | IP | ..)
 | Host +-----/------+ Router +----------(Internet)
 | SCHC C/D | Serial | SCHC C/D | ()
 +----------+ +----------+ ...
 <-- SCHC -->
 over PPP

 Figure 2: PPP-based SCHC Deployment

 In that case, the SCHC Instance is derived from the PPP connection.
 This means that there can be only one Instance per PPP connection,
 and that all the flow and only the flow of that Instance is exchanged
 within the PPP connection.

5.3. Layering with SCHC Instances

 [rfc8724] states that a SCHC instance needs the rules to process C/D
 and F/R before the session starts, and that rules cannot be modified
 during the session.

Pelov, et al. Expires 1 January 2023 [Page 6]

Internet-Draft LPWAN Architecture June 2022

 As represented figure Figure 3, the compression of the IP and UDP
 headers may be operated by a network SCHC instance whereas the end-
 to-end compression of the application payload happens between the
 Device and the application. The compression of the application
 payload may be split in two instances to deal with the encrypted
 portion of the application PDU. Fragmentation applies before LPWAN
 transportation layer.

 (Device) (NGW) (App)

 +--------+ +--------+
 A S | CoAP | | CoAP |
 p C | inner | | inner |
 p H +--------+ +--------+
 . C | SCHC | | SCHC |
 | inner | cryptographical boundary | inner |
 -._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._
 A S | CoAP | | CoAP |
 p C | outer | | outer |
 p H +--------+ +--------+
 . C | SCHC | | SCHC |
 | outer | layer / functional boundary | outer |
 -._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._.-._
 N . UDP . . UDP .
 e
 t . IPv6 . . IPv6 . . IPv6 .
 w S
 o C .SCHC/L3 . . SCHC/L3. . . .
 r H
 k C . LPWAN . . LPWAN

 ((((LPWAN)))) ------ Internet ------

 Figure 3: Different SCHC instances in a global system

 This document defines a generic architecture for SCHC that can be
 used at any of these levels. The goal of the architectural document
 is to orchestrate the different protocols and data model defined by
 the LPWAN working group to design an operational and interoperable
 framework for allowing IP application over contrained networks.

6. SCHC Data Model

 A SCHC instance, summarized in the Figure 4, implies C/D and/or F/R
 present in both end and that both ends are provisioned with the same
 set of rules.

Pelov, et al. Expires 1 January 2023 [Page 7]

Internet-Draft LPWAN Architecture June 2022

 (-------) (-------)
 (Rules) (Rules)
 (-------) (-------)
 . read . read
 . .
 +-------+ +-------+
 <===| R & D |<=== <===| C & F |<===
 ===>| C & F |===> ===>| R & D |===>
 +-------+

 Figure 4: Summarized SCHC elements

 A common rule representation that expresses the SCHC rules in an
 interoperable fashion is needed yo be able to provision end-points
 from different vendors To that effect,
 [I-D.ietf-lpwan-schc-yang-data-model] defines a rule representation
 using the YANG [rfc7950] formalism.

 [I-D.ietf-lpwan-schc-yang-data-model] defines an YANG data model to
 represent the rules. This enables the use of several protocols for
 rule management, such as NETCONF[RFC6241], RESTCONF[RFC8040], and
 CORECONF[I-D.ietf-core-comi]. NETCONF uses SSH, RESTCONF uses HTTPS,
 and CORECONF uses CoAP(s) as their respective transport layer
 protocols. The data is represented in XML under NETCONF, in
 JSON[RFC8259] under RESTCONF and in CBOR[RFC8949] under CORECONF.

 create
 (-------) read +=======+ *
 (rules)<------->|Rule |<--|-------->
 (-------) update |Manager| NETCONF, RESTCONF or CORECONF
 . read delete +=======+ request
 .
 +-------+
 <===| R & D |<===
 ===>| C & F |===>
 +-------+

 Figure 5: Summerized SCHC elements

 The Rule Manager (RM) is in charge of handling data derived from the
 YANG Data Model and apply changes to the rules database Figure 5.

 The RM is an Application using the Internet to exchange information,
 therefore:

 * for the network-level SCHC, the communication does not require
 routing. Each of the end-points having an RM and both RMs can be
 viewed on the same link, therefore wellknown Link Local addresses

Pelov, et al. Expires 1 January 2023 [Page 8]

Internet-Draft LPWAN Architecture June 2022

 can be used to identify the Device and the core RM. L2 security
 MAY be deemed as sufficient, if it provides the necessary level of
 protection.

 * for application-level SCHC, routing is involved and global IP
 addresses SHOULD be used. End-to-end encryption is RECOMMENDED.

 Management messages can also be carried in the negotiation protocol
 as proposed in [I-D.thubert-intarea-schc-over-ppp]. The RM traffic
 may be itself compressed by SCHC: if CORECONF protocol is used,
 [rfc8824] can be applied.

7. SCHC Device Lifecycle

 In the context of LPWANs, the expectation is that SCHC rules are
 associated with a physical device that is deployed in a network.
 This section describes the actions taken to enable an autimatic
 commissioning of the device in the network. SCHC

7.1. Device Development

 The expectation for the development cycle is that message formats are
 documented as a data model that is used to generate rules. Several
 models are possible:

 1. In the application model, an interface definition language and
 binary communication protocol such as Apache Thrift is used, and
 the serialization code includes the SCHC operation. This model
 imposes that both ends are compiled with the generated structures
 and linked with generated code that represents the rule
 operation.

 2. In the device model, the rules are generated separately. Only
 the device-side code is linked with generated code. The Rules
 are published separately to be used by a generic SCHC engine that
 operates in a middle box such as a SCHC gateway.

 3. In the protocol model, both endpoint generate a packet format
 that is imposed by a protocol. In that case, the protocol itself
 is the source to generate the Rules. Both ends of the SCHC
 compression are operated in middle boxes, and special attention
 must be taken to ensure that they operate on the compatible Rule
 sets, basically the same major version of the same Rule Set.

 Depending on the deployment, the tools thar generate the Rules should
 provide knobs to optimize the Rule set, e.g., more rules vs. larger
 residue.

Pelov, et al. Expires 1 January 2023 [Page 9]

Internet-Draft LPWAN Architecture June 2022

7.2. Rules Publication

 In the device model and in the protocol model, at least one of the
 endpoints must obtain the rule set dynamically. The expectation is
 that the Rule Sets are published to a reachable repository and
 versionned (minor, major). Each rule set should have its own Uniform
 Resource Names (URN) [RFC8141] and a version.

 The Rule Set should be authenticated to ensure that it is genuine, or
 obtained from a trusted app store. A corrupted Rule Set may be used
 for multiple forms of attacks, more in Section 8.

7.3. SCHC Device Deployment

 The device and the network should mutually authenticate themselves.
 The autonomic approach [RFC8993] provides a model to achieve this at
 scale with zero touchn, in networks where enough bandwidth and
 compute are available. In highly constrained networks, one touch is
 usually necessary to program keys in the devices.

 The initial handshake between the SCHC endpoints should comprise a
 capability exchange whereby URN and the version of the rule set are
 obtained or compared. SCHC may not be used if both ends can not
 agree on an URN and a major version. Manufacturer Usage Descriptions
 (MUD) [RFC8520] may be used for that purpose in the device model.

 Upon the handshake, both ends can agree on a rule set, their role
 when the rules are asymmetrical, and fetch the rule set if necessary.
 Optionally, a node that fetwhed a rule set may inform the other end
 that it is reacy from transmission.

7.4. SCHC Device Maintenance

 URN update without device update (bug fix) FUOTA => new URN =>
 reprovisioning

7.5. SCHC Device Decommissionning

 Signal from device/vendor/network admin

8. Security Considerations

 SCHC is sensitive to the rules that could be abused to form arbitrary
 long messages or as a form of attack against the C/D and/or F/R
 functions, say to generate a buffer overflow and either modify the
 Device or crash it. It is thus critical to ensure that the rules are
 distributed in a fashion that is protected against tempering, e.g.,
 encrypted and signed.

Pelov, et al. Expires 1 January 2023 [Page 10]

Internet-Draft LPWAN Architecture June 2022

9. IANA Consideration

 This document has no request to IANA

10. Acknowledgements

 The authors would like to thank (in alphabetic order):

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8141] Saint-Andre, P. and J. Klensin, "Uniform Resource Names
 (URNs)", RFC 8141, DOI 10.17487/RFC8141, April 2017,
 <https://www.rfc-editor.org/info/rfc8141>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8520] Lear, E., Droms, R., and D. Romascanu, "Manufacturer Usage
 Description Specification", RFC 8520,
 DOI 10.17487/RFC8520, March 2019,
 <https://www.rfc-editor.org/info/rfc8520>.

 [rfc8724] Minaburo, A., Toutain, L., Gomez, C., Barthel, D., and JC.
 Zuniga, "SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation", RFC 8724,
 DOI 10.17487/RFC8724, April 2020,
 <https://www.rfc-editor.org/info/rfc8724>.

 [rfc8824] Minaburo, A., Toutain, L., and R. Andreasen, "Static
 Context Header Compression (SCHC) for the Constrained
 Application Protocol (CoAP)", RFC 8824,
 DOI 10.17487/RFC8824, June 2021,
 <https://www.rfc-editor.org/info/rfc8824>.

 [RFC8993] Behringer, M., Ed., Carpenter, B., Eckert, T., Ciavaglia,
 L., and J. Nobre, "A Reference Model for Autonomic
 Networking", RFC 8993, DOI 10.17487/RFC8993, May 2021,
 <https://www.rfc-editor.org/info/rfc8993>.

Pelov, et al. Expires 1 January 2023 [Page 11]

Internet-Draft LPWAN Architecture June 2022

 [rfc9011] Gimenez, O., Ed. and I. Petrov, Ed., "Static Context
 Header Compression and Fragmentation (SCHC) over LoRaWAN",
 RFC 9011, DOI 10.17487/RFC9011, April 2021,
 <https://www.rfc-editor.org/info/rfc9011>.

11.2. Informative References

 [I-D.ietf-core-comi]
 Veillette, M., Stok, P. V. D., Pelov, A., Bierman, A., and
 I. Petrov, "CoAP Management Interface (CORECONF)", Work in
 Progress, Internet-Draft, draft-ietf-core-comi-11, 17
 January 2021, <https://www.ietf.org/archive/id/draft-ietf-
 core-comi-11.txt>.

 [I-D.ietf-lpwan-schc-yang-data-model]
 Minaburo, A. and L. Toutain, "Data Model for Static
 Context Header Compression (SCHC)", Work in Progress,
 Internet-Draft, draft-ietf-lpwan-schc-yang-data-model-12,
 25 May 2022, <https://www.ietf.org/archive/id/draft-ietf-
 lpwan-schc-yang-data-model-12.txt>.

 [I-D.thubert-intarea-schc-over-ppp]
 Thubert, P., "SCHC over PPP", Work in Progress, Internet-
 Draft, draft-thubert-intarea-schc-over-ppp-03, 21 April
 2021, <https://www.ietf.org/archive/id/draft-thubert-
 intarea-schc-over-ppp-03.txt>.

 [rfc2516] Mamakos, L., Lidl, K., Evarts, J., Carrel, D., Simone, D.,
 and R. Wheeler, "A Method for Transmitting PPP Over
 Ethernet (PPPoE)", RFC 2516, DOI 10.17487/RFC2516,
 February 1999, <https://www.rfc-editor.org/info/rfc2516>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [rfc7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

Pelov, et al. Expires 1 January 2023 [Page 12]

Internet-Draft LPWAN Architecture June 2022

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [rfc8141] Saint-Andre, P. and J. Klensin, "Uniform Resource Names
 (URNs)", RFC 8141, DOI 10.17487/RFC8141, April 2017,
 <https://www.rfc-editor.org/info/rfc8141>.

 [rfc8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", STD 86, RFC 8200,
 DOI 10.17487/RFC8200, July 2017,
 <https://www.rfc-editor.org/info/rfc8200>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [rfc8376] Farrell, S., Ed., "Low-Power Wide Area Network (LPWAN)
 Overview", RFC 8376, DOI 10.17487/RFC8376, May 2018,
 <https://www.rfc-editor.org/info/rfc8376>.

 [RFC8613] Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
 <https://www.rfc-editor.org/info/rfc8613>.

 [RFC8949] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", STD 94, RFC 8949,
 DOI 10.17487/RFC8949, December 2020,
 <https://www.rfc-editor.org/info/rfc8949>.

Authors’ Addresses

 Alexander Pelov
 Acklio
 1137A avenue des Champs Blancs
 35510 Cesson-Sevigne Cedex
 France
 Email: a@ackl.io

 Pascal Thubert
 Cisco Systems
 45 Allee des Ormes - BP1200
 06254 Mougins - Sophia Antipolis
 France
 Email: pthubert@cisco.com

Pelov, et al. Expires 1 January 2023 [Page 13]

Internet-Draft LPWAN Architecture June 2022

 Ana Minaburo
 Acklio
 1137A avenue des Champs Blancs
 35510 Cesson-Sevigne Cedex
 France
 Email: ana@ackl.io

Pelov, et al. Expires 1 January 2023 [Page 14]

lpwan Working Group JC. Zuniga
Internet-Draft Cisco
Updates: 8724, 9363 (if approved) C. Gomez
Intended status: Standards Track S. Aguilar
Expires: 7 October 2023 Universitat Politecnica de Catalunya
 L. Toutain
 IMT-Atlantique
 S. Cespedes
 Concordia University
 D. Wistuba
 NIC Labs, Universidad de Chile
 5 April 2023

 SCHC Compound ACK
 draft-ietf-lpwan-schc-compound-ack-17

Abstract

 The present document updates the SCHC (Static Context Header
 Compression and fragmentation) protocol RFC8724 and the corresponding
 Yang Module RFC9363. It defines a SCHC Compound ACK message format
 and procedure, which are intended to reduce the number of response
 transmissions (i.e., SCHC ACKs) in the ACK-on-Error mode, by
 accumulating bitmaps of several windows in a single SCHC message
 (i.e., the SCHC Compound ACK).

 Both message format and procedure are generic, so they can be used,
 for instance, by any of the four Low Power Wide Area Networks
 (LPWANs) technologies defined in RFC8376, being Sigfox, LoRaWAN, NB-
 IoT and IEEE 802.15.4w.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 7 October 2023.

Zuniga, et al. Expires 7 October 2023 [Page 1]

Internet-Draft SCHC Compound ACK April 2023

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 3
 3. SCHC Compound ACK . 4
 3.1. SCHC Compound ACK Message Format 4
 3.2. SCHC Compound ACK Behaviour 7
 8.4.3. ACK-on-Error Mode 8
 4. SCHC Compound ACK Example 16
 5. SCHC Compound ACK YANG Data Model 17
 5.1. SCHC YANG Data Model Extension 17
 5.2. SCHC YANG Tree Extension 19
 6. SCHC Compound ACK Parameters 20
 7. Security considerations 20
 8. IANA Considerations . 21
 8.1. URI Registration . 21
 8.2. YANG Module Name Registration 21
 9. Acknowledgements . 21
 10. References . 22
 10.1. Normative References 22
 10.2. Informative References 22
 Authors’ Addresses . 22

1. Introduction

 The Generic Framework for Static Context Header Compression and
 Fragmentation (SCHC) specification [RFC8724] describes two
 mechanisms: i) a protocol header compression scheme, and ii) a frame
 fragmentation and loss recovery functionality. Either can be used on
 top of radio technologies such as the four Low Power Wide Area
 Networks (LPWANs) listed in [RFC8376], being Sigfox, LoRaWAN, NB-IoT
 and IEEE 802.15.4w. These LPWANs have similar characteristics such
 as star-oriented topologies, network architecture, connected devices
 with built-in applications, etc.

Zuniga, et al. Expires 7 October 2023 [Page 2]

Internet-Draft SCHC Compound ACK April 2023

 SCHC offers a great level of flexibility to accommodate all these
 LPWAN technologies. Even though there are a great number of
 similarities between them, some differences exist with respect to the
 transmission characteristics, payload sizes, etc. Hence, there are
 optimal parameters and modes of operation that can be used when SCHC
 is used on top of a specific LPWAN technology.

 In ACK-on-Error mode in [RFC8724] the SCHC Packet is fragmented into
 pieces called tiles, with all tiles of the same size except for the
 last one, which can be smaller. Successive tiles are grouped in
 windows of fixed size. A SCHC Fragment carries one or several
 contiguous tiles, which may span multiple windows. When sending all
 tiles from all windows, the last tile is sent in an All-1 SCHC
 Fragment. The SCHC receiver, after receiving the All-1 SCHC Fragment
 will send a SCHC ACK reporting on the reception of exactly one window
 of tiles. In case of SCHC Fragment losses, a bitmap is added to the
 failure SCHC ACK, where each bit in the bitmap corresponds to a tile
 in the window. If SCHC Fragment losses span multiple windows, the
 SCHC receiver will send one failure SCHC ACK per window with losses.

 The present document updates the SCHC protocol for frame
 fragmentation and loss recovery. It defines a SCHC Compound ACK
 format and procedure, which is intended to reduce the number of
 response transmissions (i.e., SCHC ACKs) in the ACK-on-Error mode of
 SCHC. The SCHC Compound ACK extends the failure SCHC ACK message
 format so that it can contain several bitmaps, each bitmap being
 identified by its corresponding window number. The SCHC Compound ACK
 is backwards compatible with the SCHC ACK as defined in [RFC8724],
 and introduces flexibility, as the receiver has the capability to
 respond to the All-0 SCHC Fragment, providing more downlink
 opportunities, and therefore adjusting to the delay requirements of
 the application.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 It is assumed that the reader is familiar with the terms and
 mechanisms defined in [RFC8376] and in [RFC8724].

Zuniga, et al. Expires 7 October 2023 [Page 3]

Internet-Draft SCHC Compound ACK April 2023

3. SCHC Compound ACK

 The SCHC Compound ACK is a failure SCHC ACK message that can contain
 several bitmaps, each bitmap being identified by its corresponding
 window number. In [RFC8724], the failure SCHC ACK message only
 contain one bitmap corresponding to one window. The SCHC Compound
 ACK extends this format allowing more windows to be acknowledged in a
 single ACK, reducing the total number of failure SCHC ACK messages,
 specially when fragment losses are present in intermediate windows.

 The SCHC Compound ACK MAY be used in fragmentation modes that use
 windows and that allow reporting the bitmaps of multiple windows at
 the same time, and MUST NOT be used otherwise.

 The SCHC Compound ACK:

 * provides feedback only for windows with fragment losses,

 * has a variable size that depends on the number of windows with
 fragment losses being reported in the single Compound SCHC ACK,

 * includes the window number (i.e., W) of each bitmap,

 * might not cover all windows with fragment losses of a SCHC Packet,

 * and is distinguishable from the SCHC Receiver-Abort.

3.1. SCHC Compound ACK Message Format

 Figure 1 shows the success SCHC ACK format, i.e., when all fragments
 have been correctly received (C=1), as defined in [RFC8724].

 |-- SCHC ACK Header --|
 |--T-|---M--| 1 |
 +--------+----+------+---+˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
 | RuleID |DTag| W |C=1| padding as needed
 +--------+----+------+---+˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

 Figure 1: SCHC Success ACK message format, as defined in RFC8724

 In case SCHC Fragment losses are found in any of the windows of the
 SCHC Packet, the SCHC Compound ACK MAY be used. The SCHC Compound
 ACK message format is shown in Figure 2 and Figure 3.

Zuniga, et al. Expires 7 October 2023 [Page 4]

Internet-Draft SCHC Compound ACK April 2023

 |--- SCHC ACK Header --|- W=w1 -|...|---- W=wi -----|
 |--T-|---M--|-1-| |...|---M--| |---M--|
 +------+----+------+---+--------+...+------+--------+------+˜˜˜˜˜+
 |RuleID|DTag| W=w1 |C=0| Bitmap |...| W=wi | Bitmap |00..00| pad |
 +------+----+------+---+--------+...+------+--------+------+˜˜˜˜˜+
 next L2 Word boundary ->|<-- L2 Word ->|

 Losses are found in windows W = w1,...,wi; where w1<w2<...<wi

 Figure 2: SCHC Compound ACK message format

 The SCHC Compound ACK groups the window number (W) with its
 corresponding bitmap. Window numbers do not need to be contiguous.
 However, the window numbers and its corresponding bitmaps included in
 the SCHC Compound ACK message MUST be ordered from the lowest-
 numbered to the highest-numbered window. Hence, if the bitmap of
 window number zero is present in the SCHC Compound ACK message, it
 MUST always be the first one in order and its W number MUST be placed
 in the SCHC ACK Header.

 If M or more padding bits would be needed after the last bitmap in
 the message to fill the last L2 Word, M bits at 0 MUST be appended
 after the last bitmap, and then padding is applied as needed (see
 Figure 2). Since window number 0, if present in the message, is
 placed as w1, the M bits set to zero can’t be confused with window
 number 0, and therefore they signal the end of the SCHC Compound ACK
 message.

 Figure 3 shows the case when the required padding bits are strictly
 less than M bits. In this case, the layer-2 MTU (Maximum
 Transmission Unit) does not leave room for any extra window value,
 let alone any bitmap, thereby signaling the end of the SCHC Compound
 ACK message.

 |--- SCHC ACK Header --|- W=w1 -|...|---- W=wi -----|
 |--T-|---M--|-1-| |...|---M--| |---M--|
 +------+----+------+---+--------+...+------+--------+˜˜˜+
 |RuleID|DTag| W=w1 |C=0| Bitmap |...| W=wi | Bitmap |pad|
 +------+----+------+---+--------+...+------+--------+˜˜˜+
 next L2 Word boundary ->|
 Losses are found in windows W = w1,...,wi; where w1<w2<...<wi

 Figure 3: SCHC Compound ACK message format with less than M
 padding bits

Zuniga, et al. Expires 7 October 2023 [Page 5]

Internet-Draft SCHC Compound ACK April 2023

 The SCHC Compound ACK MUST NOT use the Compressed Bitmap format for
 intermediate windows/bitmaps (i.e., bitmaps that are not the last one
 of the SCHC Compound ACK message), and therefore intermediate bitmaps
 fields MUST be of size WINDOW_SIZE. Hence, the SCHC Compound ACK MAY
 use a Compressed Bitmap format only for the last bitmap in the
 message. The optional usage of this Compressed Bitmap for the last
 bitmap MUST be specified by the SCHC technology-specific profile.

 The case where the last bitmap is effectively compressed corresponds
 to Figure 3, with the last bitmap ending, by construction, on an L2
 Word boundary, therefore resulting in no padding at all.

 Figure 4 illustrates a bitmap compression example of a SCHC Compound
 ACK, where the bitmap of the last window (wi) indicates that the
 first tile has not been correctly received. Because the compression
 algorithm resulted in effective compression, no padding is needed.

 |--- SCHC ACK Header --|- W=w1 -|...|-------- W=wi -------|
 |--T-|---M--|-1-| |...|---M--|
 +------+----+------+---+--------+...+------+--------------+
 |RuleID|DTag| W=w1 |C=0| Bitmap |...| W=wi |0 1 1 1 1 1 1 |
 +------+----+------+---+--------+...+------+--------------+
 next L2 Word boundary ->|

 SCHC Compound ACK with uncompressed Bitmap

 |--- SCHC ACK Header --|- W=w1 -|...|-- W=wi --|
 |--T-|---M--|-1-| |...|---M--|
 +------+----+------+---+--------+...+------+---+
 |RuleID|DTag| W=w1 |C=0| Bitmap |...| W=wi |0 1|
 +------+----+------+---+--------+...+------+---+
 next L2 Word boundary ->|

 Transmitted SCHC Compound ACK with compressed Bitmap

 Losses are found in windows W = w1,...,wi; where w1<w2<...<wi

 Figure 4: SCHC Compound ACK message format with compressed bitmap

 Figure 5 illustrates another bitmap compression example of a SCHC
 Compound ACK, where the bitmap of the last window (wi) indicates that
 the second and the fourth tile have not been correctly received. In
 this example, the compression algorithm does not result in effective
 compression of the last bitmap. Besides, because more than M bits of
 padding would be needed to fill the last L2 Word, M bits at 0 are
 appended to the message before padding is applied.

Zuniga, et al. Expires 7 October 2023 [Page 6]

Internet-Draft SCHC Compound ACK April 2023

 |--- SCHC ACK Header --|-W=w1-|...|-------- W=wi -------|
 |--T-|---M--|-1-| |...|---M--|
 +------+----+------+---+------+...+------+--------------+
 |RuleID|DTag| W=w1 |C=0|Bitmap|...| W=wi |1 0 1 0 1 1 1 |
 +------+----+------+---+------+...+------+--------------+
 next L2 Word boundary ->|
 SCHC Compound ACK with uncompressed Bitmap

 |--- SCHC ACK Header --|-W=w1-|...|-------- W=wi -------|
 |--T-|---M--|-1-| |...|---M--| |---M--|
 +------+----+------+---+------+...+------+--------------+------+˜˜˜+
 |RuleID|DTag| W=w1 |C=0|Bitmap|...| W=wi |1 0 1 0 1 1 1 |00..00|pad|
 +------+----+------+---+------+...+------+--------------+------+˜˜˜+
 next L2 Word boundary ->|<------ L2 Word ------>|
 Transmitted SCHC Compound ACK

 Losses are found in windows W = w1,...,wi; where w1<w2<...<wi

 Figure 5: SCHC Compound ACK message format with compressed bitmap

 If a SCHC sender gets a SCHC Compound ACK with invalid W’s, such as
 duplicate W values or W values not sent yet, it MUST discard the
 whole SCHC Compound ACK message.

 Note: because it has a C bit reset to 0, the SCHC Compound ACK is
 distinguishable from the Receiver-Abort message [RFC8724], which has
 a C bit set to 1.

3.2. SCHC Compound ACK Behaviour

 The SCHC ACK-on-Error behaviour is described in section 8.4.3 of
 [RFC8724]. The present document slightly modifies this behaviour,
 since in the baseline SCHC specification a SCHC ACK reports only one
 bitmap for the reception of exactly one window of tiles. The present
 SCHC Compound ACK specification extends the SCHC ACK message format
 so that it can contain several bitmaps, each bitmap being identified
 by its corresponding window number.

 The SCHC ACK format, as presented in [RFC8724], can be considered a
 special SCHC Compound ACK case, in which it reports only the tiles of
 one window. Therefore, the SCHC Compound ACK is backwards compatible
 with the SCHC ACK format presented in [RFC8724]. The receiver can
 suspect if the sender does not support the SCHC Compound ACK, if the
 sender does not resend any tiles from windows that are not the first
 one in the SCHC Compound ACK and more ACKs are needed. In that case,
 the receiver can send SCHC Compound ACKs with only one window of
 tiles.

Zuniga, et al. Expires 7 October 2023 [Page 7]

Internet-Draft SCHC Compound ACK April 2023

 Also, some flexibility is introduced with respect to [RFC8724], in
 that the receiver has the capability to respond to the All-0 with a
 SCHC Compound ACK or not, depending on certain parameters, like
 network conditions, sender buffer/chache size, supported application
 delay. Note that even though the protocol allows for such
 flexibility, the actual decision criteria is not specified in this
 document. The application MUST set expiration timer values according
 to when the feedback is expected to be received, e.g., after the
 All-0 or after the All-1.

 The following Section 8.4.3 (and its subsections) replaces the
 complete sections 8.4.3 (and its subsections) of RFC 8724.

8.4.3. ACK-on-Error Mode

 The ACK-on-Error mode supports L2 technologies that have variable MTU
 and out-of-order delivery. It requires an L2 that provides a
 feedback path from the reassembler to the fragmenter. See Appendix F
 for a discussion on using ACK-on-Error mode on quasi-bidirectional
 links.

 In ACK-on-Error mode, windows are used.

 All tiles except the last one and the penultimate one MUST be of
 equal size, hereafter called "regular". The size of the last tile
 MUST be smaller than or equal to the regular tile size. Regarding
 the penultimate tile, a Profile MUST pick one of the following two
 options:

 * The penultimate tile size MUST be the regular tile size, or

 * the penultimate tile size MUST be either the regular tile size or
 the regular tile size minus one L2 Word.

 A SCHC Fragment message carries one or several contiguous tiles,
 which may span multiple windows. A SCHC Compound ACK reports on the
 reception of one window of tiles or several windows of tiles, each
 one identified by its window number.

 See Figure 23 for an example.

Zuniga, et al. Expires 7 October 2023 [Page 8]

Internet-Draft SCHC Compound ACK April 2023

 +---...-----------+
 | SCHC Packet |
 +---...-----------+

 Tile# | 4 | 3 | 2 | 1 | 0 | 4 | 3 | 2 | 1 | 0 | 4 | | 0 | 4 |3|
 Window# |-------- 0 --------|-------- 1 --------|- 2 ... 27 -|- 28-|

 SCHC Fragment msg |-----------|

 Figure 23: SCHC Packet Fragmented in Tiles, ACK-on-Error Mode

 The W field is wide enough that it unambiguously represents an
 absolute window number. The fragment receiver sends SCHC Compound
 ACKs to the fragment sender about windows for which tiles are
 missing. No SCHC Compound ACK is sent by the fragment receiver for
 windows that it knows have been fully received.

 The fragment sender retransmits SCHC Fragments for tiles that are
 reported missing. It can advance to next windows even before it has
 ascertained that all tiles belonging to previous windows have been
 correctly received, and it can still later retransmit SCHC Fragments
 with tiles belonging to previous windows. Therefore, the sender and
 the receiver may operate in a decoupled fashion. The fragmented SCHC
 Packet transmission concludes when:

 * integrity checking shows that the fragmented SCHC Packet has been
 correctly reassembled at the receive end, and this information has
 been conveyed back to the sender, or

 * too many retransmission attempts were made, or

 * the receiver determines that the transmission of this fragmented
 SCHC Packet has been inactive for too long.

 Each Profile MUST specify which RuleID value(s) corresponds to SCHC
 F/R messages operating in this mode.

 The W field MUST be present in the SCHC F/R messages.

 Each Profile, for each RuleID value, MUST define:

 * the tile size (a tile does not need to be multiple of an L2 Word,
 but it MUST be at least the size of an L2 Word),

 * the value of M,

 * the value of N,

Zuniga, et al. Expires 7 October 2023 [Page 9]

Internet-Draft SCHC Compound ACK April 2023

 * the value of WINDOW_SIZE, which MUST be strictly less than 2^N,

 * the size and algorithm for the RCS field,

 * the value of T,

 * the value of MAX_ACK_REQUESTS,

 * the expiration time of the Retransmission Timer,

 * the expiration time of the Inactivity Timer,

 * if the last tile is carried in a Regular SCHC Fragment or an All-1
 SCHC Fragment (see Section 8.4.3.1), and

 * if the penultimate tile MAY be one L2 Word smaller than the
 regular tile size. In this case, the regular tile size MUST be at
 least twice the L2 Word size.

 * Usage or not of the SCHC Compound ACK message.

 * Usage or not of the compressed bitmap format in the last window of
 the SCHC Compound ACK message.

 For each active pair of RuleID and DTag values, the sender MUST
 maintain:

 * one Attempts counter, and

 * one Retransmission Timer.

 For each active pair of RuleID and DTag values, the receiver MUST
 maintain:

 * one Inactivity Timer, and

 * one Attempts counter.

8.4.3.1. Sender Behavior

 At the beginning of the fragmentation of a new SCHC Packet:

 * the fragment sender MUST select a RuleID and DTag value pair for
 this SCHC Packet. A Rule MUST NOT be selected if the values of M
 and WINDOW_SIZE for that Rule are such that the SCHC Packet cannot
 be fragmented in (2^M) * WINDOW_SIZE tiles or less.

Zuniga, et al. Expires 7 October 2023 [Page 10]

Internet-Draft SCHC Compound ACK April 2023

 * the fragment sender MUST initialize the Attempts counter to 0 for
 that RuleID and DTag value pair.

 A Regular SCHC Fragment message carries in its payload one or more
 tiles. If more than one tile is carried in one Regular SCHC
 Fragment:

 * the selected tiles MUST be contiguous in the original SCHC Packet,
 and

 * they MUST be placed in the SCHC Fragment Payload adjacent to one
 another, in the order they appear in the SCHC Packet, from the
 start of the SCHC Packet toward its end.

 Tiles that are not the last one MUST be sent in Regular SCHC
 Fragments specified in Section 8.3.1.1. The FCN field MUST contain
 the tile index of the first tile sent in that SCHC Fragment.

 In a Regular SCHC Fragment message, the sender MUST fill the W field
 with the window number of the first tile sent in that SCHC Fragment.

 A Profile MUST define if the last tile of a SCHC Packet is sent:

 * in a Regular SCHC Fragment, alone or as part of a multi-tiles
 Payload,

 * alone in an All-1 SCHC Fragment, or

 * with any of the above two methods.

 In an All-1 SCHC Fragment message, the sender MUST fill the W field
 with the window number of the last tile of the SCHC Packet.

 The fragment sender MUST send SCHC Fragments such that, all together,
 they contain all the tiles of the fragmented SCHC Packet.

 The fragment sender MUST send at least one All-1 SCHC Fragment.

 In doing the two items above, the sender MUST ascertain that the
 receiver will not receive the last tile through both a Regular SCHC
 Fragment and an All-1 SCHC Fragment.

 The fragment sender MUST listen for SCHC Compound ACK messages after
 having sent:

 * an All-1 SCHC Fragment, or

 * a SCHC ACK REQ.

Zuniga, et al. Expires 7 October 2023 [Page 11]

Internet-Draft SCHC Compound ACK April 2023

 A Profile MAY specify other times at which the fragment sender MUST
 listen for SCHC Compound ACK messages. For example, this could be
 after sending a complete window of tiles.

 Each time a fragment sender sends an All-1 SCHC Fragment or a SCHC
 ACK REQ:

 * it MUST increment the Attempts counter, and

 * it MUST reset the Retransmission Timer.

 On Retransmission Timer expiration:

 * if the Attempts counter is strictly less than MAX_ACK_REQUESTS,
 the fragment sender MUST send either the All-1 SCHC Fragment or a
 SCHC ACK REQ with the W field corresponding to the last window,

 * otherwise, the fragment sender MUST send a SCHC Sender-Abort, and
 it MAY exit with an error condition.

 All message receptions being discussed in the rest of this section
 are to be understood as "matching the RuleID and DTag pair being
 processed", even if not spelled out, for brevity.

 On receiving a SCHC Compound ACK:

 * if one of the W field in the SCHC Compound ACK corresponds to the
 last window of the SCHC Packet:

 - if the C bit is set, the sender MAY exit successfully.

 - otherwise:

 o if the Profile mandates that the last tile be sent in an
 All-1 SCHC Fragment:

 + if the SCHC Compound ACK shows no missing tile at the
 receiver, the sender:

 * MUST send a SCHC Sender-Abort, and

 * MAY exit with an error condition.

 + otherwise:

 * the fragment sender MUST send SCHC Fragment messages
 containing all the tiles of all the windows that are
 reported missing in the SCHC Compound ACK.

Zuniga, et al. Expires 7 October 2023 [Page 12]

Internet-Draft SCHC Compound ACK April 2023

 * if the last of these SCHC Fragment messages is not an
 All-1 SCHC Fragment, then the fragment sender MAY
 either send in addition a SCHC ACK REQ with the W
 field corresponding to the last window, or repeat the
 All-1 SCHC Fragment to ask the receiver confirmation
 that all tiles have been correctly received.

 * in doing the two items above, the sender MUST
 ascertain that the receiver will not receive the last
 tile through both a Regular SCHC Fragment and an All-1
 SCHC Fragment.

 o otherwise:

 + if the SCHC Compound ACK shows no missing tile at the
 receiver, the sender MUST send the All-1 SCHC Fragment

 + otherwise:

 * the fragment sender MUST send SCHC Fragment messages
 containing all the tiles that are reported missing in
 the SCHC Compound ACK.

 * the fragment sender MUST then send either the All-1
 SCHC Fragment or a SCHC ACK REQ with the W field
 corresponding to the last window.

 * otherwise, the fragment sender:

 - MUST send SCHC Fragment messages containing the tiles that are
 reported missing in the SCHC Compound ACK.

 - then, it MAY send a SCHC ACK REQ with the W field corresponding
 to the last window.

 See Figure 43/> for one among several possible examples of a Finite
 State Machine implementing a sender behavior obeying this
 specification.

8.4.3.2. Receiver Behavior

 On receiving a SCHC Fragment with a RuleID and DTag pair not being
 processed at that time:

 * the receiver SHOULD check if the DTag value has not recently been
 used for that RuleID value, thereby ensuring that the received
 SCHC Fragment is not a remnant of a prior fragmented SCHC Packet
 transmission. The initial value of the Inactivity Timer is the

Zuniga, et al. Expires 7 October 2023 [Page 13]

Internet-Draft SCHC Compound ACK April 2023

 RECOMMENDED lifetime for the DTag value at the receiver. If the
 SCHC Fragment is determined to be such a remnant, the receiver MAY
 silently ignore it and discard it.

 * the receiver MUST start a process to assemble a new SCHC Packet
 with that RuleID and DTag value pair. The receiver MUST start an
 Inactivity Timer for that RuleID and DTag value pair. It MUST
 initialize an Attempts counter to 0 for that RuleID and DTag value
 pair. If the receiver is under-resourced to do this, it MUST
 respond to the sender with a SCHC Receiver-Abort.

 On reception of any SCHC F/R message for the RuleID and DTag pair
 being processed, the receiver MUST reset the Inactivity Timer
 pertaining to that RuleID and DTag pair.

 All message receptions being discussed in the rest of this section
 are to be understood as "matching the RuleID and DTag pair being
 processed", even if not spelled out, for brevity.

 On receiving a SCHC Fragment message, the receiver determines what
 tiles were received, based on the payload length and on the W and FCN
 fields of the SCHC Fragment.

 * if the FCN is All-1, if a Payload is present, the full SCHC
 Fragment Payload MUST be assembled including the padding bits.
 This is because the size of the last tile is not known by the
 receiver; therefore, padding bits are indistinguishable from the
 tile data bits, at this stage. They will be removed by the SCHC
 C/D sublayer. If the size of the SCHC Fragment Payload exceeds or
 equals the size of one regular tile plus the size of an L2 Word,
 this SHOULD raise an error flag.

 * otherwise, tiles MUST be assembled based on the a priori known
 tile size.

 - If allowed by the Profile, the end of the payload MAY contain
 the last tile, which may be shorter. Padding bits are
 indistinguishable from the tile data bits, at this stage.

 - The payload may contain the penultimate tile that, if allowed
 by the Profile, MAY be exactly one L2 Word shorter than the
 regular tile size.

 - Otherwise, padding bits MUST be discarded. This is possible
 because:

 o the size of the tiles is known a priori,

Zuniga, et al. Expires 7 October 2023 [Page 14]

Internet-Draft SCHC Compound ACK April 2023

 o tiles are larger than an L2 Word, and

 o padding bits are always strictly less than an L2 Word.

 On receiving a SCHC All-0 SCHC Fragment:

 * if the receiver knows of any windows with missing tiles for the
 packet being reassembled (and depending on certain parameters,
 like network conditions, sender buffer/chache size, supported
 application delay, among others), it MAY return a SCHC Compound
 ACK for the missing tiles, starting from the lowest-numbered
 window.

 On receiving a SCHC ACK REQ or an All-1 SCHC Fragment:

 * if the receiver knows of any windows with missing tiles for the
 packet being reassembled, it MUST return a SCHC Compound ACK for
 the missing tiles, starting from the lowest-numbered window.

 * otherwise:

 - if it has received at least one tile, it MUST return a SCHC
 Compound ACK for the highest-numbered window it currently has
 tiles for,

 - otherwise, it MUST return a SCHC Compound ACK for window
 numbered 0.

 A Profile MAY specify other times and circumstances at which a
 receiver sends a SCHC Compound ACK, and which window the SCHC
 Compound ACK reports about in these circumstances.

 Upon sending a SCHC Compound ACK, the receiver MUST increase the
 Attempts counter.

 After receiving an All-1 SCHC Fragment, a receiver MUST check the
 integrity of the reassembled SCHC Packet at least every time it
 prepares for sending a SCHC Compound ACK for the last window.

 Upon receiving a SCHC Sender-Abort, the receiver MAY exit with an
 error condition.

 Upon expiration of the Inactivity Timer, the receiver MUST send a
 SCHC Receiver-Abort, and it MAY exit with an error condition.

 On the Attempts counter exceeding MAX_ACK_REQUESTS, the receiver MUST
 send a SCHC Receiver-Abort, and it MAY exit with an error condition.

Zuniga, et al. Expires 7 October 2023 [Page 15]

Internet-Draft SCHC Compound ACK April 2023

 Reassembly of the SCHC Packet concludes when:

 * a Sender-Abort has been received, or

 * the Inactivity Timer has expired, or

 * the Attempts counter has exceeded MAX_ACK_REQUESTS, or

 * at least an All-1 SCHC Fragment has been received and integrity
 checking of the reassembled SCHC Packet is successful.

 See Figure 44 for one among several possible examples of a Finite
 State Machine implementing a receiver behavior obeying this
 specification. The example provided is meant to match the sender
 Finite State Machine of Figure 43.

4. SCHC Compound ACK Example

 Figure 7 shows an example transmission of a SCHC Packet in ACK-on-
 Error mode using the SCHC Compound ACK. In the example, the SCHC
 Packet is fragmented in 14 tiles, with N=3, WINDOW_SIZE=7, M=2 and
 two lost SCHC fragments. Only 1 compound SCHC ACK is generated.

 Sender Receiver
 |-----W=0, FCN=6 ----->|
 |-----W=0, FCN=5 ----->|
 |-----W=0, FCN=4 ----->|
 |-----W=0, FCN=3 ----->|
 |-----W=0, FCN=2 --X |
 |-----W=0, FCN=1 ----->|
 |-----W=0, FCN=0 ----->| Bitmap: 1111011
 (no ACK)
 |-----W=1, FCN=6 ----->|
 |-----W=1, FCN=5 ----->|
 |-----W=1, FCN=4 ----->|
 |-----W=1, FCN=3 ----->|
 |-----W=1, FCN=2 ----->|
 |-----W=1, FCN=1 --X |
 |-- W=1, FCN=7 + RCS ->| Integrity check: failure
 |<--- Compound ACK ----| [C=0, W=0 - Bitmap:1111011,
 |-----W=0, FCN=2 ----->| W=1 - Bitmap:1111101]
 |-----W=1, FCN=1 ----->| Integrity check: success
 |<--- ACK, W=1, C=1 ---| C=1
 (End)

 Figure 7: SCHC Compound ACK message sequence example

Zuniga, et al. Expires 7 October 2023 [Page 16]

Internet-Draft SCHC Compound ACK April 2023

 |--- SCHC ACK Header --|- W=00 --|----- W=01 -----|
 |--T-|---M--|-1-| |---M--| |---M--|
 +------+----+------+---+---------+------+---------+------+-----+
 |RuleID|DTag| W=00 |C=0| 1111011 | W=01 | 1111101 | 00 | pad |
 +------+----+------+---+---------+------+---------+------+-----+
 next L2 Word boundary ->|<-- L2 Word ->|

 Figure 8: SCHC Compound ACK message format example: Losses are
 found in windows 00 and 01

5. SCHC Compound ACK YANG Data Model

 The present document also extends the SCHC YANG data model defined in
 [RFC9363] by including a new leaf in the Ack-on-Error fragmentation
 mode to describe both the option to use the SCHC Compound ACK, as
 well as its bitmap format.

5.1. SCHC YANG Data Model Extension

 <CODE BEGINS> file "ietf-lpwan-schc-compound-ack@2023-03-16.yang"
 module ietf-lpwan-schc-compound-ack {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:"
 + "ietf-lpwan-schc-compound-ack";
 prefix schc-compound-ack;

 import ietf-schc {
 prefix schc;
 }

 organization
 "IETF IPv6 over Low Power Wide-Area Networks (lpwan)
 working group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/lpwan/about/>
 WG List: <mailto:lp-wan@ietf.org>
 Editor: Laurent Toutain
 <mailto:laurent.toutain@imt-atlantique.fr>
 Editor: Juan Carlos Zuniga
 <mailto:j.c.zuniga@ieee.org>
 Editor: Sergio Aguilar
 <mailto:sergio.aguilar.romero@upc.edu>";
 description
 "Copyright (c) 2023 IETF Trust and the persons identified as
 authors of the code. All rights reserved.
 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set

Zuniga, et al. Expires 7 October 2023 [Page 17]

Internet-Draft SCHC Compound ACK April 2023

 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).
 This version of this YANG module is part of RFC 9363
 (https://www.rfc-editor.org/info/rfc9363); see the RFC itself
 for full legal notices.
 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.

 Generic data model for the Static Context Header Compression
 Rule for SCHC, based on RFCs 8724 and 8824. Including
 compression, no-compression, and fragmentation Rules.";

 revision 2023-03-16 {
 description
 "Initial version for RFC YYYY ";
 reference
 "RFC YYYY: SCHC Compound ACK";
 }

 identity bitmap-format-base-type {
 description
 "Define how the bitmap is formed in ACK messages.";
 }

 identity bitmap-RFC8724 {
 base bitmap-format-base-type;
 description
 "Bitmap by default as defined in RFC8724.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static
 Context Header Compression and Fragmentation";
 }

 identity bitmap-compound-ack {
 base bitmap-format-base-type;
 description
 "Compound ACK allows several bitmaps in a ACK message.";
 }

 typedef bitmap-format-type {
 type identityref {
 base bitmap-format-base-type;
 }
 description

Zuniga, et al. Expires 7 October 2023 [Page 18]

Internet-Draft SCHC Compound ACK April 2023

 "Type of bitmap used in rules.";
 }

 augment "/schc:schc/schc:rule/schc:nature/"
 + "schc:fragmentation/schc:mode/schc:ack-on-error" {
 leaf bitmap-format {
 when "derived-from-or-self(../schc:fragmentation-mode,
 ’schc:fragmentation-mode-ack-on-error’)";
 type schc-compound-ack:bitmap-format-type;
 default "schc-compound-ack:bitmap-RFC8724";
 description
 "How the bitmaps are included in the SCHC ACK message.";
 }
 leaf last-bitmap-compression {
 when "derived-from-or-self(../schc:fragmentation-mode,
 ’schc:fragmentation-mode-ack-on-error’)";
 type boolean;
 default "true";
 description
 "When true the ultimate bitmap in the SCHC ACK message
 can be compressed. Default behavior from RFC8724";
 reference
 "RFC 8724 SCHC: Generic Framework for Static
 Context Header Compression and
 Fragmentation";
 }
 description
 "Augment the SCHC rules to manage Compound Ack.";
 }
 }
 <CODE ENDS>

 Figure 9: SCHC YANG Data Model - Compound ACK extension

5.2. SCHC YANG Tree Extension

 module: ietf-lpwan-schc-compound-ack
 augment /schc:schc/schc:rule/schc:nature/schc:fragmentation/
 schc:mode/schc:ack-on-error:
 +--rw bitmap-format? schc-compound-ack:bitmap-format-type
 +--rw last-bitmap-compression? boolean

 Figure 10: Tree Diagram - Compound ACK extension

Zuniga, et al. Expires 7 October 2023 [Page 19]

Internet-Draft SCHC Compound ACK April 2023

6. SCHC Compound ACK Parameters

 This section lists the parameters related to the SCHC Compound ACK
 usage that need to be defined in the Profile. This list MUST be
 appended to the list of SCHC parameters under "Decision to use SCHC
 fragmentation mechanism or not. If yes, the document must describe:"
 in Annex D of [RFC8724].

 * Usage or not of the SCHC Compound ACK message.

 * Usage or not of the compressed bitmap format in the last window of
 the SCHC Compound ACK message.

7. Security considerations

 The current document specifies a message format extension for SCHC.
 Hence, the same Security Considerations defined in [RFC8724] and in
 [RFC9363] apply.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability:
 /schc:schc/schc:rule/schc:nature/schc:fragmentation/schc:mode/
 schc:ack-on-error: All the data nodes may be modified. The Rule
 contains sensitive information, such as the SCHC F/R mode
 configuration and usage and configuration of the SCHC Compound ACK.
 An attacker may try to modify other devices’ Rules by changing the F/
 R mode or the usage of the SCHC Compound ACK and may block
 communication or create extra ACKs. Therefore, a device must be
 allowed to modify only its own rules on the remote SCHC instance.
 The identity of the requester must be validated. This can be done
 through certificates or access lists. Some of the readable data
 nodes in this YANG module may be considered sensitive or vulnerable
 in some network environments. It is thus important to control read
 access (e.g., via get, get-config, or notification) to these data
 nodes. These are the subtrees and data nodes and their sensitivity/
 vulnerability:
 /schc:schc/schc:rule/schc:nature/schc:fragmentation/schc:mode/
 schc:ack-on-error: By reading this module, an attacker may learn the
 F/R mode used by the device and how the device manage the bitmap
 creation and also learn the buffer sizes and when the device will
 request an ACK.

Zuniga, et al. Expires 7 October 2023 [Page 20]

Internet-Draft SCHC Compound ACK April 2023

8. IANA Considerations

 This document registers one URI and one YANG data model.

8.1. URI Registration

 IANA registered the following URI in the "IETF XML Registry"
 [RFC3688]:

 URI: urn:ietf:params:xml:ns:yang:ietf-lpwan-schc-compound-ack

 Registrant Contact: The IESG.

 XML: N/A; the requested URI is an XML namespace.

8.2. YANG Module Name Registration

 IANA has registered the following YANG data model in the "YANG Module
 Names" registry [RFC6020].

 name: ietf-lpwan-schc-compound-ack

 namespace: urn:ietf:params:xml:ns:yang:ietf-lpwan-schc-compound-
 ack

 prefix: schc-compound-ack

 reference: RFC

9. Acknowledgements

 Carles Gomez has been funded in part by the Spanish Government
 through the TEC2016-79988-P grant, and the PID2019-106808RA-I00 grant
 (funded by MCIN / AEI / 10.13039/501100011033), and by Secretaria
 d’Universitats i Recerca del Departament d’Empresa i Coneixement de
 la Generalitat de Catalunya 2017 through grant SGR 376.

 Sergio Aguilar has been funded by the ERDF and the Spanish Government
 through project TEC2016-79988-P and project PID2019-106808RA-I00,
 AEI/FEDER, EU (funded by MCIN / AEI / 10.13039/501100011033).

 Sandra Cespedes has been funded in part by the ANID Chile Project
 FONDECYT Regular 1201893 and Basal Project FB0008.

 Diego Wistuba has been funded by the ANID Chile Project FONDECYT
 Regular 1201893.

Zuniga, et al. Expires 7 October 2023 [Page 21]

Internet-Draft SCHC Compound ACK April 2023

 The authors would like to thank Rafael Vidal, Julien Boite, Renaud
 Marty, Antonis Platis, Dominique Barthel and Pascal Thubert for their
 very useful comments, reviews and implementation design
 considerations.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8724] Minaburo, A., Toutain, L., Gomez, C., Barthel, D., and JC.
 Zuniga, "SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation", RFC 8724,
 DOI 10.17487/RFC8724, April 2020,
 <https://www.rfc-editor.org/info/rfc8724>.

 [RFC9363] Minaburo, A. and L. Toutain, "A YANG Data Model for Static
 Context Header Compression (SCHC)", RFC 9363,
 DOI 10.17487/RFC9363, March 2023,
 <https://www.rfc-editor.org/info/rfc9363>.

10.2. Informative References

 [RFC8376] Farrell, S., Ed., "Low-Power Wide Area Network (LPWAN)
 Overview", RFC 8376, DOI 10.17487/RFC8376, May 2018,
 <https://www.rfc-editor.org/info/rfc8376>.

Authors’ Addresses

Zuniga, et al. Expires 7 October 2023 [Page 22]

Internet-Draft SCHC Compound ACK April 2023

 Juan Carlos Zuniga
 Cisco
 Montreal QC
 Canada
 Email: juzuniga@cisco.com

 Carles Gomez
 Universitat Politecnica de Catalunya
 C/Esteve Terradas, 7
 08860 Castelldefels
 Spain
 Email: carles.gomez@upc.edu

 Sergio Aguilar
 Universitat Politecnica de Catalunya
 C/Esteve Terradas, 7
 08860 Castelldefels
 Spain
 Email: sergio.aguilar.romero@upc.edu

 Laurent Toutain
 IMT-Atlantique
 2 rue de la Chataigneraie
 CS 17607
 35576 Cesson-Sevigne Cedex
 France
 Email: Laurent.Toutain@imt-atlantique.fr

 Sandra Cespedes
 Concordia University
 1455 De Maisonneuve Blvd. W.
 Montreal QC, H3G 1M8
 Canada
 Email: sandra.cespedes@concordia.ca

 Diego Wistuba
 NIC Labs, Universidad de Chile
 Av. Almte. Blanco Encalada 1975
 Santiago
 Chile
 Email: wistuba@niclabs.cl

Zuniga, et al. Expires 7 October 2023 [Page 23]

lpwan Working Group E. Ramos
Internet-Draft Ericsson
Intended status: Standards Track A. Minaburo
Expires: 18 June 2023 Acklio
 15 December 2022

 Static Context Header Compression over Narrowband Internet of Things
 draft-ietf-lpwan-schc-over-nbiot-15

Abstract

 This document describes Static Context Header Compression and
 Fragmentation (SCHC) specifications, RFC 8724 and RFC 8824,
 combination with the 3rd Generation Partnership Project (3GPP) and
 the Narrowband Internet of Things (NB-IoT).

 This document has two parts. One normative to specify the use of
 SCHC over NB-IoT. And one informational, which recommends some
 values if 3GPP wanted to use SCHC inside their architectures.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 18 June 2023.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components

Ramos & Minaburo Expires 18 June 2023 [Page 1]

Internet-Draft LPWAN SCHC NB-IoT December 2022

 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2
 2. Conventions and Definitions 3
 3. Terminology . 3
 4. NB-IoT Architecture . 5
 5. Data Transmission in the 3GPP Architecture 6
 5.1. Normative Part. 7
 5.1.1. SCHC over Non-IP Data Delivery (NIDD) 7
 5.2. Informational Part. 10
 5.2.1. Use of SCHC over the Radio link 11
 5.2.2. Use of SCHC over the Non-Access Stratum (NAS) 12
 5.2.3. Parameters for Static Context Header Compression and
 Fragmentation (SCHC) for the Radio link and DONAS
 use-cases. . 13
 6. Padding . 15
 7. IANA considerations . 15
 8. Security considerations 15
 9. References . 15
 9.1. Normative References 16
 9.2. Informative References 16
 Appendix A. NB-IoT User Plane protocol architecture 17
 A.1. Packet Data Convergence Protocol (PDCP) TS36323 18
 A.2. Radio Link Protocol (RLC) TS36322 18
 A.3. Medium Access Control (MAC) TR36321 19
 Appendix B. NB-IoT Data over NAS (DoNAS) 20
 Appendix C. Acknowledgements 23
 Authors’ Addresses . 23

1. Introduction

 This document defines the scenarios where the Static Context Header
 Compression and fragmentation (SCHC) [RFC8724] and [RFC8824] are
 suitable for 3rd Generation Partnership Project (3GPP) and Narrowband
 Internet of Things (NB-IoT) protocol stacks.

 In the 3GPP and the NB-IoT networks, header compression efficiently
 brings Internet connectivity to the Device-User Equipment (Dev-UE),
 the radio (RGW-eNB) and network (NGW-MME) gateways, and the
 Application Server. This document describes the SCHC parameters
 supporting static context header compression and fragmentation over
 the NB-IoT architecture.

Ramos & Minaburo Expires 18 June 2023 [Page 2]

Internet-Draft LPWAN SCHC NB-IoT December 2022

 This document assumes functionality for NB-IoT of 3GPP release 15
 [_3GPPR15]. Otherwise, the text explicitly mentions other versions’
 functionality.

 This document has two parts, a standard end-to-end scenario
 describing how any application must use SCHC over the 3GPP public
 service. And informational scenarios about how 3GPP could use SCHC
 in their protocol stack network.

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Terminology

 This document will follow the terms defined in [RFC8724], in
 [RFC8376], and the [TR23720].

 * Capillary Gateway. A capillary gateway facilitates seamless
 integration because it has wide area connectivity through cellular
 and provides wide area access as a proxy to other devices using
 LAN technologies (BT, Wi-Fi, Zigbee, or others.)

 * CIoT EPS. Cellular IoT Evolved Packet System. It is a
 functionality to improve the support of small data transfers.

 * Dev-UE. Device - User Equipment.

 * DoNAS. Data over Non-Access Stratum.

 * EPC. Evolved Packet Connectivity. Core network of 3GPP LTE
 systems.

 * EUTRAN. Evolved Universal Terrestrial Radio Access Network.
 Radio access network of LTE-based systems.

 * HARQ. Hybrid Automatic Repeat Request.

 * HSS. Home Subscriber Server. It is a database that contains
 users’ subscription data, including data needed for mobility
 management.

 * IP address. IPv6 or IPv4 address used.

Ramos & Minaburo Expires 18 June 2023 [Page 3]

Internet-Draft LPWAN SCHC NB-IoT December 2022

 * IWK-SCEF. InterWorking Service Capabilities Exposure Function.
 It is used in roaming scenarios, it is located in the Visited PLMN
 and serves for interconnection with the SCEF of the Home PLMN.

 * L2. Layer-2 in the 3GPP architectures it includes MAC, RLC and
 PDCP layers see Appendix A.

 * LCID. Logical Channel ID. Is the logical channel instance of the
 corresponding MAC SDU.

 * MAC. Medium Access Control protocol, part of L2.

 * NAS. Non-Access Stratum.

 * NB-IoT. Narrowband IoT. A 3GPP LPWAN technology based on the LTE
 architecture but with additional optimization for IoT and using a
 Narrowband spectrum frequency.

 * NGW-CSGN. Network Gateway - CIoT Serving Gateway Node.

 * NGW-CSGW. Network Gateway - Cellular Serving Gateway. It routes
 and forwards the user data packets through the access network.

 * NGW-MME. Network Gateway - Mobility Management Entity. An entity
 in charge of handling mobility of the Dev-UE.

 * NGW-PGW. Network Gateway - Packet Data Network Gateway. An
 interface between the internal with the external network.

 * NGW-SCEF. Network Gateway - Service Capability Exposure Function.
 EPC node for exposure of 3GPP network service capabilities to 3rd
 party applications.

 * NIDD. Non-IP Data Delivery.

 * PDCP. Packet Data Convergence Protocol part of L2.

 * PLMN. Public Land Mobile Network. Combination of wireless
 communication services offered by a specific operator.

 * PDU. Protocol Data Unit. A data packet including headers that
 are transmitted between entities through a protocol.

 * RLC. Radio Link Protocol part of L2.

 * RGW-eNB. Radio Gateway - evolved Node B. Base Station that
 controls the UE.

Ramos & Minaburo Expires 18 June 2023 [Page 4]

Internet-Draft LPWAN SCHC NB-IoT December 2022

 * SDU. Service Data Unit. A data packet (PDU) from higher layer
 protocols used by lower layer protocols as a payload of their own
 PDUs.

4. NB-IoT Architecture

 The Narrowband Internet of Things (NB-IoT) architecture has a complex
 structure. It relies on different NGWs from different providers. It
 can send data via different paths, each with different
 characteristics in terms of bandwidth, acknowledgments, and layer-2
 reliability and segmentation.

 Figure 1 shows this architecture, where the Network Gateway Cellular
 Internet of Things Serving Gateway Node (NGW-CSGN) optimizes co-
 locating entities in different paths. For example, a Dev-UE using
 the path formed by the Network Gateway Mobility Management Entity
 (NGW-MME), the NGW-CSGW, and Network Gateway Packet Data Network
 Gateway (NGW-PGW) may get a limited bandwidth transmission from a few
 bytes/s to one thousand bytes/s only.

 Another node introduced in the NB-IoT architecture is the Network
 Gateway Service Capability Exposure Function (NGW-SCEF), which
 securely exposes service and network capabilities to entities
 external to the network operator. The Open Mobile Alliance (OMA)
 [OMA0116] and the One Machine to Machine (OneM2M) [TR-0024] define
 the northbound APIs. [TS23222] defines architecture for the common
 API framework for 3GPP northbound APIs and [TS33122] defines security
 aspects for common API framework for 3GPP northbound APIs. In this
 case, the path is small for data transmission. The main functions of
 the NGW-SCEF are Connectivity path and Device Monitoring.

 +---+ +---------+ +------+
 |Dev| \ | +-----+ | ---| HSS |
 |-UE| \ | | NGW | | +------+
 +---+ | | |-MME |__
 \ / +-----+ | \
 +---+ \+-----+ /| | | +------+
 |Dev| ----| RGW |- | | | | NGW- |
 |-UE| |-eNB | | | | | SCEF |---------+
 +---+ /+-----+ \| | | +------+ |
 / \ +------+| |
 / |\| NGW- || +-----+ +-----------+
 +---+ / | | CSGW |--| NGW-|---|Application|
 |Dev| | | || | PGW | | Server |
 |-UE| | +------+| +-----+ +-----------+
 +---+ | |
 |NGW-CSGN |
 +---------+

Ramos & Minaburo Expires 18 June 2023 [Page 5]

Internet-Draft LPWAN SCHC NB-IoT December 2022

 Figure 1: 3GPP network architecture

5. Data Transmission in the 3GPP Architecture

 NB-IoT networks deal with end-to-end user data and in-band signaling
 between the nodes and functions to configure, control, and monitor
 the system functions and behaviors. The signaling uses a different
 path with specific protocols, handling processes, and entities but
 can transport end-to-end user data for IoT services. In contrast,
 the end-to-end application only transports end-to-end data.

 The recommended 3GPP MTU size is 1358 bytes. The radio network
 protocols limit the packet sizes over the air, including radio
 protocol overhead, to 1600 bytes, see Section 5.2.3. However, the
 recommended 3GPP MTU is smaller to avoid fragmentation in the network
 backbone due to the payload encryption size (multiple of 16) and the
 additional core transport overhead handling.

 3GPP standardizes NB-IoT and, in general, the cellular technologies
 interfaces and functions. Therefore, the introduction of SCHC
 entities to Dev-UE, RGW-eNB, and NGW-CSGN needs to be specified in
 the NB-IoT standard.

 This document identifies the use cases of SCHC over the NB-IoT
 architecture.

 First, the radio transmission where, see Section 5.2.1, the Dev-UE
 and the RGW-eNB can use the SCHC functionalities.

 Second, the packets transmitted over the control path can also use
 SCHC when the transmission goes over the NGW-MME or NGW-SCEF. See
 Section 5.2.2.

 These two use cases are also valid for any 3GPP architecture and not
 only for NB-IoT. And as the 3GPP internal network is involved, they
 have been put in the informational part of this section.

 And third, over the SCHC over Non-IP Data Delivery (NIDD) connection
 or at least up to the operator network edge, see Section 5.1.1. In
 this case, SCHC functionalities are available in the application
 layer of the Dev-UE and the Application Servers or a broker function
 at the edge of the operator network. NGW-PGW or NGW-SCEF transmit
 the packets which are non-IP traffic, using IP tunneling or API
 calls. It is also possible to benefit legacy devices with SCHC by
 using the non-IP transmission features of the operator network.

 A non-IP transmission refers to other layer-2 transport different
 from NB-IoT.

Ramos & Minaburo Expires 18 June 2023 [Page 6]

Internet-Draft LPWAN SCHC NB-IoT December 2022

5.1. Normative Part.

 This scenarios does not modify the 3GPP architecture or any of its
 components, it only use it as a layer-2 transmission.

5.1.1. SCHC over Non-IP Data Delivery (NIDD)

 This section specifies the use of SCHC over Non-IP Data Delivery
 (NIDD) services of 3GPP. The NIDD services of 3GPP enable the
 transmission of SCHC packets compressed by the application layer.
 The packets can be delivered between the NGW-PGW and the Application
 Server or between the NGW-SCEF and the Application Server, using IP-
 tunnels or API calls. In both cases, as compression occurs before
 transmission, the network will not understand the packet, and the
 network does not have context information of this compression.
 Therefore, the network will treat the packet as Non-IP traffic and
 deliver it to the other side without any other protocol stack
 element, directly over the layer-2.

5.1.1.1. SCHC Entities Placing over NIDD

 In the two scenarios using NIDD compression, SCHC entities are
 located almost on top of the stack. The NB-IoT connectivity services
 implement SCHC in the Dev-UE, an in the Application Server. The IP
 tunneling scenario requires that the Application Server send the
 compressed packet over an IP connection terminated by the 3GPP core
 network. If the transmission uses the NGW-SCEF services, it is
 possible to utilize an API call to transfer the SCHC packets between
 the core network and the Application Server. Also, an IP tunnel
 could be established by the Application Server if negotiated with the
 NGW-SCEF.

 +---------+ XXXXXXXXXXXXXXXXXXXXXXXX +--------+
 | SCHC | XXX XXX | SCHC |
 |(Non-IP) +-----XX........................XX....+--*---+(Non-IP)|
 +---------+ XX +----+ XX | | +--------+
	XX	SCEF+-------+		
	XXX 3GPP RAN & +----+ XXX +---+ UDP			
	XXX CORE NETWORK XXX			
L2 +---+XX +------------+	+--------+			
	XX	IP TUNNELING+--+		
	XXX +------------+ +---+ IP			
+---------+ XXXX XXXX	+--------+			
PHY +------+ XXXXXXXXXXXXXXXXXXXXXXX +---+ PHY				
 +---------+ +--------+
 Dev-UE Application
 Server

Ramos & Minaburo Expires 18 June 2023 [Page 7]

Internet-Draft LPWAN SCHC NB-IoT December 2022

 Figure 2: End-to End Compression. SCHC entities placed when
 using Non-IP Delivery (NIDD) 3GPP Services

5.1.1.2. Parameters for Static Context Header Compression and
 Fragmentation (SCHC)

 These scenarios MAY use SCHC header compression capability to improve
 the transmission of IPv6 packets.

 * SCHC Context initialization.

 The application layer handles the static context; consequently, the
 context distribution MUST be according to the application’s
 capabilities, perhaps utilizing IP data transmissions up to context
 initialization. Also, the static contexts delivery may use the same
 IP tunneling or NGW-SCEF services used later for the SCHC packets
 transport.

 * SCHC Rules.

 For devices acting as a capillary gateway, several rules match the
 diversity of devices and protocols used by the devices associated
 with the gateway. Meanwhile, simpler devices may have predetermined
 protocols and fixed parameters.

 * Rule ID.

 This scenario can dynamically set the RuleID size before the context
 delivery. For example, negotiate between the applications when
 choosing a profile according to the type of traffic and application
 deployed. Transmission optimization may require only one physical
 layer transmission. SCHC overhead SHOULD NOT exceed the available
 number of effective bits of the smallest physical TB available to
 optimize the transmission. The packets handled by 3GPP networks are
 byte-aligned. Thus, to use the smallest TB, the maximum SCHC header
 size is 12 bits. On the other hand, more complex NB-IoT devices
 (such as a capillary gateway) might require additional bits to handle
 the variety and multiple parameters of higher-layer protocols
 deployed. The configuration may be part of the agreed operation
 profile and content distribution. The RuleID field size may range
 from 2 bits, resulting in 4 rules to an 8-bit value that would yield
 up to 256 rules that can be used with the operators and seems quite a
 reasonable maximum limit even for a device acting as a NAT. An
 application may use a larger RuleID, but it should consider the byte
 alignment of the expected Compression Residue. In the minimum TB
 size case, 2 bits of RuleID leave only 6 bits available for
 Compression Residue.

Ramos & Minaburo Expires 18 June 2023 [Page 8]

Internet-Draft LPWAN SCHC NB-IoT December 2022

 * SCHC MAX_PACKET_SIZE.

 In these scenarios, the maximum RECOMMENDED MTU size is 1358 bytes
 since the SCHC packets (and fragments) are traversing the whole 3GPP
 network infrastructure (core and radio), not only the radio as the IP
 transmissions case.

 * Fragmentation.

 Packets larger than 1358 bytes need the SCHC fragmentation function.
 Since the 3GPP uses reliability functions, the No-ACK fragmentation
 mode MAY be enough in point-to-point connections. Nevertheless,
 additional considerations are described below for more complex cases.

 * Fragmentation modes.

 A global service assigns a QoS to the packets e.g. depending on the
 billing. Packets with very low QoS may get lost before arriving in
 the 3GPP radio network transmission, for example, in between the
 links of a capillary gateway or due to buffer overflow handling in a
 backhaul connection. The use of SCHC fragmentation with the ACK-on-
 Error mode is RECOMMENDED to secure additional reliability on the
 packets transmitted with a small trade-off on further transmissions
 to signal the end-to-end arrival of the packets if no transport
 protocol takes care of retransmission.
 Also, the ACK-on-Error mode could be desirable to keep track of all
 the SCHC packets delivered. In that case, the fragmentation function
 could be activated for all packets transmitted by the applications.
 SCHC ACK-on-Error fragmentation MAY be activated in transmitting non-
 IP packets on the NGW-MME. A non-IP packet will use SCHC reserved
 RuleID for non-compressing packets as [RFC8724] allows it.

 * Fragmentation Parameters.

 SCHC profile will have specific Rules for the fragmentation modes.
 The rule will identify, which fragmentation mode is in use, and
 section Section 5.2.3 defines the RuleID size.

 SCHC parametrization considers that NBIoT aligns the bit and uses
 padding and the size of the Transfer Block. SCHC will try to reduce
 padding to optimize the compression of the information. The Header
 size needs to be multiple of 4, and the Tiles MAY keep a fixed value
 of 4 or 8 bits to avoid padding except for transfer block equals 16
 bits where Tiles may be 2 bits. The transfer block size has a wide
 range of values. Two configurations are RECOMMENDED for the
 fragmentation parameters.

Ramos & Minaburo Expires 18 June 2023 [Page 9]

Internet-Draft LPWAN SCHC NB-IoT December 2022

 * For Transfer Blocks smaller or equal to 304 bits using an 8-bit
 Header_size configuration, with the size of the header fields as
 follows:

 - RuleID from 1 - 3 bits,

 - DTag 1 bit,

 - FCN 3 bits,

 - W 1 bits.

 * For Transfer Blocks bigger than 304 bits using a 16-bit
 Header_size configuration, with the size of the header fields as
 follows:

 - RulesID from 8 - 10 bits,

 - DTag 1 or 2 bits,

 - FCN 3 bits,

 - W 2 or 3 bits.

 * WINDOW_SIZE of 2^N-1 is RECOMMENDED.

 * RCS will follow the default size defined in section 8.2.3 of the
 [RFC8724], with a length equal to the L2 Word.

 * MAX_ACK_REQ is RECOMMENDED to be 2, but applications MAY change
 this value based on transmission conditions.

 The IoT devices communicate with small data transfer and use the
 Power Save Mode and the Idle Mode DRX, which govern how often the
 device wakes up, stays up, and is reachable. The use of the
 different modes allows the battery to last ten years.
 Table 10.5.163a in [TS24008] specifies a range for the radio timers
 as N to 3N in increments of one where the units of N can be 1 hour or
 10 hours. The Inactivity Timer and the Retransmission Timer be set
 based on these limits.

5.2. Informational Part.

 These scenarios shows how 3GPP could use SCHC for their
 transmissions.

Ramos & Minaburo Expires 18 June 2023 [Page 10]

Internet-Draft LPWAN SCHC NB-IoT December 2022

5.2.1. Use of SCHC over the Radio link

 Deploying SCHC over the radio link only would require placing it as
 part of the protocol stack for data transfer between the Dev-UE and
 the RGW-eNB. This stack is the functional layer responsible for
 transporting data over the wireless connection and managing radio
 resources. There is support for features such as reliability,
 segmentation, and concatenation. The transmissions use link
 adaptation, meaning that the system will optimize the transport
 format used according to the radio conditions, the number of bits to
 transmit, and the power and interference constraints. That means
 that the number of bits transmitted over the air depends on the
 selected Modulation and Coding Schemes (MCS). Transport Block (TB)
 transmissions happen in the physical layer at network-synchronized
 intervals called Transmission Time Interval (TTI). Each Transport
 Block has a different MCS and number of bits available to transmit.
 The MAC layer [TR36321] defines the Transport Blocks’
 characteristics. The Radio link stack shown in Figure 3 comprises
 the Packet Data Convergence Protocol (PDCP) [TS36323], Radio Link
 Protocol (RLC) [TS36322], Medium Access Control protocol (MAC)
 [TR36321], and the Physical Layer [TS36201]. The Appendix A gives
 more details about these protocols.

 +---------+ +---------+ |
 |IP/non-IP+------------------------------+IP/non-IP+->+
 +---------+ | +---------------+ | +---------+ |
 | PDCP +-------+ PDCP | GTP|U +------+ GTP-U |->+
 | (SCHC) + + (SCHC)| + + | |
 +---------+ | +---------------+ | +---------+ |
 | RLC +-------+ RLC |UDP/IP +------+ UDP/IP +->+
 +---------+ | +---------------+ | +---------+ |
 | MAC +-------+ MAC | L2 +------+ L2 +->+
 +---------+ | +---------------+ | +---------+ |
 | PHY +-------+ PHY | PHY +------+ PHY +->+
 +---------+ +---------------+ +---------+ |
 C-Uu/ S1-U SGi
 Dev-UE RGW-eNB NGW-CSGN
 Radio Link

 Figure 3: SCHC over the Radio link

5.2.1.1. SCHC Entities Placing over the Radio Link

 The 3GPP architecture supports Robust Header Compression (ROHC)
 [RFC5795] in the PDCP layer. Therefore, the architecture can deploy
 SCHC header compression entities similarly without the need for
 significant changes in the 3GPP specifications.

Ramos & Minaburo Expires 18 June 2023 [Page 11]

Internet-Draft LPWAN SCHC NB-IoT December 2022

 The RLC layer has three functional modes Transparent Mode (TM),
 Unacknowledged Mode (UM), and Acknowledged Mode (AM). The mode of
 operation controls the functionalities of the RLC layer. TM only
 applies to signaling packets, while AM or UM carry signaling and data
 packets.

 The RLC layer takes care of fragmentation unless for the Transparent
 Mode. In AM or UM modes, the SCHC fragmentation is unnecessary and
 SHOULD NOT be used. While sending IP packets, the Radio link does
 not commonly use the RLC Transparent Mode. However, if other
 protocol overhead optimizations are targeted for NB-IoT traffic, SCHC
 fragmentation may be used for TM transmission mode in the future.

5.2.2. Use of SCHC over the Non-Access Stratum (NAS)

 This section consists of IETF suggestions to the 3GPP. The NGW-MME
 conveys mainly signaling between the Dev-UE and the cellular network
 [TR24301]. The network transports this traffic on top of the radio
 link.

 This kind of flow supports data transmissions to reduce the overhead
 when transmitting infrequent small quantities of data. This
 transmission is known as Data over Non-Access Stratum (DoNAS) or
 Control Plane Cellular Internet of Things (CIoT) evolved packet
 system (EPS) optimizations. In DoNAS, the Dev-UE uses the pre-
 established security and can piggyback small uplink data into the
 initial uplink message and uses an additional message to receive a
 downlink small data response.

 The NGW-MME performs the data encryption from the network side in a
 DoNAS PDU. Depending on the data type signaled indication (IP or
 non-IP data), the network allocates an IP address or establishes a
 direct forwarding path. DoNAS is regulated under rate control upon
 previous agreement, meaning that a maximum number of bits per unit of
 time is agreed upon per device subscription beforehand and configured
 in the device.

 The system will use DoNAS when a terminal in a power-saving state
 requires a short transmission and receives an acknowledgment or short
 feedback from the network. Depending on the size of buffered data to
 transmit, the Dev-UE might deploy the connected mode transmissions
 instead, limiting and controlling the DoNAS transmissions to
 predefined thresholds and a good resource optimization balance for
 the terminal and the network. The support for mobility of DoNAS is
 present but produces additional overhead. The Appendix B gives
 additional details of DoNAS.

Ramos & Minaburo Expires 18 June 2023 [Page 12]

Internet-Draft LPWAN SCHC NB-IoT December 2022

5.2.2.1. SCHC Entities Placing over DoNAS

 SCHC resides in this scenario’s Non-Access Stratum (NAS) protocol
 layer. The same principles as for the section Section 5.2.1 apply
 here as well. Because the NAS protocol already uses ROHC [RFC5795],
 it can also adapt SCHC for header compression. The main difference
 compared to the radio link, section Section 5.2.1, is the physical
 placing of the SCHC entities. On the network side, the NGW-MME
 resides in the core network and is the terminating node for NAS
 instead of the RGW-eNB.

 +--------+ +--------+--------+ + +--------+
 | IP/ +--+-----------------+--+ IP/ | IP/ +-----+ IP/ |
 | Non-IP | | | | Non-IP | Non-IP | | | Non-IP |
 +--------+ | | +-----------------+ | +--------+
 | NAS +-----------------------+ NAS |GTP-C/U +-----+GTP-C/U |
 |(SCHC) | | | | (SCHC) | | | | |
 +--------+ | +-----------+ | +-----------------+ | +--------+
 | RRC +-----+RRC |S1|AP+-----+ S1|AP | | | | |
 +--------+ | +-----------+ | +--------+ UDP +-----+ UDP |
 | PDCP* +-----+PDCP*|SCTP +-----+ SCTP | | | | |
 +--------+ | +-----------+ | +-----------------+ | +--------+
 | RLC +-----+ RLC | IP +-----+ IP | IP +-----+ IP |
 +--------+ | +-----------+ | +-----------------+ | +--------+
 | MAC +-----+ MAC | L2 +-----+ L2 | L2 +-----+ L2 |
 +--------+ | +-----------+ | +-----------------+ | +--------+
 | PHY +--+--+ PHY | PHY +--+--+ PHY | PHY +-----+ PHY |
 +--------+ +-----+-----+ +--------+--------+ | +--------+
 C-Uu/ S1 SGi
 Dev-UE RGW-eNB NGW-MME NGW-PGW

 *PDCP is bypassed until AS security is activated TGPP36300.

 Figure 4: SCHC entities placement in the 3GPP CIOT radio protocol
 architecture for DoNAS transmissions

5.2.3. Parameters for Static Context Header Compression and
 Fragmentation (SCHC) for the Radio link and DONAS use-cases.

 If 3GPP incorporates SCHC, it is recommended that these scenarios use
 SCHC header compression [RFC8724] capability to optimize the data
 transmission.

 * SCHC Context initialization.

Ramos & Minaburo Expires 18 June 2023 [Page 13]

Internet-Draft LPWAN SCHC NB-IoT December 2022

 The RRC (Radio Resource Control) protocol is the main tool used to
 configure the parameters of the Radio link. It will configure SCHC
 and the static context distribution as it has made for ROHC [RFC5795]
 operation [TS36323].

 * SCHC Rules.

 The network operator in these scenarios defines the number of rules.
 For this, the network operator must know the IP traffic the device
 will carry. The operator might supply rules compatible with the
 device’s use case. For devices acting as a capillary gateway,
 several rules match the diversity of devices and protocols used by
 the devices associated with the gateway. Meanwhile, simpler devices
 may have predetermined protocols and fixed parameters. The use of
 IPv6 and IPv4 may force to get more rules to deal with each case.

 * RuleID.

 There is a reasonable assumption of 9 bytes of radio protocol
 overhead for these transmission scenarios in NB-IoT, where PDCP uses
 5 bytes due to header and integrity protection, and RLC and MAC use 4
 bytes. The minimum physical Transport Blocks (TB) that can withhold
 this overhead value according to 3GPP Release 15 specifications are
 88, 104, 120, and 144 bits. As for Section 5.1.1.2, these scenarios
 must optimize the physical layer where the smallest TB is 12 bits.
 These 12 bits must include the Compression Residue in addition to the
 RuleID. On the other hand, more complex NB-IoT devices (such as a
 capillary gateway) might require additional bits to handle the
 variety and multiple parameters of higher-layer protocols deployed.
 In that sense, the operator may want flexibility on the number and
 type of rules independently supported by each device; consequently,
 these scenarios require a configurable value. The configuration may
 be part of the agreed operation profile with the content
 distribution. The RuleID field size may range from 2 bits, resulting
 in 4 rules to an 8-bit value that would yield up to 256 rules that
 can be used with the operators and seems quite a reasonable maximum
 limit even for a device acting as a NAT. An application may use a
 larger RuleID, but it should consider the byte alignment of the
 expected Compression Residue. In the minimum TB size case, 2 bits of
 RuleID leave only 6 bits available for Compression Residue.

 * SCHC MAX_PACKET_SIZE.

 The Radio Link can handle the fragmentation of SCHC packets if
 needed, including reliability. Hence, the packet size is limited by
 the MTU handled by the radio protocols, which corresponds to 1600
 bytes for 3GPP Release 15.

Ramos & Minaburo Expires 18 June 2023 [Page 14]

Internet-Draft LPWAN SCHC NB-IoT December 2022

 * Fragmentation.

 For the Radio link Section 5.2.1 and DoNAS’ Section 5.2.2 scenarios,
 the SCHC fragmentation functions are disabled. The RLC layer of NB-
 IoT can segment packets into suitable units that fit the selected
 transport blocks for transmissions of the physical layer. The block
 selection is made according to the link adaptation input function in
 the MAC layer and the quantity of data in the buffer. The link
 adaptation layer may produce different results at each Time
 Transmission Interval (TTI), resulting in varying physical transport
 blocks that depend on the network load, interference, number of bits
 transmitted, and QoS. Even if setting a value that allows the
 construction of data units following the SCHC tiles principle, the
 protocol overhead may be greater or equal to allowing the Radio link
 protocols to take care of the fragmentation intrinsically.

 * Fragmentation in RLC Transparent Mode.

 The RLC Transparent Mode mostly applies to control signaling
 transmissions. When RLC operates in Transparent Mode, the MAC layer
 mechanisms ensure reliability and generate overhead. This additional
 reliability implies sending repetitions or automatic retransmissions.

 The ACK-Always fragmentation mode of SCHC may reduce this overhead in
 future operations when data transmissions may use this mode. ACK-
 Always mode may transmit compressed data with fewer possible
 transmissions by using fixed or limited transport blocks compatible
 with the tiling SCHC fragmentation handling. For SCHC fragmentation
 parameters see Section 5.1.1.2.

6. Padding

 NB-IoT and 3GPP wireless access, in general, assumes byte-aligned
 payload. Therefore, the layer 2 word for NB-IoT MUST be considered 8
 bits, and the padding treatment should use this value accordingly.

7. IANA considerations

 This document has no IANA actions.

8. Security considerations

 This document does not add any security considerations and follows
 the [RFC8724] and the 3GPP access security document specified in
 [TS33122].

9. References

Ramos & Minaburo Expires 18 June 2023 [Page 15]

Internet-Draft LPWAN SCHC NB-IoT December 2022

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8724] Minaburo, A., Toutain, L., Gomez, C., Barthel, D., and JC.
 Zuniga, "SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation", RFC 8724,
 DOI 10.17487/RFC8724, April 2020,
 <https://www.rfc-editor.org/info/rfc8724>.

 [RFC8824] Minaburo, A., Toutain, L., and R. Andreasen, "Static
 Context Header Compression (SCHC) for the Constrained
 Application Protocol (CoAP)", RFC 8824,
 DOI 10.17487/RFC8824, June 2021,
 <https://www.rfc-editor.org/info/rfc8824>.

9.2. Informative References

 [OMA0116] OMA, "Common definitions for RESTful Network APIs", 2018,
 <https://www.openmobilealliance.org/release/
 REST_NetAPI_Common/V1_0-20180116-A/OMA-TS-
 REST_NetAPI_Common-V1_0-20180116-A.pdf>.

 [RFC5795] Sandlund, K., Pelletier, G., and L-E. Jonsson, "The RObust
 Header Compression (ROHC) Framework", RFC 5795,
 DOI 10.17487/RFC5795, March 2010,
 <https://www.rfc-editor.org/info/rfc5795>.

 [RFC8376] Farrell, S., Ed., "Low-Power Wide Area Network (LPWAN)
 Overview", RFC 8376, DOI 10.17487/RFC8376, May 2018,
 <https://www.rfc-editor.org/info/rfc8376>.

 [TR-0024] OneM2M, "3GPP_Interworking", 2020,
 <https://ftp.onem2m.org/work%20programme/WI-0037/TR-0024-
 3GPP_Interworking-V4_3_0.DOCX>.

 [TR23720] 3GPP, "Study on architecture enhancements for Cellular
 Internet of Things", 2015,
 <https://www.3gpp.org/ftp/Specs/
 archive/23_series/23.720/23720-d00.zip>.

Ramos & Minaburo Expires 18 June 2023 [Page 16]

Internet-Draft LPWAN SCHC NB-IoT December 2022

 [TR24301] 3GPP, "Evolved Universal Terrestrial Radio Access
 (E-UTRA); Medium Access Control (MAC) protocol
 specification", 2019, <https://www.3gpp.org/ftp//Specs/
 archive/24_series/24.301/24301-f80.zip>.

 [TR36321] 3GPP, "Evolved Universal Terrestrial Radio Access
 (E-UTRA); Medium Access Control (MAC) protocol
 specification", 2016, <https://www.3gpp.org/ftp/Specs/
 archive/36_series/36.321/36321-d20.zip>.

 [TS23222] 3GPP, "Common API Framework for 3GPP Northbound APIs",
 2022, <https://www.3gpp.org/ftp/Specs/
 archive/23_series/23.222/23222-f60.zip>.

 [TS24008] 3GPP, "Mobile radio interface layer 3 specification.",
 2018, <https://www.3gpp.org/ftp//Specs/
 archive/24_series/24.008/24008-f50.zip>.

 [TS33122] 3GPP, "Security aspects of Common API Framework (CAPIF)
 for 3GPP northbound APIs", 2018,
 <https://www.3gpp.org/ftp//Specs/
 archive/33_series/33.122/33122-f30.zip>.

 [TS36201] 3GPP, "Evolved Universal Terrestrial Radio Access
 (E-UTRA); LTE physical layer; General description", 2018,
 <https://www.3gpp.org/ftp/Specs/
 archive/36_series/36.201/36201-f10.zip>.

 [TS36322] 3GPP, "Evolved Universal Terrestrial Radio Access
 (E-UTRA); Radio Link Control (RLC) protocol
 specification", 2018, <https://www.3gpp.org/ftp/Specs/
 archive/36_series/36.322/36322-f01.zip>.

 [TS36323] 3GPP, "Evolved Universal Terrestrial Radio Access
 (E-UTRA); Packet Data Convergence Protocol (PDCP)
 specification", 2016, <https://www.3gpp.org/ftp/Specs/
 archive/36_series/36.323/36323-d20.zip>.

 [TS36331] 3GPP, "Evolved Universal Terrestrial Radio Access
 (E-UTRA); Radio Resource Control (RRC); Protocol
 specification", 2018, <https://www.3gpp.org/ftp//Specs/
 archive/36_series/36.331/36331-f51.zip>.

 [_3GPPR15] 3GPP, "The Mobile Broadband Standard", 2019,
 <https://www.3gpp.org/release-15>.

Appendix A. NB-IoT User Plane protocol architecture

Ramos & Minaburo Expires 18 June 2023 [Page 17]

Internet-Draft LPWAN SCHC NB-IoT December 2022

A.1. Packet Data Convergence Protocol (PDCP) [TS36323]

 Each of the Radio Bearers (RB) is associated with one PDCP entity.
 Moreover, a PDCP entity is associated with one or two RLC entities
 depending on the unidirectional or bi-directional characteristics of
 the RB and RLC mode used. A PDCP entity is associated with either a
 control plane or a user plane with independent configuration and
 functions. The maximum supported size for NB-IoT of a PDCP SDU is
 1600 octets. The primary services and functions of the PDCP sublayer
 for NB-IoT for the user plane include:

 * Header compression and decompression using ROHC [RFC5795]

 * Transfer of user and control data to higher and lower layers

 * Duplicate detection of lower layer SDUs when re-establishing
 connection (when RLC with Acknowledge Mode in use for User Plane
 only)

 * Ciphering and deciphering

 * Timer-based SDU discard in uplink

A.2. Radio Link Protocol (RLC) [TS36322]

 RLC is a layer-2 protocol that operates between the UE and the base
 station (eNB). It supports the packet delivery from higher layers to
 MAC, creating packets transmitted over the air, optimizing the
 Transport Block utilization. RLC flow of data packets is
 unidirectional, and it is composed of a transmitter located in the
 transmission device and a receiver located in the destination device.
 Therefore, to configure bi-directional flows, two sets of entities,
 one in each direction (downlink and uplink), must be configured and
 effectively peered to each other. The peering allows the
 transmission of control packets (ex., status reports) between
 entities. RLC can be configured for data transfer in one of the
 following modes:

 * Transparent Mode (TM). RLC does not segment or concatenate SDUs
 from higher layers in this mode and does not include any header to
 the payload. RLC receives SDUs from upper layers when acting as a
 transmitter and transmits directly to its flow RLC receiver via
 lower layers. Similarly, a TM RLC receiver would only deliver
 without processing the packets to higher layers upon reception.

 * Unacknowledged Mode (UM). This mode provides support for
 segmentation and concatenation of payload. The RLC packet’s size
 depends on the indication given at a particular transmission

Ramos & Minaburo Expires 18 June 2023 [Page 18]

Internet-Draft LPWAN SCHC NB-IoT December 2022

 opportunity by the lower layer (MAC) and is octet-aligned. The
 packet delivery to the receiver does not include reliability
 support, and the loss of a segment from a packet means a complete
 packet loss. Also, in the case of lower layer retransmissions,
 there is no support for re-segmentation in case of change of the
 radio conditions triggering the selection of a smaller transport
 block. Additionally, it provides PDU duplication detection and
 discards, reordering of out-of-sequence, and loss detection.

 * Acknowledged Mode (AM). In addition to the same functions
 supported by UM, this mode also adds a moving windows-based
 reliability service on top of the lower layer services. It also
 supports re-segmentation, and it requires bidirectional
 communication to exchange acknowledgment reports called RLC Status
 Report and trigger retransmissions. This model also supports
 protocol error detection. The mode used depends on the operator
 configuration for the type of data to be transmitted. For
 example, data transmissions supporting mobility or requiring high
 reliability would be most likely configured using AM. Meanwhile,
 streaming and real-time data would be mapped to a UM
 configuration.

A.3. Medium Access Control (MAC) [TR36321]

 MAC provides a mapping between the higher layers abstraction called
 Logical Channels comprised by the previously described protocols to
 the Physical layer channels (transport channels). Additionally, MAC
 may multiplex packets from different Logical Channels and prioritize
 what to fit into one Transport Block if there is data and space
 available to maximize data transmission efficiency. MAC also
 provides error correction and reliability support through Hybrid
 Automatic Repeat reQuest (HARQ), transport format selection, and
 scheduling information reporting from the terminal to the network.
 MAC also adds the necessary padding and piggyback control elements
 when possible and the higher layers data.

Ramos & Minaburo Expires 18 June 2023 [Page 19]

Internet-Draft LPWAN SCHC NB-IoT December 2022

 <Max. 1600 bytes>
 +---+ +---+ +------+
 Application |AP1| |AP1| | AP2 |
 (IP/non-IP) |PDU| |PDU| | PDU |
 +---+ +---+ +------+
 | | | | | |
 PDCP +--------+ +-------- +-----------+
 |PDCP|AP1| |PDCP|AP1| |PDCP| AP2 |
 |Head|PDU| |Head|PDU| |Head| PDU |
 +--------+ +--------+ +--------+--\
 | | | | | | | | |\ ‘--------\
 +---------------------------+ | |(1)| ‘-------\(2)\
 RLC |RLC |PDCP|AP1|RLC |PDCP|AP1| +-------------+ +----|---+
 |Head|Head|PDU|Head|Head|PDU| |RLC |PDCP|AP2| |RLC |AP2|
 +-------------|-------------+ |Head|Head|PDU| |Head|PDU|
 | | | | | +---------|---+ +--------+
 | | | LCID1 | | / / / / /
 / / / _/ _// _/ _/ / LCID2 /
 | | | | | / _/ _/ / ___/
 | | | | || | | / /
 +--+ +-----------+---+
 MAC |MAC|RLC|PDCP|AP1|RLC|PDCP|AP1|RLC|PDCP|AP2| |MAC|RLC|AP2|Pad|
 |Hea|Hea|Hea |PDU|Hea|Hea |PDU|Hea|Hea |PDU| |Hea|Hea|PDU|din|
 |der|der|der | |der|der | |der|der | | |der|der| |g |
 +--+ +-----------+---+
 TB1 TB2

 (1) Segment One
 (2) Segment Two

 Figure 5: Example of User Plane packet encapsulation for two
 transport blocks

Appendix B. NB-IoT Data over NAS (DoNAS)

 The Access Stratum (AS) protocol stack used by DoNAS is specific
 because the radio network still needs to establish the security
 associations and reduce the protocol overhead, so the PDCP (Packet
 Data Convergence Protocol) is bypassed until AS security is
 activated. RLC (Radio Link Control protocol) uses, by default, the
 AM mode, but depending on the network’s features and the terminal, it
 may change to other modes by the network operator. For example, the
 transparent mode does not add any header or process the payload to
 reduce the overhead, but the MTU would be limited by the transport
 block used to transmit the data, which is a couple of thousand bits
 maximum. If UM (only Release 15 compatible terminals) is used, the
 RLC mechanisms of reliability are disabled, and only the reliability
 provided by the MAC layer by HARQ is available. In this case, the

Ramos & Minaburo Expires 18 June 2023 [Page 20]

Internet-Draft LPWAN SCHC NB-IoT December 2022

 protocol overhead might be smaller than the AM case because of the
 lack of status reporting but with the same support for segmentation
 up to 1600 bytes. NAS packets are encapsulated within an RRC (Radio
 Resource Control) [TS36331] message.

 Depending on the data type indication signaled (IP or non-IP data),
 the network allocates an IP address or establishes a direct
 forwarding path. DoNAS is regulated under rate control upon previous
 agreement, meaning that a maximum number of bits per unit of time is
 agreed upon per device subscription beforehand and configured in the
 device. The use of DoNAS is typically expected when a terminal in a
 power-saving state requires a short transmission and receiving an
 acknowledgment or short feedback from the network. Depending on the
 size of buffered data to transmit, the UE might be instructed to
 deploy the connected mode transmissions instead, limiting and
 controlling the DoNAS transmissions to predefined thresholds and a
 good resource optimization balance for the terminal the network. The
 support for mobility of DoNAS is present but produces additional
 overhead.

Ramos & Minaburo Expires 18 June 2023 [Page 21]

Internet-Draft LPWAN SCHC NB-IoT December 2022

 +--------+ +--------+ +--------+
 | | | | | | +-----------------+
 | UE | | C-BS | | C-SGN | |Roaming Scenarios|
 +----|---+ +--------+ +--------+ | +--------+ |
 | | | | | | |
 +----------------|------------|+ | | P-GW | |
 | Attach | | +--------+ |
 +------------------------------+ | | |
 | | | | | |
 +------|------------|--------+ | | | |
 |RRC Connection Establishment| | | | |
 |with NAS PDU transmission | | | | |
 |& Ack Rsp | | | | |
 +----------------------------+ | | | |
 | | | | | | |
 | |Initial UE | | | |
 | |message | | | |
 | |----------->| | | |
 | | | | | |
 | | +---------------------+| | |
 | | |Checks Integrity || | |
 | | |protection, decrypts || | |
 | | |data || | |
 | | +---------------------+| | |
 | | | Small data packet |
 | | |------------------------------->
 | | | Small data packet |
 | | |<-------------------------------
 | | +----------|---------+ | | |
 | | Integrity protection,| | | |
 | | encrypts data | | | |
 | | +--------------------+ | | |
 | | | | | |
 | |Downlink NAS| | | |
 | |message | | | |
 | |<-----------| | | |
 +-----------------------+ | | | |
 |Small Data Delivery, | | | | |
 |RRC connection release | | | | |
 +-----------------------+ | | | |
 | |
 | |
 +-----------------+

 Figure 6: DoNAS transmission sequence from an Uplink initiated access

Ramos & Minaburo Expires 18 June 2023 [Page 22]

Internet-Draft LPWAN SCHC NB-IoT December 2022

 +---+ +---+ +---+ +----+
 Application |AP1| |AP1| |AP2| |AP2 |
 (IP/non-IP) |PDU| |PDU| |PDU| |PDU |
 +---+ +---+ +---+ +----+
 | | | | | | | |
 | | | | | | | |
 | | | | | | | |
 | | | | | | | |
 | |/ / | \ | |
 NAS /RRC +--------+---|---+----+ +---------+
 |NAS/|AP1|AP1|AP2|NAS/| |NAS/|AP2 |
 |RRC |PDU|PDU|PDU|RRC | |RRC |PDU |
 +--------+-|-+---+----+ +---------|
 | | | | |
 | |\ | | |
 |<--Max. 1600 bytes-->|__ |_ |
 | | __ ___ _ \
 | | \ \ __ \
 | | \ | | _
 +---------------|+-----|----------+ \ \
 RLC |RLC | NAS/RRC ||RLC | NAS/RRC | +----|-------+
 |Head| PDU(1/2)||Head | PDU (2/2)| |RLC |NAS/RRC|
 +---------------++----------------+ |Head|PDU |
 | | | \ | +------------+
 | | LCID1 | \ | | /
 | | | \ \ | |
 | | | \ \ | |
 | | | \ \ \ |
 +----+----+----------++-----|----+---------++----+---------|---+
 MAC |MAC |RLC | RLC ||MAC |RLC | RLC ||MAC | RLC |Pad|
 |Head|Head| PAYLOAD ||Head |Head| PAYLOAD ||Head| PDU | |
 +----+----+----------++-----+----+---------++----+---------+---+
 TB1 TB2 TB3

 Figure 7: Example of User Plane packet encapsulation for Data
 over NAS

Appendix C. Acknowledgements

 The authors would like to thank (in alphabetic order): Carles Gomez,
 Antti Ratilainen, Tuomas Tirronen, Pascal Thubert, Eric Vyncke.

Authors’ Addresses

Ramos & Minaburo Expires 18 June 2023 [Page 23]

Internet-Draft LPWAN SCHC NB-IoT December 2022

 Edgar Ramos
 Ericsson
 Hirsalantie 11
 FI- 02420 Jorvas, Kirkkonummi
 Finland
 Email: edgar.ramos@ericsson.com

 Ana Minaburo
 Acklio
 1137A Avenue des Champs Blancs
 35510 Cesson-Sevigne Cedex
 France
 Email: ana@ackl.io

Ramos & Minaburo Expires 18 June 2023 [Page 24]

lpwan Working Group JC. Zuniga
Internet-Draft
Intended status: Standards Track C. Gomez
Expires: 7 August 2023 S. Aguilar
 Universitat Politecnica de Catalunya
 L. Toutain
 IMT-Atlantique
 S. Cespedes
 Concordia University
 D. Wistuba
 NIC Labs, Universidad de Chile
 J. Boite
 Unabiz (Sigfox)
 3 February 2023

 SCHC over Sigfox LPWAN
 draft-ietf-lpwan-schc-over-sigfox-23

Abstract

 The Static Context Header Compression and fragmentation (SCHC)
 specification (RFC8724) describes a generic framework for application
 header compression and fragmentation modes designed for Low Power
 Wide Area Network (LPWAN) technologies. The present document defines
 a profile of SCHC over Sigfox LPWAN, and provides optimal parameter
 values and modes of operation.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 7 August 2023.

Zuniga, et al. Expires 7 August 2023 [Page 1]

Internet-Draft SCHC over Sigfox LPWAN February 2023

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. SCHC over Sigfox . 4
 3.1. Network Architecture 4
 3.2. Uplink . 6
 3.3. Downlink . 7
 3.3.1. SCHC ACK on Downlink 8
 3.4. SCHC Rules . 9
 3.5. Fragmentation . 9
 3.5.1. Uplink Fragmentation 10
 3.5.2. Downlink Fragmentation 15
 3.6. SCHC over Sigfox F/R Message Formats 16
 3.6.1. Uplink No-ACK Mode: Single-byte SCHC Header 16
 3.6.2. Uplink ACK-on-Error Mode: Single-byte SCHC Header . . 18
 3.6.3. Uplink ACK-on-Error Mode: Two-byte SCHC Header Option
 1 . 20
 3.6.4. Uplink ACK-on-Error Mode: Two-byte SCHC Header Option
 2 . 22
 3.6.5. Downlink ACK-Always Mode: Single-byte SCHC Header . . 25
 3.7. Padding . 27
 4. Fragmentation Rules Examples 27
 4.1. Uplink Fragmentation Rules Examples 27
 4.2. Downlink Fragmentation Rules Example 29
 5. Fragmentation Sequence Examples 29
 5.1. Uplink No-ACK Examples 29
 5.2. Uplink ACK-on-Error Examples: Single-byte SCHC Header . . 30
 5.3. SCHC Abort Examples 36
 6. Security considerations 37
 7. IANA Considerations . 38
 8. Acknowledgements . 38
 9. References . 38
 9.1. Normative References 38

Zuniga, et al. Expires 7 August 2023 [Page 2]

Internet-Draft SCHC over Sigfox LPWAN February 2023

 9.2. Informative References 39
 Authors’ Addresses . 40

1. Introduction

 The Generic Framework for Static Context Header Compression and
 Fragmentation (SCHC) specification [RFC8724] can be used in
 conjunction with any of the four LPWAN technologies described in
 [RFC8376]. These LPWANs have similar characteristics such as star-
 oriented topologies, network architecture, connected devices with
 built-in applications, etc.

 SCHC offers a considerable degree of flexibility to accommodate all
 these LPWAN technologies. Even though there are a great number of
 similarities between them, some differences exist with respect to the
 transmission characteristics, payload sizes, etc. Hence, there are
 optimal parameters and modes of operation that can be used when SCHC
 is used in conjunction with a specific LPWAN technology.

 Sigfox is an LPWAN technology that offers energy-efficient
 connectivity for devices at a very low cost. Sigfox complete
 documentation can be found in [sigfox-docs]. Sigfox aims to provide
 a very wide area network composed of Base Stations that receive short
 uplink messages (up to 12 bytes in size) sent by devices over the
 long-range Sigfox radio protocol, as described in [RFC8376]. Base
 Stations then forward messages to the Sigfox Cloud infrastructure for
 further processing (e.g., to offer geolocation services) and final
 delivery to the customer. Base Stations also relay downlink messages
 (with a fixed 8 bytes size) sent by the Sigfox Cloud to the devices,
 downlink messages being generated when devices explicitly request for
 it with a flag in an uplink message. With SCHC functionalities, the
 Sigfox network offers more reliable communications (including
 recovery of lost messages) and is able to convey extended-size
 payloads (allowing for fragmentation/reassembly of messages)
 [sigfox-spec].

 This document describes the parameters, settings, and modes of
 operation to be used when SCHC is implemented over a Sigfox LPWAN.
 The set of parameters forms a "SCHC over Sigfox profile". The SCHC
 over Sigfox Profile is applicable to the Sigfox Radio specification
 versions up to v1.6/March 2022 [sigfox-spec] (support for future
 versions would have to be assessed).

Zuniga, et al. Expires 7 August 2023 [Page 3]

Internet-Draft SCHC over Sigfox LPWAN February 2023

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 It is assumed that the reader is familiar with the terms and
 mechanisms defined in [RFC8376] and in [RFC8724]. Also, it is
 assumed that the reader is familiar with Sigfox terminology
 [sigfox-spec].

3. SCHC over Sigfox

 The Generic SCHC Framework described in [RFC8724] takes advantage of
 previous knowledge of traffic flows existing in LPWAN applications to
 avoid context synchronization.

 Contexts need to be stored and pre-configured on both ends. This can
 be done either by using a provisioning protocol, by out-of-band
 means, or by pre-provisioning them (e.g., at manufacturing time).
 For example, the context exchange can be done by using
 NETCONF[RFC6241] with SSH, RESTCONF[RFC8040] with HTTPs, and
 CORECONF[I-D.ietf-core-comi] with CoAP[RFC7252] as provisioning
 protocols. The contexts can be encoded in XML under NETCONF, in
 JSON[RFC8259] under RESTCONF and in CBOR[RFC8949] under CORECONF.
 The way contexts are configured and stored on both ends is out of the
 scope of this document.

3.1. Network Architecture

 Figure 1 represents the architecture for Compression/Decompression
 (C/D) and Fragmentation/Reassembly (F/R) based on the terminology
 defined in [RFC8376], where the Radio Gateway (RGW) is a Sigfox Base
 Station and the Network Gateway (NGW) is the Sigfox cloud-based
 Network.

Zuniga, et al. Expires 7 August 2023 [Page 4]

Internet-Draft SCHC over Sigfox LPWAN February 2023

 Sigfox Device Application
 +----------------+ +--------------+
 | APP1 APP2 APP3 | |APP1 APP2 APP3|
 +----------------+ +--------------+
 | UDP | | | | UDP |
 | IPv6 | | | | IPv6 |
 +--------+ | | +--------+
 | SCHC C/D & F/R | | |
 | | | |
 +-------+--------+ +--------+-----+
 $.
 $ +---------+ +--------------+ +---------+ .
 $ | | | Network | | Network | .
 +˜˜ |Sigfox BS| | Gateway | | SCHC | .
 | (RGW) | === | (NGW) | ... |C/D & F/R|.....
 | | | Sigfox Cloud | | | IP-based
 +---------+ +--------------+ +---------+ Network
 ------- Uplink message ------>
 <------- Downlink message ------
 Legend:
 $, ˜ : Radio link
 = : Internal Sigfox Network
 . : External IP-based Network

 Figure 1: Network Architecture

 In the case of the global Sigfox Network, RGWs (or Base Stations) are
 distributed over multiple countries wherever the Sigfox LPWAN service
 is provided. The NGW (or cloud-based Sigfox Core Network) is a
 single entity that connects to all RGWs (Sigfox Base Stations) in the
 world, providing hence a global single star network topology.

 The Sigfox Device sends application packets that are compressed and/
 or fragmented by a SCHC C/D + F/R to reduce headers size and/or
 fragment the packet. The resulting SCHC Message is sent over a layer
 two (L2) Sigfox frame to the Sigfox Base Stations, which then
 forwards the SCHC Message to the Network Gateway (NGW). The NGW then
 delivers the SCHC Message and associated gathered metadata to the
 Network SCHC C/D + F/R.

Zuniga, et al. Expires 7 August 2023 [Page 5]

Internet-Draft SCHC over Sigfox LPWAN February 2023

 The Sigfox Network (NGW) communicates with the Network SCHC C/D + F/R
 for compression/decompression and/or for fragmentation/reassembly.
 The Network SCHC C/D + F/R shares the same set of rules as the Device
 SCHC C/D + F/R. The Network SCHC C/D + F/R can be collocated with
 the NGW or it could be located in a different place, as long as a
 tunnel or secured communication is established between the NGW and
 the SCHC C/D + F/R functions. After decompression and/or reassembly,
 the packet can be forwarded over the Internet to one (or several)
 LPWAN Application Server(s) (App).

 The SCHC C/D + F/R processes are bidirectional, so the same
 principles are applicable on both Uplink (UL) and Downlink (DL).

3.2. Uplink

 Uplink Sigfox transmissions occur in repetitions over different times
 and frequencies. Besides time and frequency diversities, the Sigfox
 network also provides spatial diversity, as potentially an Uplink
 message will be received by several base stations. The uplink
 message application payload size can be up to 12 bytes.

 Since all messages are self-contained and base stations forward all
 these messages back to the same Sigfox Network, multiple input copies
 can be combined at the NGW providing for extra reliability based on
 the triple diversity (i.e., time, space and frequency).

 A detailed description of the Sigfox Radio Protocol can be found in
 [sigfox-spec].

 Messages sent from the Device to the Network are delivered by the
 Sigfox network (NGW) to the Network SCHC C/D + F/R through a
 callback/API with the following information:

 * Device ID

 * Message Sequence Number

 * Message Payload

 * Message Timestamp

 * Device Geolocation (optional)

 * Received Signal Strength Indicator (RSSI) (optional)

 * Device Temperature (optional)

 * Device Battery Voltage (optional)

Zuniga, et al. Expires 7 August 2023 [Page 6]

Internet-Draft SCHC over Sigfox LPWAN February 2023

 The Device ID is a globally unique identifier assigned to the Device,
 which is included in the Sigfox header of every message. The Message
 Sequence Number is a monotonically increasing number identifying the
 specific transmission of this Uplink message, and it is also part of
 the Sigfox header. The Message Payload corresponds to the payload
 that the Device has sent in the Uplink transmission. Battery
 Voltage, temperature and RSSI values are sent in the confirmation
 control message, which is mandatorially sent by the device after the
 successful reception of a downlink message (see [sigfox-callbacks]
 Section 5.2).

 The Message Timestamp, Device Geolocation, RSSI, Device Temperature
 and Device Battery Voltage are metadata parameters provided by the
 Network.

 A detailed description of the Sigfox callbacks/APIs can be found in
 [sigfox-callbacks].

 Only messages that have passed the L2 Cyclic Redundancy Check (CRC)
 at network reception are delivered by the Sigfox Network to the
 Network SCHC C/D + F/R.

 The L2 Word Size used by Sigfox is 1 byte (8 bits).

 Figure 2 shows a SCHC Message sent over Sigfox, where the SCHC
 Message could be a full SCHC Packet (e.g., compressed) or a SCHC
 Fragment (e.g., a piece of a bigger SCHC Packet).

 | Sigfox Header | Sigfox payload |
 +---------------+---------------- +
 | SCHC message |

 Figure 2: SCHC Message in Sigfox

3.3. Downlink

 Downlink transmissions are Device-driven and can only take place
 following an Uplink communication that so indicates. Hence, a Sigfox
 Device explicitly indicates its intention to receive a Downlink
 message (with a size of 8 bytes) using a Downlink request flag when
 sending the preceding Uplink message to the network. The Downlink
 request flag is part of the Sigfox protocol headers. After
 completing the Uplink transmission, the Device opens a fixed window
 for Downlink reception. The delay and duration of the reception
 opportunity window have fixed values. If there is a Downlink message
 to be sent for this given Device (e.g., either a response to the
 Uplink message or queued information waiting to be transmitted), the
 network transmits this message to the Device during the reception

Zuniga, et al. Expires 7 August 2023 [Page 7]

Internet-Draft SCHC over Sigfox LPWAN February 2023

 window. If no message is received by the Device after the reception
 opportunity window has elapsed, the Device closes the reception
 window opportunity and gets back to the normal mode (e.g., continue
 Uplink transmissions, sleep, stand-by, etc.)

 When a Downlink message is sent to a Device, a reception
 acknowledgement is generated by the Device and sent back to the
 Network through the Sigfox radio protocol and reported in the Sigfox
 Network backend.

 A detailed description of the Sigfox Radio Protocol can be found in
 [sigfox-spec] and a detailed description of the Sigfox callbacks/APIs
 can be found in [sigfox-callbacks]. A Downlink request flag can be
 included in the information exchange between the Sigfox Network and
 Network SCHC.

3.3.1. SCHC ACK on Downlink

 As explained previously, Downlink transmissions are Device-driven and
 can only take place following a specific Uplink transmission that
 indicates and allows a following Downlink opportunity. For this
 reason, when SCHC bidirectional services are used (e.g., Ack-on-Error
 fragmentation mode) the SCHC protocol implementation needs to
 consider the times when a Downlink message (e.g., SCHC ACK) can be
 sent and/or received.

 For the Uplink ACK-on-Error fragmentation mode, a Downlink
 opportunity MUST be indicated by the last fragment of every window,
 which is signalled by a specific value of the Fragment Compressed
 Number (FCN) value, i.e., FCN = All-0, or FCN = All-1. The FCN is
 the tile index in a specific window. The combination of the FCN and
 the window number uniquely identifies a SCHC Fragment as explained in
 [RFC8724]. The Device sends the fragments in sequence and, after
 transmitting the FCN = All-0 or FCN = All-1, it opens up a reception
 opportunity. The Network SCHC can then decide to respond at that
 opportunity (or wait for a further one) with a SCHC ACK indicating
 that there are missing fragments from the current or previous
 windows. If there is no SCHC ACK to be sent, or if the network
 decides to wait for a further Downlink transmission opportunity, then
 no Downlink transmission takes place at that opportunity and after a
 timeout the Uplink transmissions continue. Intermediate SCHC
 fragments with FCN different from All-0 or All-1 MUST NOT use the
 Downlink request flag to request a SCHC ACK.

Zuniga, et al. Expires 7 August 2023 [Page 8]

Internet-Draft SCHC over Sigfox LPWAN February 2023

3.4. SCHC Rules

 The RuleID MUST be included in the SCHC header. The total number of
 rules to be used affects directly the RuleID field size, and
 therefore the total size of the fragmentation header. For this
 reason, it is RECOMMENDED to keep the number of rules that are
 defined for a specific device to the minimum possible. Large RuleID
 sizes (and thus larger fragmentation header) is acceptable for
 devices without significant energy constraints (e.g., a sensor that
 is powered by the electricity grid).

 RuleIDs can be used to differentiate data traffic classes (e.g., QoS,
 control vs. data, etc.), and data sessions. They can also be used to
 interleave simultaneous fragmentation sessions between a Device and
 the Network.

3.5. Fragmentation

 The SCHC specification [RFC8724] defines a generic fragmentation
 functionality that allows sending data packets or files larger than
 the maximum size of a Sigfox payload. The functionality also defines
 a mechanism to send reliably multiple messages, by allowing to resend
 selectively any lost fragments.

 The SCHC fragmentation supports several modes of operation. These
 modes have different advantages and disadvantages depending on the
 specifics of the underlying LPWAN technology and application Use
 Case. This section describes how the SCHC fragmentation
 functionality should optimally be implemented when used over a Sigfox
 LPWAN for the most typical Use Case applications.

 As described in section 8.2.3 of [RFC8724], the integrity of the
 fragmentation-reassembly process of a SCHC Packet MUST be checked at
 the receiver end. Since only Uplink/Downlink messages/fragments that
 have passed the Sigfox CRC-check are delivered to the Network/Sigfox
 Device SCHC C/D + F/R, integrity can be guaranteed when no
 consecutive messages are missing from the sequence and all FCN
 bitmaps are complete. With this functionality in mind, and in order
 to save protocol and processing overhead, the use of a Reassembly
 Check Sequence (RCS) as described in Section 3.5.1.5 MUST be used.

Zuniga, et al. Expires 7 August 2023 [Page 9]

Internet-Draft SCHC over Sigfox LPWAN February 2023

3.5.1. Uplink Fragmentation

 Sigfox Uplink transmissions are completely asynchronous and take
 place in any random frequency of the allowed Uplink bandwidth
 allocation. In addition, devices may go to deep sleep mode, and then
 wake up and transmit whenever there is a need to send information to
 the network, as there is no need to perform any network attachment,
 synchronization, or other procedure before transmitting a data
 packet.

 Since Uplink transmissions are asynchronous, a SCHC fragment can be
 transmitted at any given time by the Device. Sigfox Uplink messages
 are fixed in size, and as described in [RFC8376] they can carry 0-12
 bytes payload. Hence, a single SCHC Tile size per fragmentation mode
 can be defined so that every Sigfox message always carries one SCHC
 Tile.

 When the ACK-on-Error mode is used for Uplink fragmentation, the SCHC
 Compound ACK defined in [I-D.ietf-lpwan-schc-compound-ack]) MUST be
 used in the Downlink responses.

3.5.1.1. SCHC Sender-Abort

 As defined in [RFC8724], a SCHC Sender-Abort can be triggered when
 the number of SCHC ACK REQ attempts is greater than or equal to
 MAX_ACK_REQUESTS. In the case of SCHC over Sigfox, a SCHC Sender-
 Abort MUST be sent if the number of repeated All-1s sent in sequence,
 without a Compound ACK reception inbetween, is greater than or equal
 to MAX_ACK_REQUESTS.

3.5.1.2. SCHC Receiver-Abort

 As defined in [RFC8724], a SCHC Receiver-Abort is triggered when the
 receiver has no RuleID and DTag pairs available for a new session.
 In the case of this profile a SCHC Receiver-Abort MUST be sent if,
 for a single device, all the RuleIDs are being processed by the
 receiver (i.e., have an active session) at a certain time and a new
 one is requested, or if the RuleID of the fragment is not valid.

 A SCHC Receiver-Abort MUST be triggered when the Inactivity Timer
 expires.

 MAX_ACK_REQUESTS can be increased when facing high error rates.

 Although a SCHC Receiver-Abort can be triggered at any point in time,
 a SCHC Receiver-Abort Downlink message MUST only be sent when there
 is a Downlink transmission opportunity.

Zuniga, et al. Expires 7 August 2023 [Page 10]

Internet-Draft SCHC over Sigfox LPWAN February 2023

3.5.1.3. Single-byte SCHC Header for Uplink Fragmentation

3.5.1.3.1. Uplink No-ACK Mode: Single-byte SCHC Header

 Single-byte SCHC Header No-ACK mode MUST be used for transmitting
 short, non-critical packets that require fragmentation and do not
 require full reliability. This mode can be used by Uplink-only
 devices that do not support Downlink communications, or by
 bidirectional devices when they send non-critical data. Note that
 sending non-critical data by using a reliable fragmentation mode
 (which is only possible for bidirectional devices) may incur
 unnecessary overhead.

 Since there are no multiple windows in the No-ACK mode, the W bit is
 not present. However, it MUST use the FCN field to indicate the size
 of the data packet. In this sense, the data packet would need to be
 split into X fragments and, similarly to the other fragmentation
 modes, the first transmitted fragment would need to be marked with
 FCN = X-1. Consecutive fragments MUST be marked with decreasing FCN
 values, having the last fragment marked with FCN = (All-1). Hence,
 even though the No-ACK mode does not allow recovering missing
 fragments, it allows indicating implicitly the size of the expected
 packet to the Network and hence detect at the receiver side whether
 all fragments have been received or not. In case the FCN field is
 not used to indicate the size of the data packet, the Network can
 detect whether all fragments have been received or not by using the
 integrity check.

 When using the Single-byte SCHC Header for Uplink Fragmentation, the
 Fragmentation Header MUST be of 8 bit size, and the Fragment header
 is composed as follows:

 * RuleID size: 3 bits

 * DTag size (T): 0 bit

 * Fragment Compressed Number (FCN) size (N): 5 bits

 Other F/R parameters MUST be configured as follows:

 * As per [RFC8724], in the No-ACK mode the W (window) field is not
 present.

 * Regular tile size: 11 bytes

 * All-1 tile size: 0 to 10 bytes

Zuniga, et al. Expires 7 August 2023 [Page 11]

Internet-Draft SCHC over Sigfox LPWAN February 2023

 * Inactivity Timer: Application-dependent. The default value is 12
 hours.

 * RCS size: 5 bits

 The maximum SCHC Packet size is 340 bytes.

 Section 3.6.1 presents SCHC Fragment format examples and Section 5.1
 provides fragmentation examples, using Single-byte SCHC Header No-ACK
 mode.

3.5.1.3.2. Uplink ACK-on-Error Mode: Single-byte SCHC Header

 ACK-on-Error with single-byte header MUST be used for short to medium
 size packets that need to be sent reliably. ACK-on-Error is optimal
 for reliable SCHC Packet transmission over Sigfox transmissions,
 since it leads to a reduced number of ACKs in the lower capacity
 Downlink channel. Also, Downlink messages can be sent asynchronously
 and opportunistically. In contrast, ACK-Always would not minimize
 the number of ACKs, and No-ACK would not allow reliable transmission.

 Allowing transmission of packets/files up to 300 bytes long, the SCHC
 Uplink Fragmentation Header size is 8 bits in size and is composed as
 follows:

 * RuleID size: 3 bits

 * DTag size (T): 0 bit

 * Window index (W) size (M): 2 bits

 * Fragment Compressed Number (FCN) size (N): 3 bits

 Other F/R parameters MUST be configured as follows:

 * MAX_ACK_REQUESTS: 5

 * WINDOW_SIZE: 7 (i.e., the maximum FCN value is 0b110)

 * Regular tile size: 11 bytes

 * All-1 tile size: 0 to 10 bytes

 * Retransmission Timer: Application-dependent. The default value is
 12 hours.

 * Inactivity Timer: Application-dependent. The default value is 12
 hours.

Zuniga, et al. Expires 7 August 2023 [Page 12]

Internet-Draft SCHC over Sigfox LPWAN February 2023

 * RCS size: 3 bits

 Section 3.6.2 presents SCHC Fragment format examples and Section 5.2
 provides fragmentation examples, using ACK-on-Error with single-byte
 header.

3.5.1.4. Two-byte SCHC Header for Uplink Fragmentation

 ACK-on-Error with two-byte header MUST be used for medium-large size
 packets that need to be sent reliably. ACK-on-Error is optimal for
 reliable SCHC Packet transmission over Sigfox, since it leads to a
 reduced number of ACKs in the lower capacity Downlink channel. Also,
 Downlink messages can be sent asynchronously and opportunistically.
 In contrast, ACK-Always would not minimize the number of ACKs, and
 No-ACK would not allow reliable transmission.

3.5.1.4.1. Uplink ACK-on-Error Mode: Two-byte SCHC Header Option 1

 In order to allow transmission of medium-large packets/files up to
 480 bytes long, the SCHC Uplink Fragmentation Header size is 16 bits
 in size and composed as follows:

 * RuleID size is: 6 bits

 * DTag size (T) is: 0 bit

 * Window index (W) size (M): 2 bits

 * Fragment Compressed Number (FCN) size (N): 4 bits.

 * RCS size: 4 bits

 Other F/R parameters MUST be configured as follows:

 * MAX_ACK_REQUESTS: 5

 * WINDOW_SIZE: 12 (with a maximum value of FCN=0b1011)

 * Regular tile size: 10 bytes

 * All-1 tile size: 1 to 10 bytes

 * Retransmission Timer: Application-dependent. The default value is
 12 hours.

 * Inactivity Timer: Application-dependent. The default value is 12
 hours.

Zuniga, et al. Expires 7 August 2023 [Page 13]

Internet-Draft SCHC over Sigfox LPWAN February 2023

 Note that WINDOW_SIZE is limited to 12. This because, 4 windows (M =
 2) with bitmaps of size 12 can be fitted in a single SCHC Compound
 ACK.

 Section 3.6.3 presents SCHC Fragment format examples, using ACK-on-
 Error with two-byte header Option 1.

3.5.1.4.2. Uplink ACK-on-Error Mode: Two-byte SCHC Header Option 2

 In order to allow transmission of very large packets/files up to 2400
 bytes long, the SCHC Uplink Fragmentation Header size is 16 bits in
 size and composed as follows:

 * RuleID size is: 8 bits

 * DTag size (T) is: 0 bit

 * Window index (W) size (M): 3 bits

 * Fragment Compressed Number (FCN) size (N): 5 bits.

 * RCS size: 5 bits

 Other F/R parameters MUST be configured as follows:

 * MAX_ACK_REQUESTS: 5

 * WINDOW_SIZE: 31 (with a maximum value of FCN=0b11110)

 * Regular tile size: 10 bytes

 * All-1 tile size: 0 to 9 bytes

 * Retransmission Timer: Application-dependent. The default value is
 12 hours.

 * Inactivity Timer: Application-dependent. The default value is 12
 hours.

 Section 3.6.4 presents SCHC Fragment format examples, using ACK-on-
 Error with two-byte header Option 1.

Zuniga, et al. Expires 7 August 2023 [Page 14]

Internet-Draft SCHC over Sigfox LPWAN February 2023

3.5.1.5. All-1 SCHC Fragment and RCS behaviour

 For ACK-on-Error, as defined in [RFC8724], it is expected that the
 last SCHC fragment of the last window will always be delivered with
 an All-1 FCN. Since this last window may not be full (i.e., it may
 be composed of fewer than WINDOW_SIZE fragments), an All-1 fragment
 may follow a value of FCN higher than 1 (0b01). In this case, the
 receiver cannot determine from the FCN values alone whether there are
 or not any missing fragments right before the All-1 fragment.

 For Rules where the number of fragments in the last window is
 unknown, an RCS field MUST be used, indicating the number of
 fragments in the last window, including the All-1. With this RCS
 value, the receiver can detect if there are missing fragments before
 the All-1 and hence construct the corresponding SCHC ACK Bitmap
 accordingly, and send it in response to the All-1.

3.5.2. Downlink Fragmentation

 In some LPWAN technologies, as part of energy-saving techniques,
 Downlink transmission is only possible immediately after an Uplink
 transmission. This allows the device to go in a very deep sleep mode
 and preserve battery, without the need to listen to any information
 from the network. This is the case for Sigfox-enabled devices, which
 can only listen to Downlink communications after performing an Uplink
 transmission and requesting a Downlink.

 When there are fragments to be transmitted in the Downlink, an Uplink
 message is required to trigger the Downlink communication. In order
 to avoid potentially high delay for fragmented datagram transmission
 in the Downlink, the fragment receiver MAY perform an Uplink
 transmission as soon as possible after reception of a Downlink
 fragment that is not the last one. Such Uplink transmission MAY be
 triggered by sending a SCHC message, such as a SCHC ACK. However,
 other data messages can equally be used to trigger Downlink
 communications. The fragment receiver MUST send an Uplink
 transmission (e.g., empty message) and request a Downlink every 24
 hours when no SCHC session is started. The use or not of this Uplink
 transmission (and the transmission rate, if used) will depend on
 application specific requirements.

 Sigfox Downlink messages are fixed in size, and as described in
 [RFC8376] they can carry up to 8 bytes payload. Hence, a single SCHC
 Tile size per mode can be defined so that every Sigfox message always
 carries one SCHC Tile.

Zuniga, et al. Expires 7 August 2023 [Page 15]

Internet-Draft SCHC over Sigfox LPWAN February 2023

 For reliable Downlink fragment transmission, the ACK-Always mode
 SHOULD be used. Note that ACK-on-Error does not guarantee Uplink
 feedback (since no SCHC ACK will be sent when no errors occur in a
 window), and No-ACK would not allow reliable transmission.

 The SCHC Downlink Fragmentation Header size is 8 bits in size and is
 composed as follows:

 * RuleID size: 3 bits

 * DTag size (T): 0 bit

 * Window index (W) size (M) is: 0 bit

 * Fragment Compressed Number (FCN) size (N): 5 bits

 Other F/R parameters MUST be configured as follows:

 * MAX_ACK_REQUESTS: 5

 * WINDOW_SIZE: 31 (with a maximum value of FCN=0b11110)

 * Regular tile size: 7 bytes

 * All-1 tile size: 0 to 6 bytes

 * Retransmission Timer: Application-dependent. The default value is
 12 hours.

 * Inactivity Timer: Application-dependent. The default value is 12
 hours.

 * RCS size: 5 bits

3.6. SCHC over Sigfox F/R Message Formats

 This section depicts the different formats of SCHC Fragment, SCHC ACK
 (including the SCHC Compound ACK defined in
 [I-D.ietf-lpwan-schc-compound-ack]), and SCHC Abort used in SCHC over
 Sigfox.

3.6.1. Uplink No-ACK Mode: Single-byte SCHC Header

Zuniga, et al. Expires 7 August 2023 [Page 16]

Internet-Draft SCHC over Sigfox LPWAN February 2023

3.6.1.1. Regular SCHC Fragment

 Figure 3 shows an example of a regular SCHC fragment for all
 fragments except the last one. As tiles are of 11 bytes, padding
 MUST NOT be added. The penultimate tile of a SCHC Packet is of
 regular size.

 |- SCHC Fragment Header -|
 +------------------------+---------+
 | RuleID | FCN | Payload |
 +------------+-----------+---------+
 | 3 bits | 5 bits | 88 bits |

 Figure 3: Regular SCHC Fragment format for all fragments except
 the last one

3.6.1.2. All-1 SCHC Fragment

 Figure 4 shows an example of the All-1 message. The All-1 message
 MAY contain the last tile of the SCHC Packet. Padding MUST NOT be
 added, as the resulting size is L2-word-multiple.

 The All-1 messages Fragment Header includes a 5-bit RCS, and 3 bits
 are added as padding to complete two bytes. The payload size of the
 All-1 message ranges from 0 to 80 bits.

 |-------- SCHC Fragment Header -------|
 +--------------------------------------+--------------+
 | RuleID | FCN=ALL-1 | RCS | b’000 | Payload |
 +--------+-----------+--------+--------+--------------+
 | 3 bits | 5 bits | 5 bits | 3 bits | 0 to 80 bits |

 Figure 4: All-1 SCHC Message format with last tile

 As per [RFC8724] the All-1 must be distinguishable from a SCHC
 Sender-Abort message (with same RuleID, and N values). The All-1 MAY
 have the last tile of the SCHC Packet. The SCHC Sender-Abort message
 header size is 1 byte, with no padding bits.

 For the All-1 message to be distinguishable from the Sender-Abort
 message, the Sender-Abort message MUST be of 1 byte (only header with
 no padding). This way, the minimum size of the All-1 is 2 bytes, and
 the Sender-Abort message is 1 byte.

3.6.1.3. SCHC Sender-Abort Message format

Zuniga, et al. Expires 7 August 2023 [Page 17]

Internet-Draft SCHC over Sigfox LPWAN February 2023

 Sender-Abort
 |------ Header ------|
 +--------------------+
 | RuleID | FCN=ALL-1 |
 +--------+-----------+
 | 3 bits | 5 bits |

 Figure 5: SCHC Sender-Abort message format

3.6.2. Uplink ACK-on-Error Mode: Single-byte SCHC Header

3.6.2.1. Regular SCHC Fragment

 Figure 6 shows an example of a regular SCHC fragment for all
 fragments except the last one. As tiles are of 11 bytes, padding
 MUST NOT be added.

 |-- SCHC Fragment Header --|
 +--------------------------+---------+
 | RuleID | W | FCN | Payload |
 +--------+--------+--------+---------+
 | 3 bits | 2 bits | 3 bits | 88 bits |

 Figure 6: Regular SCHC Fragment format for all fragments except
 the last one

 The SCHC ACK REQ MUST NOT be used, instead the All-1 SCHC Fragment
 MUST be used to request a SCHC ACK from the receiver (Network SCHC).
 As per [RFC8724], the All-0 message is distinguishable from the SCHC
 ACK REQ (All-1 message). The penultimate tile of a SCHC Packet is of
 regular size.

3.6.2.2. All-1 SCHC Fragment

 Figure 7 shows an example of the All-1 message. The All-1 message
 MAY contain the last tile of the SCHC Packet. Padding MUST NOT be
 added, as the resulting size is L2-word-multiple.

 |------------- SCHC Fragment Header -----------|
 +---+--------------+
 | RuleID | W | FCN=ALL-1 | RCS |b’00000 | Payload |
 +--------+--------+-----------+--------+--------+--------------+
 | 3 bits | 2 bits | 3 bits | 3 bits | 5 bits | 0 to 80 bits |

 Figure 7: All-1 SCHC Message format with last tile

Zuniga, et al. Expires 7 August 2023 [Page 18]

Internet-Draft SCHC over Sigfox LPWAN February 2023

 As per [RFC8724] the All-1 must be distinguishable from a SCHC
 Sender-Abort message (with same RuleID, M, and N values). The All-1
 MAY have the last tile of the SCHC Packet. The SCHC Sender-Abort
 message header size is 1 byte, with no padding bits.

 For the All-1 message to be distinguishable from the Sender-Abort
 message, the Sender-Abort message MUST be of 1 byte (only header with
 no padding). This way, the minimum size of the All-1 is 2 bytes, and
 the Sender-Abort message is 1 byte.

3.6.2.3. SCHC ACK Format

 Figure 8 shows the SCHC ACK format when all fragments have been
 correctly received (C=1). Padding MUST be added to complete the
 64-bit Sigfox Downlink frame payload size.

 |---- SCHC ACK Header ----|
 +-------------------------+---------+
 | RuleID | W | C=b’1 | b’0-pad |
 +--------+--------+-------+---------+
 | 3 bits | 2 bits | 1 bit | 58 bits |

 Figure 8: SCHC Success ACK message format

 In case SCHC fragment losses are found in any of the windows of the
 SCHC Packet (C=0), the SCHC Compound ACK defined in
 [I-D.ietf-lpwan-schc-compound-ack] MUST be used. The SCHC Compound
 ACK message format is shown in Figure 9.

 |--- SCHC ACK Header ---|- W=w1 -|...|----- W=wi ------|
 +------+--------+-------+--------+...+--------+--------+------+-------+
 |RuleID| W=b’w1 | C=b’0 | Bitmap |...| W=b’wi | Bitmap | b’00 |b’0-pad|
 +------+--------+-------+--------+...+--------+--------+------+-------+
 |3 bits| 2 bits | 1 bit | 7 bits |...| 2 bits | 7 bits |2 bits|

 Losses are found in windows W = w1,...,wi; where w1<w2<...<wi

 Figure 9: SCHC Compound ACK message format

3.6.2.4. SCHC Sender-Abort Message format

 |---- Sender-Abort Header ----|
 +-----------------------------+
 | RuleID | W=b’11 | FCN=ALL-1 |
 +--------+--------+-----------+
 | 3 bits | 2 bits | 3 bits |

 Figure 10: SCHC Sender-Abort message format

Zuniga, et al. Expires 7 August 2023 [Page 19]

Internet-Draft SCHC over Sigfox LPWAN February 2023

3.6.2.5. SCHC Receiver-Abort Message format

 |- Receiver-Abort Header -|
 +---------------------------------+-----------------+---------+
 | RuleID | W=b’11 | C=b’1 | b’11 | 0xFF (all 1’s) | b’0-pad |
 +--------+--------+-------+-------+-----------------+---------+
 | 3 bits | 2 bits | 1 bit | 2 bit | 8 bit | 48 bits |
 next L2 Word boundary ->| <-- L2 Word --> |

 Figure 11: SCHC Receiver-Abort message format

3.6.3. Uplink ACK-on-Error Mode: Two-byte SCHC Header Option 1

3.6.3.1. Regular SCHC Fragment

 Figure 12 shows an example of a regular SCHC fragment for all
 fragments except the last one. The penultimate tile of a SCHC Packet
 is of the regular size.

 |------- SCHC Fragment Header ------|
 +-----------------------------------+---------+
 | RuleID | W | FCN | b’0000 | Payload |
 +--------+--------+--------+--------+---------+
 | 6 bits | 2 bits | 4 bits | 4 bits | 80 bits |

 Figure 12: Regular SCHC Fragment format for all fragments except
 the last one

 The SCHC ACK REQ MUST NOT be used, instead the All-1 SCHC Fragment
 MUST be used to request a SCHC ACK from the receiver (Network SCHC).
 As per [RFC8724], the All-0 message is distinguishable from the SCHC
 ACK REQ (All-1 message).

3.6.3.2. All-1 SCHC Fragment

 Figure 13 shows an example of the All-1 message. The All-1 message
 MUST contain the last tile of the SCHC Packet.

 The All-1 message Fragment Header contains an RCS of 4 bits to
 complete the two-byte size. The size of the last tile ranges from 8
 to 80 bits.

 |--------- SCHC Fragment Header -------|
 +--------------------------------------+--------------+
 | RuleID | W | FCN=ALL-1 | RCS | Payload |
 +--------+--------+-----------+--------+--------------+
 | 6 bits | 2 bits | 4 bits | 4 bits | 8 to 80 bits |

Zuniga, et al. Expires 7 August 2023 [Page 20]

Internet-Draft SCHC over Sigfox LPWAN February 2023

 Figure 13: All-1 SCHC message format with last tile

 As per [RFC8724] the All-1 must be distinguishable from the SCHC
 Sender-Abort message (with same RuleID, M and N values). The All-1
 MUST have the last tile of the SCHC Packet, that MUST be of at least
 1 byte. The SCHC Sender-Abort message header size is 2 byte, with no
 padding bits.

 For the All-1 message to be distinguishable from the Sender-Abort
 message, the Sender-Abort message MUST be of 2 byte (only header with
 no padding). This way, the minimum size of the All-1 is 3 bytes, and
 the Sender-Abort message is 2 bytes.

3.6.3.3. SCHC ACK Format

 Figure 14 shows the SCHC ACK format when all fragments have been
 correctly received (C=1). Padding MUST be added to complete the
 64-bit Sigfox Downlink frame payload size.

 |---- SCHC ACK Header ----|
 +-------------------------+---------+
 | RuleID | W | C=b’1 | b’0-pad |
 +--------+--------+-------+---------+
 | 6 bits | 2 bits | 1 bit | 55 bits |

 Figure 14: SCHC Success ACK message format

 The SCHC Compound ACK message MUST be used in case SCHC fragment
 losses are found in any window of the SCHC Packet (C=0). The SCHC
 Compound ACK message format is shown in Figure 15. The SCHC Compound
 ACK can report up to 4 windows with losses. as shown in Figure 16.

 When sent in the Downlink, the SCHC Compound ACK MUST be 0 padded
 (Padding bits must be 0) to complement the 64 bits required by the
 Sigfox payload.

 |--- SCHC ACK Header ---|- W=w1 -|...|---- W=wi -----|
 +--------+------+-------+--------+...+------+--------+------+-------+
 | RuleID |W=b’w1| C=b’0 | Bitmap |...|W=b’wi| Bitmap | b’00 |b’0-pad|
 +--------+------+-------+--------+...+------+--------+------+-------+
 | 6 bits |2 bits| 1 bit | 12 bits|...|2 bits| 12 bits|2 bits|

 Losses are found in windows W = w1,...,wi; where w1<w2<...<wi

 Figure 15: SCHC Compound ACK message format

Zuniga, et al. Expires 7 August 2023 [Page 21]

Internet-Draft SCHC over Sigfox LPWAN February 2023

 |- SCHC ACK Header -|- W=0 -| |- W=1 -|...
 +------+------+-----+-------+------+-------+...
 |RuleID|W=b’00|C=b’0|Bitmap |W=b’01|Bitmap |...
 +------+------+-----+-------+------+-------+...
 |6 bits|2 bits|1 bit|12 bits|2 bits|12 bits|...

 ... |- W=2 -| |- W=3 -|
 ...+------+-------+------+-------+---+
 ...|W=b’10|Bitmap |W=b’11|Bitmap |b’0|
 ...+------+-------+------+-------+---+
 ...|2 bits|12 bits|2 bits|12 bits|

 Losses are found in windows W = w1,...,wi; where w1<w2<...<wi

 Figure 16: SCHC Compound ACK message format example with losses
 in all windows

3.6.3.4. SCHC Sender-Abort Message Format

 |---- Sender-Abort Header ----|
 +-----------------------------+
 | RuleID | W | FCN=ALL-1 |
 +--------+--------+-----------+
 | 6 bits | 2 bits | 4 bits |

 Figure 17: SCHC Sender-Abort message format

3.6.3.5. SCHC Receiver-Abort Message Format

 |- Receiver-Abort Header -|
 +---------------------------------+-----------------+---------+
 | RuleID | W=b’11 | C=b’1 | 0x7F | 0xFF (all 1’s) | b’0-pad |
 +--------+--------+-------+-------+-----------------+---------+
 | 6 bits | 2 bits | 1 bit | 7 bit | 8 bit | 40 bits |
 next L2 Word boundary ->| <-- L2 Word --> |

 Figure 18: SCHC Receiver-Abort message format

3.6.4. Uplink ACK-on-Error Mode: Two-byte SCHC Header Option 2

3.6.4.1. Regular SCHC Fragment

 Figure 19 shows an example of a regular SCHC fragment for all
 fragments except the last one. The penultimate tile of a SCHC Packet
 is of the regular size.

Zuniga, et al. Expires 7 August 2023 [Page 22]

Internet-Draft SCHC over Sigfox LPWAN February 2023

 |-- SCHC Fragment Header --|
 +--------------------------+---------+
 | RuleID | W | FCN | Payload |
 +--------+--------+--------+---------+
 | 8 bits | 3 bits | 5 bits | 80 bits |

 Figure 19: Regular SCHC Fragment format for all fragments except
 the last one

 The SCHC ACK REQ MUST NOT be used, instead the All-1 SCHC Fragment
 MUST be used to request a SCHC ACK from the receiver (Network SCHC).
 As per [RFC8724], the All-0 message is distinguishable from the SCHC
 ACK REQ (All-1 message).

3.6.4.2. All-1 SCHC Fragment

 Figure 20 shows an example of the All-1 message. The All-1 message
 MAY contain the last tile of the SCHC Packet.

 The All-1 message Fragment Header contains an RCS of 5 bits, and 3
 padding bits to complete a 3-byte Fragment Header. The size of the
 last tile, if present, ranges from 8 to 72 bits.

 |-------------- SCHC Fragment Header -----------|
 +---+--------------+
 | RuleID | W | FCN=ALL-1 | RCS | b’000 | Payload |
 +--------+--------+-----------+--------+--------+--------------+
 | 8 bits | 3 bits | 5 bits | 5 bits | 3 bits | 8 to 72 bits |

 Figure 20: All-1 SCHC message format with last tile

 As per [RFC8724] the All-1 must be distinguishable from the SCHC
 Sender-Abort message (with same RuleID, M and N values). The SCHC
 Sender-Abort message header size is 2 byte, with no padding bits.

 For the All-1 message to be distinguishable from the Sender-Abort
 message, the Sender-Abort message MUST be of 2 byte (only header with
 no padding). This way, the minimum size of the All-1 is 3 bytes, and
 the Sender-Abort message is 2 bytes.

3.6.4.3. SCHC ACK Format

 Figure 21 shows the SCHC ACK format when all fragments have been
 correctly received (C=1). Padding MUST be added to complete the
 64-bit Sigfox Downlink frame payload size.

Zuniga, et al. Expires 7 August 2023 [Page 23]

Internet-Draft SCHC over Sigfox LPWAN February 2023

 |---- SCHC ACK Header ----|
 +-------------------------+---------+
 | RuleID | W | C=b’1 | b’0-pad |
 +--------+--------+-------+---------+
 | 8 bits | 3 bits | 1 bit | 52 bits |

 Figure 21: SCHC Success ACK message format

 The SCHC Compound ACK message MUST be used in case SCHC fragment
 losses are found in any window of the SCHC Packet (C=0). The SCHC
 Compound ACK message format is shown in Figure 22. The SCHC Compound
 ACK can report up to 3 windows with losses.

 When sent in the Downlink, the SCHC Compound ACK MUST be 0 padded
 (Padding bits must be 0) to complement the 64 bits required by the
 Sigfox payload.

 |-- SCHC ACK Header --|- W=w1 -|...|---- W=wi -----|
 +------+------+-------+--------+...+------+--------+------+-------+
 |RuleID|W=b’w1| C=b’0 | Bitmap |...|W=b’wi| Bitmap | 000 |b’0-pad|
 +------+------+-------+--------+...+------+--------+------+-------+
 |8 bits|3 bits| 1 bit | 31 bits|...|3 bits| 31 bits|3 bits|

 Losses are found in windows W = w1,...,wi; where w1<w2<...<wi

 Figure 22: SCHC Compound ACK message format

3.6.4.4. SCHC Sender-Abort Message Format

 |---- Sender-Abort Header ----|
 +-----------------------------+
 | RuleID | W | FCN=ALL-1 |
 +--------+--------+-----------+
 | 8 bits | 3 bits | 5 bits |

 Figure 23: SCHC Sender-Abort message format

3.6.4.5. SCHC Receiver-Abort Message Format

 |-- Receiver-Abort Header -|
 +-----------------------------------+-----------------+---------+
 | RuleID | W=b’111 | C=b’1 | b’1111 | 0xFF (all 1’s) | b’0-pad |
 +--------+---------+-------+--------+-----------------+---------+
 | 8 bits | 3 bits | 1 bit | 4 bit | 8 bit | 40 bits |
 next L2 Word boundary ->| <-- L2 Word --> |

 Figure 24: SCHC Receiver-Abort message format

Zuniga, et al. Expires 7 August 2023 [Page 24]

Internet-Draft SCHC over Sigfox LPWAN February 2023

3.6.5. Downlink ACK-Always Mode: Single-byte SCHC Header

3.6.5.1. Regular SCHC Fragment

 Figure 25 shows an example of a regular SCHC fragment for all
 fragments except the last one. The penultimate tile of a SCHC Packet
 is of the regular size.

 SCHC Fragment
 |-- Header --|
 +-----------------+---------+
 | RuleID | FCN | Payload |
 +--------+--------+---------+
 | 3 bits | 5 bits | 56 bits |

 Figure 25: Regular SCHC Fragment format for all fragments except
 the last one

 The SCHC ACK MUST NOT be used, instead the All-1 SCHC Fragment MUST
 be used to request a SCHC ACK from the receiver. As per [RFC8724],
 the All-0 message is distinguishable from the SCHC ACK REQ (All-1
 message).

3.6.5.2. All-1 SCHC Fragment

 Figure 26 shows an example of the All-1 message. The All-1 message
 MAY contain the last tile of the SCHC Packet.

 The All-1 message Fragment Header contains an RCS of 5 bits, and 3
 padding bits to complete a 2-byte Fragment Header. The size of the
 last tile, if present, ranges from 8 to 48 bits.

 |--------- SCHC Fragment Header -------|
 +--------------------------------------+--------------+
 | RuleID | FCN=ALL-1 | RCS | b’000 | Payload |
 +--------+-----------+--------+--------+--------------+
 | 3 bits | 5 bits | 5 bits | 3 bits | 0 to 48 bits |

 Figure 26: All-1 SCHC message format with last tile

 As per [RFC8724] the All-1 must be distinguishable from the SCHC
 Sender-Abort message (with same RuleID and N values). The SCHC
 Sender-Abort message header size is 1 byte, with no padding bits.

 For the All-1 message to be distinguishable from the Sender-Abort
 message, the Sender-Abort message MUST be of 1 byte (only header with
 no padding). This way, the minimum size of the All-1 is 2 bytes, and
 the Sender-Abort message is 1 bytes.

Zuniga, et al. Expires 7 August 2023 [Page 25]

Internet-Draft SCHC over Sigfox LPWAN February 2023

3.6.5.3. SCHC ACK Format

 Figure 27 shows the SCHC ACK format when all fragments have been
 correctly received (C=1). Padding MUST be added to complete 2 bytes.

 SCHC ACK
 |-- Header --|
 +----------------+---------+
 | RuleID | C=b’1 | b’0-pad |
 +--------+-------+---------+
 | 3 bits | 1 bit | 4 bits |

 Figure 27: SCHC Success ACK message format

 The SCHC ACK message format is shown in Figure 28.

 |---- SCHC ACK Header ----|
 +--------+-------+--------+---------+
 | RuleID | C=b’0 | Bitmap | b’0-pad |
 +--------+-------+--------+---------+
 | 3 bits | 1 bit | 31 bits| 5 bits |

 Figure 28: SCHC Compound ACK message format

3.6.5.4. SCHC Sender-Abort Message Format

 Sender-Abort
 |---- Header ----|
 +--------------------+
 | RuleID | FCN=ALL-1 |
 +--------+-----------+
 | 3 bits | 5 bits |

 Figure 29: SCHC Sender-Abort message format

3.6.5.5. SCHC Receiver-Abort Message Format

 Receiver-Abort
 |--- Header ---|
 +----------------+--------+-----------------+
 | RuleID | C=b’1 | b’1111 | 0xFF (all 1’s) |
 +--------+-------+--------+-----------------+
 | 3 bits | 1 bit | 4 bit | 8 bit |

 Figure 30: SCHC Receiver-Abort message format

Zuniga, et al. Expires 7 August 2023 [Page 26]

Internet-Draft SCHC over Sigfox LPWAN February 2023

3.7. Padding

 The Sigfox payload fields have different characteristics in Uplink
 and Downlink.

 Uplink messages can contain a payload size from 0 to 12 bytes. The
 Sigfox radio protocol allows sending zero bits, one single bit of
 information for binary applications (e.g., status), or an integer
 number of bytes. Therefore, for 2 or more bits of payload it is
 required to add padding to the next integer number of bytes. The
 reason for this flexibility is to optimize transmission time and
 hence save battery consumption at the device.

 Downlink frames on the other hand have a fixed length. The payload
 length MUST be 64 bits (i.e., 8 bytes). Hence, if less information
 bits are to be transmitted, padding MUST be used with bits equal to
 0. The receiver MUST remove the added padding bits before the SCHC
 reassembly process.

4. Fragmentation Rules Examples

 This section provides an example of RuleIDs configuration for
 interoperability between the F/R modes presented in this document.
 Note that the RuleID space for Uplink F/R is different than the one
 for Downlink F/R, therefore this section is divided in two
 subsections: Rules for Uplink fragmentation and Rules for Downlink
 fragmentation.

 For Uplink F/R, multiple header length were described in Section 3.5.
 All of them are part of the SCHC over Sigfox Profile, and offer not
 only low protocol overhead for small payloads (single byte header)
 but also extensibility to transport larger payloads with more
 overhead (2 bytes header, option 1 and 2). The usage of the RuleID
 space for each header length is an implementation choice, but we
 provide an example of it in the following section. This illustrates
 implementation choices made in order to 1) identify the different
 header length, and 2) finally parse the RuleID field to identify the
 RuleID value and execute the associated treatment.

4.1. Uplink Fragmentation Rules Examples

 The RuleID field for Uplink F/R modes have different sizes depending
 on the header length. In order to identify the header length and
 then the value of the RuleID, the RuleID field is interpreted as
 follows:

 * The RuleID field is the first one to be parsed in the SCHC header,
 starting from the leftmost bits.

Zuniga, et al. Expires 7 August 2023 [Page 27]

Internet-Draft SCHC over Sigfox LPWAN February 2023

 * For Single-byte SCHC Header F/R modes, it is expected a RuleID
 field of 3 bits:

 - if the first 3 leftmost bits have a value different than
 0b’111, then it signals a Single-byte SCHC Header F/R mode,

 - if their value is 0b’111, then it signals a Two-byte SCHC
 Header F/R mode.

 * For Single-byte SCHC Header F/R modes:

 - there are 7 RuleIDs available (with values from 0b’000-0b’110),
 the RuleID with value 0b’111 is reserved to indicate a Two-byte
 SCHC Header.

 - This set of rules is called "standard rules", and it is used to
 implement Single-byte SCHC header modes.

 - Each RuleID is associated with a set of properties defining if
 Uplink F/R is used and which Uplink F/R mode is used. As an
 example, the RuleID 0b’000 is mapped onto Uplink No-ACK Mode:
 Single-byte SCHC Header, and the RuleIDs 0b’001 and 0b’002 are
 mapped onto Uplink ACK-on-Error Mode: Single-byte SCHC Header
 (2 RuleIDs to allow for SCHC Packet interleaving).

 * For Two-byte SCHC Header F/R modes at least 6 bits for the RuleID
 field are expected:

 - the 3 first leftmost bits are always 0b’111,

 o if the following 3 bits have a different value than 0b’111,
 then it signals the Two-byte SCHC Header Option 1,

 o if the following 3 bits are 0b’111, then it signals the Two-
 byte SCHC Header Option 2.

 - For the Two-byte SCHC Header Option 1, there are 7 RuleIDs
 available (0b’111000-0b’111110), 0b’111111 being reserved to
 indicate the Two-byte SCHC Header Option 2. This set of rules
 is called "extended rules", and it is used to implement the
 Uplink ACK-on-Error Mode: Two-byte SCHC Header Option 1.

Zuniga, et al. Expires 7 August 2023 [Page 28]

Internet-Draft SCHC over Sigfox LPWAN February 2023

 - For the Two-byte SCHC Header Option 2, there are 2 additional
 bits to parse as the RuleID, so 4 RuleIDs available
 (0b’11111100-0b’11111111). This set of rules is used to cover
 specific cases that previous RuleIDs do not cover. As an
 example, RuleID 0b’00111111 is used to transport uncompressed
 IPv6 packets using the Uplink ACK-on-Error Mode: Two-byte SCHC
 Header Option 2.

4.2. Downlink Fragmentation Rules Example

 * For the Downlink ACK-Always Mode: Single-byte SCHC Header, RuleIDs
 can get values in ranges from 0b’000 to 0b’111.

5. Fragmentation Sequence Examples

 In this section, some sequence diagrams depicting messages exchanges
 for different fragmentation modes and use cases are shown. In the
 examples, ’Seq’ indicates the Sigfox Sequence Number of the frame
 carrying a fragment.

5.1. Uplink No-ACK Examples

 The FCN field indicates the size of the data packet. The first
 fragment is marked with FCN = X-1, where X is the number of fragments
 the message is split into. All fragments are marked with decreasing
 FCN values. Last packet fragment is marked with the FCN = All-1
 (1111).

 Case No losses - All fragments are sent and received successfully.

 Sender Receiver
 |-------FCN=6,Seq=1-------->|
 |-------FCN=5,Seq=2-------->|
 |-------FCN=4,Seq=3-------->|
 |-------FCN=3,Seq=4-------->|
 |-------FCN=2,Seq=5-------->|
 |-------FCN=1,Seq=6-------->|
 |-------FCN=15,Seq=7------->| All fragments received
 (End)

 Figure 31: Uplink No-ACK No-Losses

 When the first SCHC fragment is received, the Receiver can calculate
 the total number of SCHC fragments that the SCHC Packet is composed
 of. For example, if the first fragment is numbered with FCN=6, the
 receiver can expect six more messages/fragments (i.e., with FCN going
 from 5 downwards, and the last fragment with an FCN equal to 15).

Zuniga, et al. Expires 7 August 2023 [Page 29]

Internet-Draft SCHC over Sigfox LPWAN February 2023

 Case losses on any fragment except the first.

 Sender Receiver
 |-------FCN=6,Seq=1-------->|
 |-------FCN=5,Seq=2----X |
 |-------FCN=4,Seq=3-------->|
 |-------FCN=3,Seq=4-------->|
 |-------FCN=2,Seq=5-------->|
 |-------FCN=1,Seq=6-------->|
 |-------FCN=15,Seq=7------->| Missing Fragment Unable to reassemble
 (End)

 Figure 32: Uplink No-ACK Losses (scenario 1)

5.2. Uplink ACK-on-Error Examples: Single-byte SCHC Header

 The single-byte SCHC header ACK-on-Error mode allows sending up to 28
 fragments and packet sizes up to 300 bytes. The SCHC fragments may
 be delivered asynchronously and Downlink ACK can be sent
 opportunistically.

 Case No losses

 The Downlink flag must be enabled in the sender Uplink message to
 allow a Downlink message from the receiver. The Downlink Enable in
 the figures shows where the sender MUST enable the Downlink, and wait
 for an ACK.

 Sender Receiver
 |-----W=0,FCN=6,Seq=1----->|
 |-----W=0,FCN=5,Seq=2----->|
 |-----W=0,FCN=4,Seq=3----->|
 |-----W=0,FCN=3,Seq=4----->|
 |-----W=0,FCN=2,Seq=5----->|
 |-----W=0,FCN=1,Seq=6----->|
 DL Enable |-----W=0,FCN=0,Seq=7----->|
 (no ACK)
 |-----W=1,FCN=6,Seq=8----->|
 |-----W=1,FCN=5,Seq=9----->|
 |-----W=1,FCN=4,Seq=10---->|
 DL Enable |-----W=1,FCN=7,Seq=11---->| All fragments received
 |<- Compound ACK,W=1,C=1 --| C=1
 (End)

 Figure 33: Uplink ACK-on-Error No-Losses

Zuniga, et al. Expires 7 August 2023 [Page 30]

Internet-Draft SCHC over Sigfox LPWAN February 2023

 Case Fragment losses in first window

 In this case, fragments are lost in the first window (W=0). After
 the first All-0 message arrives, the Receiver leverages the
 opportunity and sends a SCHC ACK with the corresponding bitmap and
 C=0.

 After the loss fragments from the first window (W=0) are resent, the
 sender continues transmitting the fragments of the following window
 (W=1) without opening a reception opportunity. Finally, the All-1
 fragment is sent, the Downlink is enabled, and the SCHC ACK is
 received with C=1. Note that the SCHC Compound ACK also uses a
 Sequence Number.

 Sender Receiver
 |-----W=0,FCN=6,Seq=1----->|
 |-----W=0,FCN=5,Seq=2--X |
 |-----W=0,FCN=4,Seq=3----->|
 |-----W=0,FCN=3,Seq=4----->|
 |-----W=0,FCN=2,Seq=5--X | __
 |-----W=0,FCN=1,Seq=6----->| | W=0
 DL Enable |-----W=0,FCN=0,Seq=7----->| Missing Fragments<- FCN=5,Seq=2
 |<- Compound ACK,W=0,C=0 --| Bitmap:1011011 | FCN=2,Seq=5
 |-----W=0,FCN=5,Seq=9----->| --
 |-----W=0,FCN=2,Seq=10---->|
 |-----W=1,FCN=6,Seq=11---->|
 |-----W=1,FCN=5,Seq=12---->|
 |-----W=1,FCN=4,Seq=13---->|
 DL Enable |-----W=1,FCN=7,Seq=14---->| All fragments received
 |<-Compound ACK,W=1,C=1 ---| C=1
 (End)

 Figure 34: Uplink ACK-on-Error Losses on First Window

 Case Fragment All-0 lost in first window (W=0)

 In this example, the All-0 of the first window (W=0) is lost.
 Therefore, the Receiver waits for the next All-0 message of
 intermediate windows, or All-1 message of last window to generate the
 corresponding SCHC ACK, notifying the absence of the All-0 of window
 0.

 The sender resends the missing All-0 messages (with any other missing
 fragment from window 0) without opening a reception opportunity.

Zuniga, et al. Expires 7 August 2023 [Page 31]

Internet-Draft SCHC over Sigfox LPWAN February 2023

 Sender Receiver
 |-----W=0,FCN=6,Seq=1----->|
 |-----W=0,FCN=5,Seq=2----->|
 |-----W=0,FCN=4,Seq=3----->|
 |-----W=0,FCN=3,Seq=4----->|
 |-----W=0,FCN=2,Seq=5----->|
 |-----W=0,FCN=1,Seq=6----->| DL Enable
 |-----W=0,FCN=0,Seq=7--X |
 (no ACK)
 |-----W=1,FCN=6,Seq=8----->|
 |-----W=1,FCN=5,Seq=9----->| __
 |-----W=1,FCN=4,Seq=10---->| |W=0
 DL Enable |-----W=1,FCN=7,Seq=11---->| Missing Fragment<- FCN=0,Seq=7
 |<-Compound ACK,W=0,C=0 ---| Bitmap:1111110 |__
 |-----W=0,FCN=0,Seq=13---->| All fragments received
 DL Enable |-----W=1,FCN=7,Seq=14---->|
 |<-Compound ACK,W=1,C=1 ---| C=1
 (End)

 Figure 35: Uplink ACK-on-Error All-0 Lost on First Window

 In the following diagram, besides the All-0 there are other fragment
 losses in the first window (W=0).

 Sender Receiver
 |-----W=0,FCN=6,Seq=1----->|
 |-----W=0,FCN=5,Seq=2--X |
 |-----W=0,FCN=4,Seq=3----->|
 |-----W=0,FCN=3,Seq=4--X |
 |-----W=0,FCN=2,Seq=5----->|
 |-----W=0,FCN=1,Seq=6----->|
 DL Enable |-----W=0,FCN=0,Seq=7--X |
 (no ACK)
 |-----W=1,FCN=6,Seq=8----->|
 |-----W=1,FCN=5,Seq=9----->| __
 |-----W=1,FCN=4,Seq=10---->| |W=0
 DL Enable |-----W=1,FCN=7,Seq=11---->| Missing Fragment<- FCN=5,Seq=2
 |<--Compound ACK,W=0,C=0 --| Bitmap:1010110 |FCN=3,Seq=4
 |-----W=0,FCN=5,Seq=13---->| |FCN=0,Seq=7
 |-----W=0,FCN=3,Seq=14---->| --
 |-----W=0,FCN=0,Seq=15---->| All fragments received
 DL Enable |-----W=1,FCN=7,Seq=16---->|
 |<-Compound ACK,W=1,C=1 ---| C=1
 (End)

Zuniga, et al. Expires 7 August 2023 [Page 32]

Internet-Draft SCHC over Sigfox LPWAN February 2023

 Figure 36: Uplink ACK-on-Error All-0 and other Fragments Lost on
 First Window

 In the next examples, there are fragment losses in both the first
 (W=0) and second (W=1) windows. The retransmission cycles after the
 All-1 is sent (i.e., not in intermediate windows) MUST always finish
 with an All-1, as it serves as an ACK Request message to confirm the
 correct reception of the retransmitted fragments.

 Sender Receiver
 |-----W=0,FCN=6,Seq=1----->|
 |-----W=0,FCN=5,Seq=2--X |
 |-----W=0,FCN=4,Seq=3----->|
 |-----W=0,FCN=3,Seq=4--X | __
 |-----W=0,FCN=2,Seq=5----->| |W=0
 |-----W=0,FCN=1,Seq=6----->| |FCN=5,Seq=2
 DL enable |-----W=0,FCN=0,Seq=7--X | |FCN=3,Seq=4
 (no ACK) |FCN=0,Seq=7
 |-----W=1,FCN=6,Seq=8--X | |W=1
 |-----W=1,FCN=5,Seq=9----->| |FCN=6,Seq=8
 |-----W=1,FCN=4,Seq=10-X | |FCN=4,Seq=10
 DL enable |-----W=1,FCN=7,Seq=11---->| Missing Fragment<-|__
 |<-Compound ACK,W=0,1,C=0--| Bitmap W=0:1010110
 |-----W=0,FCN=5,Seq=13---->| W=1:0100001
 |-----W=0,FCN=3,Seq=14---->|
 |-----W=0,FCN=0,Seq=15---->|
 |-----W=1,FCN=6,Seq=16---->|
 |-----W=1,FCN=4,Seq=17---->| All fragments received
 DL enable |-----W=1,FCN=7,Seq=18---->|
 |<-Compound ACK,W=1,C=1----| C=1
 (End)

 Figure 37: Uplink ACK-on-Error All-0 and other Fragments Lost on
 First and Second Windows (1)

 Similar case as above, but with fewer fragments in the second window
 (W=1)

Zuniga, et al. Expires 7 August 2023 [Page 33]

Internet-Draft SCHC over Sigfox LPWAN February 2023

 Sender Receiver
 |-----W=0,FCN=6,Seq=1----->|
 |-----W=0,FCN=5,Seq=2--X |
 |-----W=0,FCN=4,Seq=3----->|
 |-----W=0,FCN=3,Seq=4--X |
 |-----W=0,FCN=2,Seq=5----->| __
 |-----W=0,FCN=1,Seq=6----->| |W=0
 DL enable |-----W=0,FCN=0,Seq=7--X | |FCN=5,Seq=2
 (no ACK) |FCN=3,Seq=4
 |-----W=1,FCN=6,Seq=8--X | |FCN=0,Seq=7
 DL enable |-----W=1,FCN=7,Seq=9----->| Missing Fragment--> W=1
 |<-Compound ACK,W=0,1, C=0-| Bitmap W=0:1010110,|FCN=6,Seq=8
 |-----W=0,FCN=5,Seq=11---->| W=1:0000001 |__
 |-----W=0,FCN=3,Seq=12---->|
 |-----W=0,FCN=0,Seq=13---->|
 |-----W=1,FCN=6,Seq=14---->| All fragments received
 DL enable |-----W=1,FCN=7,Seq=15---->|
 |<-Compound ACK, W=1,C=1---| C=1
 (End)

 Figure 38: Uplink ACK-on-Error All-0 and other Fragments Lost on
 First and Second Windows (2)

 Case SCHC ACK is lost

 SCHC over Sigfox does not implement the SCHC ACK REQ message.
 Instead, it uses the SCHC All-1 message to request a SCHC ACK, when
 required.

Zuniga, et al. Expires 7 August 2023 [Page 34]

Internet-Draft SCHC over Sigfox LPWAN February 2023

 Sender Receiver
 |-----W=0,FCN=6,Seq=1----->|
 |-----W=0,FCN=5,Seq=2----->|
 |-----W=0,FCN=4,Seq=3----->|
 |-----W=0,FCN=3,Seq=4----->|
 |-----W=0,FCN=2,Seq=5----->|
 |-----W=0,FCN=1,Seq=6----->|
 DL Enable |-----W=0,FCN=0,Seq=7----->|
 (no ACK)
 |-----W=1,FCN=6,Seq=8----->|
 |-----W=1,FCN=5,Seq=9----->|
 |-----W=1,FCN=4,Seq=10---->|
 DL Enable |-----W=1,FCN=7,Seq=11---->| All fragments received
 | X--Compound ACK,W=1,C=1 -| C=1
 DL Enable |-----W=1,FCN=7,Seq=13---->| RESEND ACK
 |<-Compound ACK,W=1,C=1 ---| C=1
 (End)

 Figure 39: Uplink ACK-on-Error ACK Lost

 Case SCHC Compound ACK at the end

 In this example, SCHC Fragment losses are found in both window 0 and
 1. However, the sender does not send a SCHC ACK after the All-0 of
 window 0. Instead, it sends a SCHC Compound ACK notifying losses of
 both windows.

 Sender Receiver
 |-----W=0,FCN=6,Seq=1----->|
 |-----W=0,FCN=5,Seq=2--X |
 |-----W=0,FCN=4,Seq=3----->|
 |-----W=0,FCN=3,Seq=4--X |
 |-----W=0,FCN=2,Seq=5----->|
 |-----W=0,FCN=1,Seq=6----->| __
 DL enable |-----W=0,FCN=0,Seq=7----->| Waits for |W=0
 (no ACK) next DL opportunity |FCN=5,Seq=2
 |-----W=1,FCN=6,Seq=8--X | |FCN=3,Seq=4
 DL enable |-----W=1,FCN=7,Seq=9----->| Missing Fragment<-- W=1
 |<-Compound ACK,W=0,1, C=0-| Bitmap W=0:1010110 |FCN=6,Seq=8
 |-----W=0,FCN=5,Seq=11---->| W=1:0000001 --
 |-----W=0,FCN=3,Seq=12---->|
 |-----W=1,FCN=6,Seq=13---->| All fragments received
 DL enable |-----W=1,FCN=7,Seq=14---->|
 |<-Compound ACK, W=1, C=1 -| C=1
 (End)

Zuniga, et al. Expires 7 August 2023 [Page 35]

Internet-Draft SCHC over Sigfox LPWAN February 2023

 Figure 40: Uplink ACK-on-Error Fragments Lost on First and Second
 Windows with one Compound ACK

 The number of times the same SCHC ACK message will be retransmitted
 is determined by the MAX_ACK_REQUESTS.

5.3. SCHC Abort Examples

 Case SCHC Sender-Abort

 The sender may need to send a Sender-Abort to stop the current
 communication. This may happen, for example, if the All-1 has been
 sent MAX_ACK_REQUESTS times.

 Sender Receiver
 |-----W=0,FCN=6,Seq=1----->|
 |-----W=0,FCN=5,Seq=2----->|
 |-----W=0,FCN=4,Seq=3----->|
 |-----W=0,FCN=3,Seq=4----->|
 |-----W=0,FCN=2,Seq=5----->|
 |-----W=0,FCN=1,Seq=6----->|
 DL Enable |-----W=0,FCN=0,Seq=7----->|
 (no ACK)
 |-----W=1,FCN=6,Seq=8----->|
 |-----W=1,FCN=5,Seq=9----->|
 |-----W=1,FCN=4,Seq=10---->|
 DL Enable |-----W=1,FCN=7,Seq=11---->| All fragments received
 | X--Compound ACK,W=1,C=1 -| C=1
 DL Enable |-----W=1,FCN=7,Seq=13---->| RESEND ACK (1)
 | X--Compound ACK,W=1,C=1 -| C=1
 DL Enable |-----W=1,FCN=7,Seq=15---->| RESEND ACK (2)
 | X--Compound ACK,W=1,C=1 -| C=1
 DL Enable |-----W=1,FCN=7,Seq=17---->| RESEND ACK (3)
 | X--Compound ACK,W=1,C=1 -| C=1
 DL Enable |-----W=1,FCN=7,Seq=18---->| RESEND ACK (4)
 | X--Compound ACK,W=1,C=1 -| C=1
 DL Enable |-----W=1,FCN=7,Seq=19---->| RESEND ACK (5)
 | X--Compound ACK,W=1,C=1 -| C=1
 DL Enable |----Sender-Abort,Seq=20-->| exit with error condition
 (End)

 Figure 41: Uplink ACK-on-Error Sender-Abort

 Case Receiver-Abort

Zuniga, et al. Expires 7 August 2023 [Page 36]

Internet-Draft SCHC over Sigfox LPWAN February 2023

 The receiver may need to send a Receiver-Abort to stop the current
 communication. This message can only be sent after a Downlink
 enable.

 Sender Receiver
 |-----W=0,FCN=6,Seq=1----->|
 |-----W=0,FCN=5,Seq=2----->|
 |-----W=0,FCN=4,Seq=3----->|
 |-----W=0,FCN=3,Seq=4----->|
 |-----W=0,FCN=2,Seq=5----->|
 |-----W=0,FCN=1,Seq=6----->|
 DL Enable |-----W=0,FCN=0,Seq=7----->|
 |<------ RECV ABORT ------| under-resourced
 (Error)

 Figure 42: Uplink ACK-on-Error Receiver-Abort

6. Security considerations

 The radio protocol authenticates and ensures the integrity of each
 message. This is achieved by using a unique device ID and an AES-128
 based message authentication code, ensuring that the message has been
 generated and sent by the device (see [sigfox-spec] Section 3.8) or
 network (see [sigfox-spec] Section 4.3) with the ID claimed in the
 message [sigfox-spec].

 Application data can be encrypted at the application layer or not,
 depending on the criticality of the use case. This flexibility
 allows providing a balance between cost and effort vs. risk. AES-128
 in counter mode is used for encryption. Cryptographic keys are
 independent for each device. These keys are associated with the
 device ID and separate integrity and encryption keys are pre-
 provisioned. An encryption key is only provisioned if
 confidentiality is to be used (see [sigfox-spec] Section 5.3. Note
 that further documentation is available at Sigfox upon request).

 The radio protocol has protections against replay attacks, and the
 cloud-based core network provides firewalling protection against
 undesired incoming communications [sigfox-spec].

 The previously described security mechanisms do not guarantee an E2E
 security between the Device SCHC C/D + F/R and the Network SCHC C/D +
 F/R: potential security threats described in [RFC8724] are applicable
 to the profile specified in this document.

Zuniga, et al. Expires 7 August 2023 [Page 37]

Internet-Draft SCHC over Sigfox LPWAN February 2023

 In some circumstances, sending device location information is
 privacy-sensitive. The Device Geolocation parameter provided by the
 Network is optional, therefore it can be omitted to protect this
 aspect of the device privacy.

7. IANA Considerations

 This document has no IANA actions.

8. Acknowledgements

 Carles Gomez has been funded in part by the Spanish Government
 through the Jose Castillejo CAS15/00336 grant, the TEC2016-79988-P
 grant, and the PID2019-106808RA-I00 grant, and by Secretaria
 d’Universitats i Recerca del Departament d’Empresa i Coneixement de
 la Generalitat de Catalunya 2017 through grant SGR 376.

 Sergio Aguilar has been funded by the ERDF and the Spanish Government
 through project TEC2016-79988-P and project PID2019-106808RA-I00,
 AEI/FEDER, EU.

 Sandra Cespedes has been funded in part by the ANID Chile Project
 FONDECYT Regular 1201893 and Basal Project FB0008.

 Diego Wistuba has been funded by the ANID Chile Project FONDECYT
 Regular 1201893.

 The authors would like to thank Ana Minaburo, Clement Mannequin,
 Rafael Vidal, Julien Boite, Renaud Marty, and Antonis Platis for
 their useful comments and implementation design considerations.

9. References

9.1. Normative References

 [I-D.ietf-lpwan-schc-compound-ack]
 Zuniga, JC., Gomez, C., Aguilar, S., Toutain, L.,
 Cespedes, S., and D. Wistuba, "SCHC Compound ACK", Work in
 Progress, Internet-Draft, draft-ietf-lpwan-schc-compound-
 ack-10, January 2023, <httpsout-://www.ietf.org/internet-
 drafts/draft-ietf-lpwan-schc-compound-ack-10.txt>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

Zuniga, et al. Expires 7 August 2023 [Page 38]

Internet-Draft SCHC over Sigfox LPWAN February 2023

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8724] Minaburo, A., Toutain, L., Gomez, C., Barthel, D., and JC.
 Zuniga, "SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation", RFC 8724,
 DOI 10.17487/RFC8724, April 2020,
 <https://www.rfc-editor.org/info/rfc8724>.

 [sigfox-spec]
 Sigfox, "Sigfox Radio Specifications",
 <https://build.sigfox.com/sigfox-device-radio-
 specifications>.

9.2. Informative References

 [I-D.ietf-core-comi]
 Veillette, M., Stok, P. V. D., Pelov, A., Bierman, A., and
 I. Petrov, "CoAP Management Interface (CORECONF)", Work in
 Progress, Internet-Draft, draft-ietf-core-comi-11, 17
 January 2021, <https://www.ietf.org/archive/id/draft-ietf-
 core-comi-11.txt>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [RFC8376] Farrell, S., Ed., "Low-Power Wide Area Network (LPWAN)
 Overview", RFC 8376, DOI 10.17487/RFC8376, May 2018,
 <https://www.rfc-editor.org/info/rfc8376>.

Zuniga, et al. Expires 7 August 2023 [Page 39]

Internet-Draft SCHC over Sigfox LPWAN February 2023

 [RFC8949] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", STD 94, RFC 8949,
 DOI 10.17487/RFC8949, December 2020,
 <https://www.rfc-editor.org/info/rfc8949>.

 [sigfox-callbacks]
 Sigfox, "Sigfox Callbacks",
 <https://support.sigfox.com/docs/callbacks-documentation>.

 [sigfox-docs]
 Sigfox, "Sigfox Documentation",
 <https://support.sigfox.com/docs>.

Authors’ Addresses

 Juan Carlos Zuniga
 Montreal QC
 Canada
 Email: j.c.zuniga@ieee.org

 Carles Gomez
 Universitat Politecnica de Catalunya
 C/Esteve Terradas, 7
 08860 Castelldefels
 Spain
 Email: carles.gomez@upc.edu

 Sergio Aguilar
 Universitat Politecnica de Catalunya
 C/Esteve Terradas, 7
 08860 Castelldefels
 Spain
 Email: sergio.aguilar.romero@upc.edu

 Laurent Toutain
 IMT-Atlantique
 2 rue de la Chataigneraie
 CS 17607
 35576 Cesson-Sevigne Cedex
 France
 Email: Laurent.Toutain@imt-atlantique.fr

Zuniga, et al. Expires 7 August 2023 [Page 40]

Internet-Draft SCHC over Sigfox LPWAN February 2023

 Sandra Cespedes
 Concordia University
 1455 De Maisonneuve Blvd. W.
 Montreal QC, H3G 1M8
 Canada
 Email: sandra.cespedes@concordia.ca

 Diego Wistuba
 NIC Labs, Universidad de Chile
 Av. Almte. Blanco Encalada 1975
 Santiago
 Chile
 Email: wistuba@niclabs.cl

 Julien Boite
 Unabiz (Sigfox)
 Labege
 France
 Email: julien.boite@unabiz.com
 URI: https://www.sigfox.com/

Zuniga, et al. Expires 7 August 2023 [Page 41]

lpwan Working Group A. Minaburo
Internet-Draft Acklio
Intended status: Standards Track L. Toutain
Expires: 12 April 2023 Institut MINES TELECOM; IMT Atlantique
 9 October 2022

 Data Model for Static Context Header Compression (SCHC)
 draft-ietf-lpwan-schc-yang-data-model-21

Abstract

 This document describes a YANG data model for the SCHC (Static
 Context Header Compression) compression and fragmentation rules.

 This document formalizes the description of the rules for better
 interoperability between SCHC instances either to exchange a set of
 rules or to modify some rules parameters.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 12 April 2023.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Minaburo & Toutain Expires 12 April 2023 [Page 1]

Internet-Draft LPWAN SCHC YANG module October 2022

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 2. Requirements Language . 3
 3. Terminology . 3
 4. SCHC rules . 5
 4.1. Compression Rules . 5
 4.2. Identifier generation 6
 4.3. Convention for Field Identifier 7
 4.4. Convention for Field length 8
 4.5. Convention for Field position 8
 4.6. Convention for Direction Indicator 8
 4.7. Convention for Target Value 9
 4.8. Convention for Matching Operator 9
 4.8.1. Matching Operator arguments 9
 4.9. Convention for Compression Decompression Actions 9
 4.9.1. Compression Decompression Action arguments 9
 4.10. Fragmentation rule 9
 4.10.1. Fragmentation mode 10
 4.10.2. Fragmentation Header 10
 4.10.3. Last fragment format 11
 4.10.4. Acknowledgment behavior 11
 4.10.5. Timer values . 12
 4.10.6. Fragmentation Parameter 12
 4.10.7. Layer 2 parameters 12
 5. Rule definition . 13
 5.1. Compression rule . 13
 5.2. Fragmentation rule 14
 5.3. YANG Tree . 14
 6. YANG Module . 15
 7. Implementation Status . 45
 8. IANA Considerations . 46
 8.1. URI Registration 46
 8.2. YANG Module Name Registration 46
 9. Security Considerations 47
 10. Annex A : Example . 48
 11. Acknowledgements . 51
 12. References . 51
 12.1. Normative References 51

Minaburo & Toutain Expires 12 April 2023 [Page 2]

Internet-Draft LPWAN SCHC YANG module October 2022

 12.2. Informative References 53
 Authors’ Addresses . 54

1. Introduction

 SCHC is a compression and fragmentation mechanism for constrained
 networks defined in [RFC8724]. It is based on a static context
 shared by two entities at the boundary of the constrained network.
 [RFC8724] provides an informal representation of the rules used
 either for compression/decompression (or C/D) or fragmentation/
 reassembly (or F/R). The goal of this document is to formalize the
 description of the rules to offer:

 * the same definition on both ends, even if the internal
 representation is different;

 * an update of the other end to set up some specific values (e.g.
 IPv6 prefix, destination address,...).

 [I-D.ietf-lpwan-architecture] illustrates the exchange of rules using
 the YANG data model.

 This document defines a YANG module [RFC7950] to represent both
 compression and fragmentation rules, which leads to common
 representation for values for all the rules elements.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Terminology

 This section defines the terminology and acronyms used in this
 document. It extends the terminology of [RFC8376].

 * App: LPWAN Application, as defined by [RFC8376]. An application
 sending/receiving packets to/from the Dev.

 * Bi: Bidirectional. Characterizes a Field Descriptor that applies
 to headers of packets traveling in either direction (Up and Dw,
 see this glossary).

Minaburo & Toutain Expires 12 April 2023 [Page 3]

Internet-Draft LPWAN SCHC YANG module October 2022

 * CDA: Compression/Decompression Action. Describes the pair of
 actions that are performed at the compressor to compress a header
 field and at the decompressor to recover the original value of the
 header field.

 * Context: A set of Rules used to compress/decompress headers.

 * Dev: Device, as defined by [RFC8376].

 * DevIID: Device Interface Identifier. The IID that identifies the
 Dev interface.

 * DI: Direction Indicator. This field tells which direction of
 packet travel (Up, Dw or Bi) a Field Description applies to. This
 allows for asymmetric processing, using the same Rule.

 * Dw: Downlink direction for compression/decompression, from SCHC C/
 D in the network to SCHC C/D in the Dev.

 * FID: Field Identifier. This identifies the protocol and field a
 Field Description applies to.

 * FL: Field Length is the length of the original packet header
 field. It is expressed as a number of bits for header fields of
 fixed lengths or as a type (e.g., variable, token length, ...) for
 field lengths that are unknown at the time of Rule creation. The
 length of a header field is defined in the corresponding protocol
 specification (such as IPv6 or UDP).

 * FP: when a Field is expected to appear multiple times in a header,
 Field Position specifies the occurrence this Field Description
 applies to (for example, first uri-path option, second uri-path,
 etc. in a CoAP header), counting from 1. The value 0 is special
 and means "don’t care", see [RFC8724] Section 7.2.

 * IID: Interface Identifier. See the IPv6 addressing architecture
 [RFC7136].

 * L2 Word: this is the minimum subdivision of payload data that the
 L2 will carry. In most L2 technologies, the L2 Word is an octet.
 In bit-oriented radio technologies, the L2 Word might be a single
 bit. The L2 Word size is assumed to be constant over time for
 each device.

 * MO: Matching Operator. An operator used to match a value
 contained in a header field with a value contained in a Rule.

Minaburo & Toutain Expires 12 April 2023 [Page 4]

Internet-Draft LPWAN SCHC YANG module October 2022

 * Rule ID (Rule Identifier): An identifier for a Rule. SCHC C/D on
 both sides share the same Rule ID for a given packet. A set of
 Rule IDs are used to support SCHC F/R functionality.

 * TV: Target value. A value contained in a Rule that will be
 matched with the value of a header field.

 * Up: Uplink direction for compression/decompression, from the Dev
 SCHC C/D to the network SCHC C/D.

4. SCHC rules

 SCHC compression is generic, the main mechanism does not refer to a
 specific protocol. Any header field is abstracted through an Field
 Identifier (FID), a position (FP), a direction (DI), and a value that
 can be a numerical value or a string. [RFC8724] and [RFC8824]
 specify fields for IPv6 [RFC8200], UDP[RFC0768], CoAP [RFC7252]
 including options defined for no server response [RFC7967] and OSCORE
 [RFC8613]. For the latter [RFC8824] splits this field into sub-
 fields.

 SCHC fragmentation requires a set of common parameters that are
 included in a rule. These parameters are defined in [RFC8724].

 The YANG data model enables the compression and the fragmentation
 selection using the feature statement.

4.1. Compression Rules

 [RFC8724] proposes an informal representation of the compression
 rule. A compression context for a device is composed of a set of
 rules. Each rule contains information to describe a specific field
 in the header to be compressed.

Minaburo & Toutain Expires 12 April 2023 [Page 5]

Internet-Draft LPWAN SCHC YANG module October 2022

 +---+
 | Rule N |
 +---+|
 | Rule i ||
 +---+||
(FID) Rule 1										
+-------+--+--+--+------------+-----------------+---------------+										
	Field 1	FL	FP	DI	Target Value	Matching Operator	Comp/Decomp Act			
+-------+--+--+--+------------+-----------------+---------------+										
	Field 2	FL	FP	DI	Target Value	Matching Operator	Comp/Decomp Act			
+-------+--+--+--+------------+-----------------+---------------+										
			
+-------+--+--+--+------------+-----------------+---------------+		/								
	Field N	FL	FP	DI	Target Value	Matching Operator	Comp/Decomp Act			
+-------+--+--+--+------------+-----------------+---------------+	/									
 \---/

 Figure 1: Compression Decompression Context

4.2. Identifier generation

 Identifiers used in the SCHC YANG data model are from the identityref
 statement to ensure global uniqueness and easy augmentation if
 needed. The principle to define a new type based on a group of
 identityref is the following:

 * define a main identity ending with the keyword base-type.

 * derive all the identities used in the Data Model from this base
 type.

 * create a typedef from this base type.

 The example (Figure 2) shows how an identityref is created for RCS
 (Reassembly Check Sequence) algorithms used during SCHC
 fragmentation.

Minaburo & Toutain Expires 12 April 2023 [Page 6]

Internet-Draft LPWAN SCHC YANG module October 2022

 identity rcs-algorithm-base-type {
 description
 "Identify which algorithm is used to compute RCS.
 The algorithm also defines the size of the RCS field.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 identity rcs-crc32 {
 base rcs-algorithm-base-type;
 description
 "CRC 32 defined as default RCS in RFC8724. This RCS is
 4 bytes long.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 typedef rcs-algorithm-type {
 type identityref {
 base rcs-algorithm-base-type;
 }
 description
 "Define the type for RCS algorithm in rules.";
 }

 Figure 2: Principle to define a type based on identityref.

4.3. Convention for Field Identifier

 In the process of compression, the headers of the original packet are
 first parsed to create a list of fields. This list of fields is
 matched against the rules to find the appropriate rule and apply
 compression. [RFC8724] does not state how the field ID value is
 constructed. In examples, identification is done through a string
 indexed by the protocol name (e.g. IPv6.version, CoAP.version,...).

 The current YANG data model includes fields definitions found in
 [RFC8724], [RFC8824].

Minaburo & Toutain Expires 12 April 2023 [Page 7]

Internet-Draft LPWAN SCHC YANG module October 2022

 Using the YANG data model, each field MUST be identified through a
 global YANG identityref.
 A YANG field ID for the protocol is always derived from the fid-base-
 type. Then an identity for each protocol is specified using the
 naming convention fid-<<protocol name>>-base-type. All possible
 fields for this protocol MUST derive from the protocol identity. The
 naming convention is "fid-" followed by the protocol name and the
 field name. If a field has to be divided into sub-fields, the field
 identity serves as a base.

 The full field-id definition is found in Section 6. A type is
 defined for IPv6 protocol, and each field is based on it. Note that
 the DiffServ bits derive from the Traffic Class identity.

4.4. Convention for Field length

 Field length is either an integer giving the size of a field in bits
 or a specific function. [RFC8724] defines the "var" function which
 allows variable length fields (whose length is expressed in bytes)
 and [RFC8824] defines the "tkl" function for managing the CoAP Token
 length field.

 The naming convention is "fl-" followed by the function name.

 The field length function can be defined as an identityref as
 described in Section 6. Therefore, the type for field length is a
 union between an integer giving the size of the length in bits and
 the identityref.

4.5. Convention for Field position

 Field position is a positive integer which gives the occurrence times
 of a specific field from the header start. The default value is 1,
 and incremented at each repetition. Value 0 indicates that the
 position is not important and is not considered during the rule
 selection process.

 Field position is a positive integer. The type is uint8.

4.6. Convention for Direction Indicator

 The Direction Indicator (di) is used to tell if a field appears in
 both directions (Bi) or only uplink (Up) or Downlink (Dw). The
 naming convention is "di" followed by the Direction Indicator name.

 The type is "di-type".

Minaburo & Toutain Expires 12 April 2023 [Page 8]

Internet-Draft LPWAN SCHC YANG module October 2022

4.7. Convention for Target Value

 The Target Value is a list of binary sequences of any length, aligned
 to the left. In the rule, the structure will be used as a list, with
 index as a key. The highest index value is used to compute the size
 of the index sent in residue for the match-mapping CDA (Compression
 Decompression Action). The index can specify several values:

 * For Equal and MSB, Target Value contains a single element.
 Therefore, the index is set to 0.

 * For match-mapping, Target Value can contain several elements.
 Index values MUST start from 0 and MUST be contiguous.

 If the header field contains text, the binary sequence uses the same
 encoding.

4.8. Convention for Matching Operator

 Matching Operator (MO) is a function applied between a field value
 provided by the parsed header and the target value. [RFC8724]
 defines 4 MO.

 The naming convention is "mo-" followed by the MO name.

 The type is "mo-type"

4.8.1. Matching Operator arguments

 They are viewed as a list, built with a tv-struct (see Section 4.7).

4.9. Convention for Compression Decompression Actions

 Compression Decompression Action (CDA) identifies the function to use
 for compression or decompression. [RFC8724] defines 6 CDA.

 The naming convention is "cda-" followed by the CDA name.

4.9.1. Compression Decompression Action arguments

 Currently no CDA requires arguments, but in the future some CDA may
 require one or several arguments. They are viewed as a list, of
 target-value type.

4.10. Fragmentation rule

 Fragmentation is optional in the data model and depends on the
 presence of the "fragmentation" feature.

Minaburo & Toutain Expires 12 April 2023 [Page 9]

Internet-Draft LPWAN SCHC YANG module October 2022

 Most of the fragmentation parameters are listed in Annex D of
 [RFC8724].

 Since fragmentation rules work for a specific direction, they MUST
 contain a mandatory direction indicator. The type is the same as the
 one used in compression entries, but bidirectional MUST NOT be used.

4.10.1. Fragmentation mode

 [RFC8724] defines 3 fragmentation modes:

 * No Ack: this mode is unidirectional, no acknowledgment is sent
 back.

 * Ack Always: each fragmentation window must be explicitly
 acknowledged before going to the next.

 * Ack on Error: A window is acknowledged only when the receiver
 detects some missing fragments.

 The type is "fragmentation-mode-type". The naming convention is
 "fragmentation-mode-" followed by the fragmentation mode name.

4.10.2. Fragmentation Header

 A data fragment header, starting with the rule ID, can be sent in the
 fragmentation direction. [RFC8724] indicates that the SCHC header
 may be composed of (cf. Figure 3):

 * a Datagram Tag (Dtag) identifying the datagram being fragmented if
 the fragmentation applies concurrently on several datagrams. This
 field is optional and its length is defined by the rule.

 * a Window (W) used in Ack-Always and Ack-on-Error modes. In Ack-
 Always, its size is 1. In Ack-on-Error, it depends on the rule.
 This field is not needed in No-Ack mode.

 * a Fragment Compressed Number (FCN) indicating the fragment/tile
 position within the window. This field is mandatory on all modes
 defined in [RFC8724], its size is defined by the rule.

 |-- SCHC Fragment Header ----|
 |-- T --|-M-|-- N --|
 +-- ... -+- ... -+---+- ... -+--------...-------+˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
 | RuleID | DTag | W | FCN | Fragment Payload | padding (as needed)
 +-- ... -+- ... -+---+- ... -+--------...-------+˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

 Figure 3: Data fragment header from RFC8724

Minaburo & Toutain Expires 12 April 2023 [Page 10]

Internet-Draft LPWAN SCHC YANG module October 2022

4.10.3. Last fragment format

 The last fragment of a datagram is sent with an RCS (Reassembly Check
 Sequence) field to detect residual transmission error and possible
 losses in the last window. [RFC8724] defines a single algorithm
 based on Ethernet CRC computation.

 The naming convention is "rcs-" followed by the algorithm name.

 For Ack-on-Error mode, the All-1 fragment may just contain the RCS or
 can include a tile. The parameters define the behavior:

 * all-1-data-no: the last fragment contains no data, just the RCS

 * all-1-data-yes: the last fragment includes a single tile and the
 RCS

 * all-1-data-sender-choice: the last fragment may or may not contain
 a single tile. The receiver can detect if a tile is present.

 The naming convention is "all-1-data-" followed by the behavior
 identifier.

4.10.4. Acknowledgment behavior

 The acknowledgment fragment header goes in the opposite direction of
 data. [RFC8724] defines the header, composed of (see Figure 4):

 * a Dtag (if present).

 * a mandatory window as in the data fragment.

 * a C bit giving the status of RCS validation. In case of failure,
 a bitmap follows, indicating the received tile.

 |--- SCHC ACK Header ----|
 |-- T --|-M-| 1 |
 +-- ... -+- ... -+---+---+˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
 | RuleID | DTag | W |C=1| padding as needed (success)
 +-- ... -+- ... -+---+---+˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

 +-- ... -+- ... -+---+---+------ ... ------+˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
 | RuleID | DTag | W |C=0|Compressed Bitmap| pad. as needed (failure)
 +-- ... -+- ... -+---+---+------ ... ------+˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

 Figure 4: Acknowledgment fragment header for RFC8724

Minaburo & Toutain Expires 12 April 2023 [Page 11]

Internet-Draft LPWAN SCHC YANG module October 2022

 For Ack-on-Error, SCHC defines when an acknowledgment can be sent.
 This can be at any time defined by the layer 2, at the end of a
 window (FCN all-0) or as a response to receiving the last fragment
 (FCN all-1). The naming convention is "ack-behavior" followed by the
 algorithm name.

4.10.5. Timer values

 The state machine requires some common values to handle fragmentation
 correctly.

 * retransmission-timer gives the duration before sending an ack
 request (cf. section 8.2.2.4. of [RFC8724]). If specified, value
 MUST be strictly positive.

 * inactivity-timer gives the duration before aborting a
 fragmentation session (cf. section 8.2.2.4. of [RFC8724]). The
 value 0 explicitly indicates that this timer is disabled.

 [RFC8724] do not specify any range for these timers. [RFC9011]
 recommends a duration of 12 hours. In fact, the value range should
 be between milliseconds for real time systems to several days. To
 allow a large range of applications, two parameters must be
 specified:

 * the duration of a tick. It is computed by this formula 2^tick-
 duration/10^6. When tick-duration is set to 0, the unit is the
 microsecond. The default value of 20 leads to a unit of 1.048575
 second. A value of 32 leads to a tick duration of about 1 hour 11
 minutes.

 * the number of ticks in the predefined unit. With the default
 tick-duration value of 20, the timers can cover a range between
 1.0 sec and 19 hours covering [RFC9011] recommendation.

4.10.6. Fragmentation Parameter

 The SCHC fragmentation protocol specifies the number of attempts
 before aborting through the parameter:

 * max-ack-requests (cf. section 8.2.2.4. of [RFC8724]).

4.10.7. Layer 2 parameters

 The data model includes two parameters needed for fragmentation:

Minaburo & Toutain Expires 12 April 2023 [Page 12]

Internet-Draft LPWAN SCHC YANG module October 2022

 * l2-word-size: [RFC8724] base fragmentation, in bits, on a layer 2
 word which can be of any length. The default value is 8 and
 correspond to the default value for byte aligned layer 2. A value
 of 1 will indicate that there is no alignment and no need for
 padding.

 * maximum-packet-size: defines the maximum size of an uncompressed
 datagram. By default, the value is set to 1280 bytes.

 They are defined as unsigned integers, see Section 6.

5. Rule definition

 A rule is identified by a unique rule identifier (rule ID) comprising
 both a Rule ID value and a Rule ID length. The YANG grouping rule-
 id-type defines the structure used to represent a rule ID. A length
 of 0 is allowed to represent an implicit rule.

 Three natures of rules are defined in [RFC8724]:

 * Compression: a compression rule is associated with the rule ID.

 * No compression: this identifies the default rule used to send a
 packet integrally when no compression rule was found (see
 [RFC8724] section 6).

 * Fragmentation: fragmentation parameters are associated with the
 rule ID. Fragmentation is optional and feature "fragmentation"
 should be set.

 The YANG data model introduces respectively these three identities :

 * nature-compression

 * nature-no-compression

 * nature-fragmentation

 The naming convention is "nature-" followed by the nature identifier.

 To access a specific rule, the rule ID length and value are used as a
 key. The rule is either a compression or a fragmentation rule.

5.1. Compression rule

 A compression rule is composed of entries describing its processing.
 An entry contains all the information defined in Figure 1 with the
 types defined above.

Minaburo & Toutain Expires 12 April 2023 [Page 13]

Internet-Draft LPWAN SCHC YANG module October 2022

 The compression rule described Figure 1 is defined by compression-
 content. It defines a list of compression-rule-entry, indexed by
 their field id, position and direction. The compression-rule-entry
 element represent a line of the table Figure 1. Their type reflects
 the identifier types defined in Section 4.1

 Some checks are performed on the values:

 * target value MUST be present for MO different from ignore.

 * when MSB MO is specified, the matching-operator-value must be
 present

5.2. Fragmentation rule

 A Fragmentation rule is composed of entries describing the protocol
 behavior. Some on them are numerical entries, others are identifiers
 defined in Section 4.10.

5.3. YANG Tree

 The YANG data model described in this document conforms to the
 Network Management Datastore Architecture defined in [RFC8342].

 module: ietf-schc
 +--rw schc
 +--rw rule* [rule-id-value rule-id-length]
 +--rw rule-id-value uint32
 +--rw rule-id-length uint8
 +--rw rule-nature nature-type
 +--rw (nature)?
 +--:(fragmentation) {fragmentation}?
 | +--rw fragmentation-mode
 | | schc:fragmentation-mode-type
 | +--rw l2-word-size? uint8
 | +--rw direction schc:di-type
 | +--rw dtag-size? uint8
 | +--rw w-size? uint8
 | +--rw fcn-size uint8
 | +--rw rcs-algorithm? rcs-algorithm-type
 | +--rw maximum-packet-size? uint16
 | +--rw window-size? uint16
 | +--rw max-interleaved-frames? uint8
 | +--rw inactivity-timer
 | | +--rw ticks-duration? uint8
 | | +--rw ticks-numbers? uint16
 | +--rw retransmission-timer
 | | +--rw ticks-duration? uint8

Minaburo & Toutain Expires 12 April 2023 [Page 14]

Internet-Draft LPWAN SCHC YANG module October 2022

 | | +--rw ticks-numbers? uint16
 | +--rw max-ack-requests? uint8
 | +--rw (mode)?
 | +--:(no-ack)
 | +--:(ack-always)
 | +--:(ack-on-error)
 | +--rw tile-size? uint8
 | +--rw tile-in-all-1? schc:all-1-data-type
 | +--rw ack-behavior? schc:ack-behavior-type
 +--:(compression) {compression}?
 +--rw entry*
 [field-id field-position direction-indicator]
 +--rw field-id schc:fid-type
 +--rw field-length schc:fl-type
 +--rw field-position uint8
 +--rw direction-indicator schc:di-type
 +--rw target-value* [index]
 | +--rw index uint16
 | +--rw value? binary
 +--rw matching-operator schc:mo-type
 +--rw matching-operator-value* [index]
 | +--rw index uint16
 | +--rw value? binary
 +--rw comp-decomp-action schc:cda-type
 +--rw comp-decomp-action-value* [index]
 +--rw index uint16
 +--rw value? binary

 Figure 5: Overview of SCHC data model

6. YANG Module

 <CODE BEGINS> file "ietf-schc@2022-10-09.yang"
 module ietf-schc {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-schc";
 prefix schc;

 organization
 "IETF IPv6 over Low Power Wide-Area Networks (lpwan) working
 group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/lpwan/about/>
 WG List: <mailto:lp-wan@ietf.org>
 Editor: Laurent Toutain
 <mailto:laurent.toutain@imt-atlantique.fr>
 Editor: Ana Minaburo
 <mailto:ana@ackl.io>";

Minaburo & Toutain Expires 12 April 2023 [Page 15]

Internet-Draft LPWAN SCHC YANG module October 2022

 description
 "
 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
 for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.

 Generic Data model for Static Context Header Compression Rule
 for SCHC, based on RFC 8724 and RFC8824. Include compression,
 no compression and fragmentation rules.

 This module is a YANG model for SCHC rules (RFC 8724 and
 RFC8824). RFC 8724 describes compression rules in a abstract
 way through a table.

 |---|
 | (FID) Rule 1 |
 |+-------+--+--+--+------------+-----------------+---------------+|
 ||Field 1|FL|FP|DI|Target Value|Matching Operator|Comp/Decomp Act||
 |+-------+--+--+--+------------+-----------------+---------------+|
 ||Field 2|FL|FP|DI|Target Value|Matching Operator|Comp/Decomp Act||
 |+-------+--+--+--+------------+-----------------+---------------+|
 ||... |..|..|..| ... | ... | ... ||
 |+-------+--+--+--+------------+-----------------+---------------+|
 ||Field N|FL|FP|DI|Target Value|Matching Operator|Comp/Decomp Act||
 |+-------+--+--+--+------------+-----------------+---------------+|
 |---|

 This module specifies a global data model that can be used for
 rule exchanges or modification. It specifies both the data model
 format and the global identifiers used to describe some

Minaburo & Toutain Expires 12 April 2023 [Page 16]

Internet-Draft LPWAN SCHC YANG module October 2022

 operations in fields.
 This data model applies to both compression and fragmentation.";

 revision 2022-10-09 {
 description
 "Initial version from RFC XXXX.";
 reference
 "RFC XXX: Data Model for Static Context Header Compression
 (SCHC)";
 }

 feature compression {
 description
 "SCHC compression capabilities are taken into account.";
 }

 feature fragmentation {
 description
 "SCHC fragmentation capabilities are taken into account.";
 }

 // -------------------------
 // Field ID type definition
 //--------------------------
 // generic value TV definition

 identity fid-base-type {
 description
 "Field ID base type for all fields.";
 }

 identity fid-ipv6-base-type {
 base fid-base-type;
 description
 "Field ID base type for IPv6 headers described in RFC 8200.";
 reference
 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";
 }

 identity fid-ipv6-version {
 base fid-ipv6-base-type;
 description
 "IPv6 version field.";
 reference
 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";
 }

 identity fid-ipv6-trafficclass {

Minaburo & Toutain Expires 12 April 2023 [Page 17]

Internet-Draft LPWAN SCHC YANG module October 2022

 base fid-ipv6-base-type;
 description
 "IPv6 Traffic Class field.";
 reference
 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";
 }

 identity fid-ipv6-trafficclass-ds {
 base fid-ipv6-trafficclass;
 description
 "IPv6 Traffic Class field: DiffServ field.";
 reference
 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification,
 RFC 3168 The Addition of Explicit Congestion Notification
 (ECN) to IP";
 }

 identity fid-ipv6-trafficclass-ecn {
 base fid-ipv6-trafficclass;
 description
 "IPv6 Traffic Class field: ECN field.";
 reference
 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification,
 RFC 3168 The Addition of Explicit Congestion Notification
 (ECN) to IP";
 }

 identity fid-ipv6-flowlabel {
 base fid-ipv6-base-type;
 description
 "IPv6 Flow Label field.";
 reference
 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";
 }

 identity fid-ipv6-payload-length {
 base fid-ipv6-base-type;
 description
 "IPv6 Payload Length field.";
 reference
 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";
 }

 identity fid-ipv6-nextheader {
 base fid-ipv6-base-type;
 description
 "IPv6 Next Header field.";
 reference

Minaburo & Toutain Expires 12 April 2023 [Page 18]

Internet-Draft LPWAN SCHC YANG module October 2022

 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";
 }

 identity fid-ipv6-hoplimit {
 base fid-ipv6-base-type;
 description
 "IPv6 Next Header field.";
 reference
 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";
 }

 identity fid-ipv6-devprefix {
 base fid-ipv6-base-type;
 description
 "Corresponds to either the source address or the destination
 address prefix of RFC 8200 depending on whether it is an
 uplink or a downlink message.";
 reference
 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";
 }

 identity fid-ipv6-deviid {
 base fid-ipv6-base-type;
 description
 "Corresponds to either the source address or the destination
 address IID of RFC 8200 depending on whether it is an uplink
 or a downlink message.";
 reference
 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";
 }

 identity fid-ipv6-appprefix {
 base fid-ipv6-base-type;
 description
 "Corresponds to either the source address or the destination
 address prefix of RFC 8200 depending on whether it is an
 uplink or a downlink message.";
 reference
 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";
 }

 identity fid-ipv6-appiid {
 base fid-ipv6-base-type;
 description
 "Corresponds to either the source address or the destination
 address IID of RFC 8200 depending on whether it is an uplink
 or a downlink message.";
 reference

Minaburo & Toutain Expires 12 April 2023 [Page 19]

Internet-Draft LPWAN SCHC YANG module October 2022

 "RFC 8200 Internet Protocol, Version 6 (IPv6) Specification";
 }

 identity fid-udp-base-type {
 base fid-base-type;
 description
 "Field ID base type for UDP headers described in RFC 768.";
 reference
 "RFC 768 User Datagram Protocol";
 }

 identity fid-udp-dev-port {
 base fid-udp-base-type;
 description
 "UDP source or destination port, if uplink or downlink
 communication, respectively.";
 reference
 "RFC 768 User Datagram Protocol";
 }

 identity fid-udp-app-port {
 base fid-udp-base-type;
 description
 "UDP destination or source port, if uplink or downlink
 communication, respectively.";
 reference
 "RFC 768 User Datagram Protocol";
 }

 identity fid-udp-length {
 base fid-udp-base-type;
 description
 "UDP length.";
 reference
 "RFC 768 User Datagram Protocol";
 }

 identity fid-udp-checksum {
 base fid-udp-base-type;
 description
 "UDP length.";
 reference
 "RFC 768 User Datagram Protocol";
 }

 identity fid-coap-base-type {
 base fid-base-type;
 description

Minaburo & Toutain Expires 12 April 2023 [Page 20]

Internet-Draft LPWAN SCHC YANG module October 2022

 "Field ID base type for UDP headers described.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-version {
 base fid-coap-base-type;
 description
 "CoAP version.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-type {
 base fid-coap-base-type;
 description
 "CoAP type.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-tkl {
 base fid-coap-base-type;
 description
 "CoAP token length.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-code {
 base fid-coap-base-type;
 description
 "CoAP code.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-code-class {
 base fid-coap-code;
 description
 "CoAP code class.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-code-detail {
 base fid-coap-code;
 description

Minaburo & Toutain Expires 12 April 2023 [Page 21]

Internet-Draft LPWAN SCHC YANG module October 2022

 "CoAP code detail.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-mid {
 base fid-coap-base-type;
 description
 "CoAP message ID.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-token {
 base fid-coap-base-type;
 description
 "CoAP token.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-if-match {
 base fid-coap-base-type;
 description
 "CoAP option If-Match.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-uri-host {
 base fid-coap-base-type;
 description
 "CoAP option URI-Host.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-etag {
 base fid-coap-base-type;
 description
 "CoAP option Etag.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-if-none-match {
 base fid-coap-base-type;
 description

Minaburo & Toutain Expires 12 April 2023 [Page 22]

Internet-Draft LPWAN SCHC YANG module October 2022

 "CoAP option if-none-match.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-observe {
 base fid-coap-base-type;
 description
 "CoAP option Observe.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-uri-port {
 base fid-coap-base-type;
 description
 "CoAP option Uri-Port.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-location-path {
 base fid-coap-base-type;
 description
 "CoAP option Location-Path.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-uri-path {
 base fid-coap-base-type;
 description
 "CoAP option Uri-Path.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-content-format {
 base fid-coap-base-type;
 description
 "CoAP option Content Format.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-max-age {
 base fid-coap-base-type;
 description

Minaburo & Toutain Expires 12 April 2023 [Page 23]

Internet-Draft LPWAN SCHC YANG module October 2022

 "CoAP option Max-Age.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-uri-query {
 base fid-coap-base-type;
 description
 "CoAP option Uri-Query.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-accept {
 base fid-coap-base-type;
 description
 "CoAP option Accept.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-location-query {
 base fid-coap-base-type;
 description
 "CoAP option Location-Query.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-block2 {
 base fid-coap-base-type;
 description
 "CoAP option Block2.";
 reference
 "RFC 7959 Block-Wise Transfers in the Constrained
 Application Protocol (CoAP)";
 }

 identity fid-coap-option-block1 {
 base fid-coap-base-type;
 description
 "CoAP option Block1.";
 reference
 "RFC 7959 Block-Wise Transfers in the Constrained
 Application Protocol (CoAP)";
 }

 identity fid-coap-option-size2 {

Minaburo & Toutain Expires 12 April 2023 [Page 24]

Internet-Draft LPWAN SCHC YANG module October 2022

 base fid-coap-base-type;
 description
 "CoAP option size2.";
 reference
 "RFC 7959 Block-Wise Transfers in the Constrained
 Application Protocol (CoAP)";
 }

 identity fid-coap-option-proxy-uri {
 base fid-coap-base-type;
 description
 "CoAP option Proxy-Uri.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-proxy-scheme {
 base fid-coap-base-type;
 description
 "CoAP option Proxy-scheme.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-size1 {
 base fid-coap-base-type;
 description
 "CoAP option Size1.";
 reference
 "RFC 7252 The Constrained Application Protocol (CoAP)";
 }

 identity fid-coap-option-no-response {
 base fid-coap-base-type;
 description
 "CoAP option No response.";
 reference
 "RFC 7967 Constrained Application Protocol (CoAP)
 Option for No Server Response";
 }

 identity fid-oscore-base-type {
 base fid-coap-type;
 description
 "OSCORE options (RFC8613) split in sub options.";
 reference
 "RFC 8824 Static Context Header Compression (SCHC) for the
 Constrained Application Protocol (CoAP)";

Minaburo & Toutain Expires 12 April 2023 [Page 25]

Internet-Draft LPWAN SCHC YANG module October 2022

 }

 identity fid-coap-option-oscore-flags {
 base fid-oscore-base-type;
 description
 "CoAP option oscore flags.";
 reference
 "RFC 8824 Static Context Header Compression (SCHC) for the
 Constrained Application Protocol (CoAP) (see
 section 6.4)";
 }

 identity fid-coap-option-oscore-piv {
 base fid-oscore-base-type;
 description
 "CoAP option oscore flags.";
 reference
 "RFC 8824 Static Context Header Compression (SCHC) for the
 Constrained Application Protocol (CoAP) (see
 section 6.4)";
 }

 identity fid-coap-option-oscore-kid {
 base fid-oscore-base-type;
 description
 "CoAP option oscore flags.";
 reference
 "RFC 8824 Static Context Header Compression (SCHC) for the
 Constrained Application Protocol (CoAP) (see
 section 6.4)";
 }

 identity fid-coap-option-oscore-kidctx {
 base fid-oscore-base-type;
 description
 "CoAP option oscore flags.";
 reference
 "RFC 8824 Static Context Header Compression (SCHC) for the
 Constrained Application Protocol (CoAP)(see
 section 6.4)";
 }

 //----------------------------------
 // Field Length type definition
 //----------------------------------

 identity fl-base-type {
 description

Minaburo & Toutain Expires 12 April 2023 [Page 26]

Internet-Draft LPWAN SCHC YANG module October 2022

 "Used to extend field length functions.";
 }

 identity fl-variable {
 base fl-base-type;
 description
 "Residue length in Byte is sent as defined for CoAP.";
 reference
 "RFC 8824 Static Context Header Compression (SCHC) for the
 Constrained Application Protocol (CoAP) (see
 section 5.3)";
 }

 identity fl-token-length {
 base fl-base-type;
 description
 "Residue length in Byte is sent as defined for CoAP.";
 reference
 "RFC 8824 Static Context Header Compression (SCHC) for the
 Constrained Application Protocol (CoAP) (see
 section 4.5)";
 }

 //---------------------------------
 // Direction Indicator type
 //---------------------------------

 identity di-base-type {
 description
 "Used to extend direction indicators.";
 }

 identity di-bidirectional {
 base di-base-type;
 description
 "Direction Indication of bidirectionality.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see
 section 7.1.)";
 }

 identity di-up {
 base di-base-type;
 description
 "Direction Indication of uplink.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context

Minaburo & Toutain Expires 12 April 2023 [Page 27]

Internet-Draft LPWAN SCHC YANG module October 2022

 Header Compression and Fragmentation (see
 section 7.1).";
 }

 identity di-down {
 base di-base-type;
 description
 "Direction Indication of downlink.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see
 section 7.1).";
 }

 //----------------------------------
 // Matching Operator type definition
 //----------------------------------

 identity mo-base-type {
 description
 "Matching Operator: used in the rule selection process
 to check is a Target Value matches the field’s value.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see*
 section 7.2).";
 }

 identity mo-equal {
 base mo-base-type;
 description
 "equal MO.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see
 section 7.3).";
 }

 identity mo-ignore {
 base mo-base-type;
 description
 "ignore MO.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see
 section 7.3).";
 }

Minaburo & Toutain Expires 12 April 2023 [Page 28]

Internet-Draft LPWAN SCHC YANG module October 2022

 identity mo-msb {
 base mo-base-type;
 description
 "MSB MO.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see
 section 7.3).";
 }

 identity mo-match-mapping {
 base mo-base-type;
 description
 "match-mapping MO.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see
 section 7.3).";
 }

 //------------------------------
 // CDA type definition
 //------------------------------

 identity cda-base-type {
 description
 "Compression Decompression Actions. Specify the action to
 be applied to the field’s value in a specific rule.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see
 section 7.2).";
 }

 identity cda-not-sent {
 base cda-base-type;
 description
 "not-sent CDA.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see
 section 7.4).";
 }

 identity cda-value-sent {
 base cda-base-type;
 description
 "value-sent CDA.";

Minaburo & Toutain Expires 12 April 2023 [Page 29]

Internet-Draft LPWAN SCHC YANG module October 2022

 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see
 section 7.4).";
 }

 identity cda-lsb {
 base cda-base-type;
 description
 "LSB CDA.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see
 section 7.4).";
 }

 identity cda-mapping-sent {
 base cda-base-type;
 description
 "mapping-sent CDA.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see
 section 7.4).";
 }

 identity cda-compute {
 base cda-base-type;
 description
 "compute-* CDA.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see
 section 7.4).";
 }

 identity cda-deviid {
 base cda-base-type;
 description
 "DevIID CDA.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see
 section 7.4).";
 }

 identity cda-appiid {
 base cda-base-type;

Minaburo & Toutain Expires 12 April 2023 [Page 30]

Internet-Draft LPWAN SCHC YANG module October 2022

 description
 "AppIID CDA.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context
 Header Compression and Fragmentation (see
 section 7.4).";
 }

 // -- type definition

 typedef fid-type {
 type identityref {
 base fid-base-type;
 }
 description
 "Field ID generic type.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 typedef fl-type {
 type union {
 type uint64 {
 range 1..max;
 }
 type identityref {
 base fl-base-type;
 }
 }
 description
 "Field length either a positive integer expressing the size in
 bits or a function defined through an identityref.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 typedef di-type {
 type identityref {
 base di-base-type;
 }
 description
 "Direction in LPWAN network, up when emitted by the device,
 down when received by the device, bi when emitted or
 received by the device.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header

Minaburo & Toutain Expires 12 April 2023 [Page 31]

Internet-Draft LPWAN SCHC YANG module October 2022

 Compression and Fragmentation";
 }

 typedef mo-type {
 type identityref {
 base mo-base-type;
 }
 description
 "Matching Operator (MO) to compare fields values with
 target values.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 typedef cda-type {
 type identityref {
 base cda-base-type;
 }
 description
 "Compression Decompression Action to compression or
 decompress a field.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 // -- FRAGMENTATION TYPE
 // -- fragmentation modes

 identity fragmentation-mode-base-type {
 description
 "Define the fragmentation mode.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 identity fragmentation-mode-no-ack {
 base fragmentation-mode-base-type;
 description
 "No-ACK mode.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 identity fragmentation-mode-ack-always {

Minaburo & Toutain Expires 12 April 2023 [Page 32]

Internet-Draft LPWAN SCHC YANG module October 2022

 base fragmentation-mode-base-type;
 description
 "ACK-Always mode.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 identity fragmentation-mode-ack-on-error {
 base fragmentation-mode-base-type;
 description
 "ACK-on-Error mode.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 typedef fragmentation-mode-type {
 type identityref {
 base fragmentation-mode-base-type;
 }
 description
 "Define the type used for fragmentation mode in rules.";
 }

 // -- Ack behavior

 identity ack-behavior-base-type {
 description
 "Define when to send an Acknowledgment .";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 identity ack-behavior-after-all-0 {
 base ack-behavior-base-type;
 description
 "Fragmentation expects Ack after sending All-0 fragment.";
 }

 identity ack-behavior-after-all-1 {
 base ack-behavior-base-type;
 description
 "Fragmentation expects Ack after sending All-1 fragment.";
 }

 identity ack-behavior-by-layer2 {

Minaburo & Toutain Expires 12 April 2023 [Page 33]

Internet-Draft LPWAN SCHC YANG module October 2022

 base ack-behavior-base-type;
 description
 "Layer 2 defines when to send an Ack.";
 }

 typedef ack-behavior-type {
 type identityref {
 base ack-behavior-base-type;
 }
 description
 "Define the type used for Ack behavior in rules.";
 }

 // -- All-1 with data types

 identity all-1-data-base-type {
 description
 "Type to define when to send an Acknowledgment message.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 identity all-1-data-no {
 base all-1-data-base-type;
 description
 "All-1 contains no tiles.";
 }

 identity all-1-data-yes {
 base all-1-data-base-type;
 description
 "All-1 MUST contain a tile.";
 }

 identity all-1-data-sender-choice {
 base all-1-data-base-type;
 description
 "Fragmentation process chooses to send tiles or not in All-1.";
 }

 typedef all-1-data-type {
 type identityref {
 base all-1-data-base-type;
 }
 description
 "Define the type used for All-1 format in rules.";
 }

Minaburo & Toutain Expires 12 April 2023 [Page 34]

Internet-Draft LPWAN SCHC YANG module October 2022

 // -- RCS algorithm types

 identity rcs-algorithm-base-type {
 description
 "Identify which algorithm is used to compute RCS.
 The algorithm also defines the size of the RCS field.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 identity rcs-crc32 {
 base rcs-algorithm-base-type;
 description
 "CRC 32 defined as default RCS in RFC8724. This RCS is
 4 bytes long.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 typedef rcs-algorithm-type {
 type identityref {
 base rcs-algorithm-base-type;
 }
 description
 "Define the type for RCS algorithm in rules.";
 }

 // -------- RULE ENTRY DEFINITION ------------

 grouping tv-struct {
 description
 "Defines the target value element. If the header field
 contains a text, the binary sequence uses the same encoding.
 field-id allows the conversion to the appropriate type.";
 leaf index {
 type uint16;
 description
 "Index gives the position in the matching-list. If only one
 element is present, index is 0. Otherwise, index is the
 the order in the matching list, starting at 0.";
 }
 leaf value {
 type binary;
 description
 "Target Value content as an untyped binary value.";
 }

Minaburo & Toutain Expires 12 April 2023 [Page 35]

Internet-Draft LPWAN SCHC YANG module October 2022

 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 grouping compression-rule-entry {
 description
 "These entries defines a compression entry (i.e. a line)
 as defined in RFC 8724.

 +-------+--+--+--+------------+-----------------+---------------+
 |Field 1|FL|FP|DI|Target Value|Matching Operator|Comp/Decomp Act|
 +-------+--+--+--+------------+-----------------+---------------+

 An entry in a compression rule is composed of 7 elements:
 - Field ID: The header field to be compressed.
 - Field Length : Either a positive integer of a function.
 - Field Position: A positive (and possibly equal to 0)
 integer.
 - Direction Indicator: An indication in which direction
 compression and decompression process is effective.
 - Target value: A value against which the header Field is
 compared.
 - Matching Operator: The comparison operation and optional
 associate parameters.
 - Comp./Decomp. Action: The compression or decompression
 action, and optional parameters.
 ";
 leaf field-id {
 type schc:fid-type;
 mandatory true;
 description
 "Field ID, identify a field in the header with a YANG
 identity reference.";
 }
 leaf field-length {
 type schc:fl-type;
 mandatory true;
 description
 "Field Length, expressed in number of bits if the length is
 known when the Rule is created or through a specific
 function if the length is variable.";
 }
 leaf field-position {
 type uint8;
 mandatory true;
 description
 "Field position in the header is an integer. Position 1

Minaburo & Toutain Expires 12 April 2023 [Page 36]

Internet-Draft LPWAN SCHC YANG module October 2022

 matches the first occurrence of a field in the header,
 while incremented position values match subsequent
 occurrences.
 Position 0 means that this entry matches a field
 irrespective of its position of occurrence in the
 header.
 Be aware that the decompressed header may have
 position-0 fields ordered differently than they
 appeared in the original packet.";
 }
 leaf direction-indicator {
 type schc:di-type;
 mandatory true;
 description
 "Direction Indicator, indicate if this field must be
 considered for rule selection or ignored based on the
 direction (bi directionnal, only uplink, or only
 downlink).";
 }
 list target-value {
 key "index";
 uses tv-struct;
 description
 "A list of value to compare with the header field value.
 If target value is a singleton, position must be 0.
 For use as a matching list for the mo-match-mapping matching
 operator, index should take consecutive values starting
 from 0.";
 }
 leaf matching-operator {
 type schc:mo-type;
 must "../target-value or derived-from-or-self(.,
 ’mo-ignore’)" {
 error-message
 "mo-equal, mo-msb and mo-match-mapping need target-value";
 description
 "target-value is not required for mo-ignore.";
 }
 must "not (derived-from-or-self(., ’mo-msb’)) or
 ../matching-operator-value" {
 error-message "mo-msb requires length value";
 }
 mandatory true;
 description
 "MO: Matching Operator.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation (see Section 7.3).";

Minaburo & Toutain Expires 12 April 2023 [Page 37]

Internet-Draft LPWAN SCHC YANG module October 2022

 }
 list matching-operator-value {
 key "index";
 uses tv-struct;
 description
 "Matching Operator Arguments, based on TV structure to allow
 several arguments.
 In RFC 8724, only the MSB matching operator needs arguments
 (a single argument, which is the number of most significant
 bits to be matched).";
 }
 leaf comp-decomp-action {
 type schc:cda-type;
 must "../target-value or
 derived-from-or-self(., ’cda-value-sent’) or
 derived-from-or-self(., ’cda-compute’) or
 derived-from-or-self(., ’cda-appiid’) or
 derived-from-or-self(., ’cda-deviid’)" {
 error-message
 "cda-not-sent, cda-lsb, cda-mapping-sent need
 target-value";
 description
 "target-value is not required for some CDA.";
 }
 mandatory true;
 description
 "CDA: Compression Decompression Action.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation (see section 7.4)";
 }
 list comp-decomp-action-value {
 key "index";
 uses tv-struct;
 description
 "CDA arguments, based on a TV structure, in order to allow
 for several arguments. The CDAs specified in RFC 8724
 require no argument.";
 }

 }

 // --Rule nature

 identity nature-base-type {
 description
 "A rule, identified by its RuleID, are used for a single
 purpose. RFC 8724 defines 2 natures:

Minaburo & Toutain Expires 12 April 2023 [Page 38]

Internet-Draft LPWAN SCHC YANG module October 2022

 compression, no compression and fragmentation.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation (see section 6).";
 }

 identity nature-compression {
 base nature-base-type;
 description
 "Identify a compression rule.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation (see section 6).";
 }

 identity nature-no-compression {
 base nature-base-type;
 description
 "Identify a no compression rule.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation (see section 6).";
 }

 identity nature-fragmentation {
 base nature-base-type;
 description
 "Identify a fragmentation rule.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation (see section 6).";
 }

 typedef nature-type {
 type identityref {
 base nature-base-type;
 }
 description
 "defines the type to indicate the nature of the rule.";
 }

 grouping compression-content {
 list entry {
 must "derived-from-or-self(../rule-nature,
 ’nature-compression’)" {
 error-message "Rule nature must be compression";
 }
 key "field-id field-position direction-indicator";

Minaburo & Toutain Expires 12 April 2023 [Page 39]

Internet-Draft LPWAN SCHC YANG module October 2022

 uses compression-rule-entry;
 description
 "A compression rule is a list of rule entries, each
 describing a header field. An entry is identified
 through a field-id, its position in the packet, and
 its direction.";
 }
 description
 "Define a compression rule composed of a list of entries.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 grouping fragmentation-content {
 description
 "This grouping defines the fragmentation parameters for
 all the modes (No-ACK, ACK-Always and ACK-on-Error) specified
 in RFC 8724.";
 leaf fragmentation-mode {
 type schc:fragmentation-mode-type;
 must "derived-from-or-self(../rule-nature,
 ’nature-fragmentation’)" {
 error-message "Rule nature must be fragmentation";
 }
 mandatory true;
 description
 "Which fragmentation mode is used (No-Ack, ACK-Always,
 ACK-on-Error).";
 }
 leaf l2-word-size {
 type uint8;
 default "8";
 description
 "Size, in bits, of the layer 2 word.";
 }
 leaf direction {
 type schc:di-type;
 must "derived-from-or-self(., ’di-up’) or
 derived-from-or-self(., ’di-down’)" {
 error-message
 "Direction for fragmentation rules are up or down.";
 }
 mandatory true;
 description
 "MUST be up or down, bidirectional MUST NOT be used.";
 }
 // SCHC Frag header format

Minaburo & Toutain Expires 12 April 2023 [Page 40]

Internet-Draft LPWAN SCHC YANG module October 2022

 leaf dtag-size {
 type uint8;
 default "0";
 description
 "Size, in bits, of the DTag field (T variable from
 RFC8724).";
 }
 leaf w-size {
 when "derived-from-or-self(../fragmentation-mode,
 ’fragmentation-mode-ack-on-error’)
 or
 derived-from-or-self(../fragmentation-mode,
 ’fragmentation-mode-ack-always’) ";
 type uint8;
 description
 "Size, in bits, of the window field (M variable from
 RFC8724).";
 }
 leaf fcn-size {
 type uint8;
 mandatory true;
 description
 "Size, in bits, of the FCN field (N variable from RFC8724).";
 }
 leaf rcs-algorithm {
 type rcs-algorithm-type;
 default "schc:rcs-crc32";
 description
 "Algorithm used for RCS. The algorithm specifies the RCS
 size.";
 }
 // SCHC fragmentation protocol parameters
 leaf maximum-packet-size {
 type uint16;
 default "1280";
 description
 "When decompression is done, packet size must not
 strictly exceed this limit, expressed in bytes.";
 }
 leaf window-size {
 type uint16;
 description
 "By default, if not specified 2^w-size - 1. Should not exceed
 this value. Possible FCN values are between 0 and
 window-size - 1.";
 }
 leaf max-interleaved-frames {
 type uint8;

Minaburo & Toutain Expires 12 April 2023 [Page 41]

Internet-Draft LPWAN SCHC YANG module October 2022

 default "1";
 description
 "Maximum of simultaneously fragmented frames. Maximum value
 is 2^dtag-size. All DTAG values can be used, but more than
 max-interleaved-frames MUST NOT be active at any time";
 }
 container inactivity-timer {
 leaf ticks-duration {
 type uint8;
 default "20";
 description
 "Duration of one tick in micro-seconds:
 2^ticks-duration/10^6 = 1.048s.";
 }
 leaf ticks-numbers {
 type uint16 {
 range "0..max";
 }
 description
 "Timer duration = ticks-numbers*2^ticks-duration / 10^6.";
 }

 description
 "Duration is seconds of the inactivity timer, 0 indicates
 that the timer is disabled.

 Allows a precision from micro-second to year by sending the
 tick-duration value. For instance:

 tick-duration / smallest value highest value
 v
 20: 00y 000d 00h 00m 01s.048575<->00y 000d 19h 05m 18s.428159
 21: 00y 000d 00h 00m 02s.097151<->00y 001d 14h 10m 36s.856319
 22: 00y 000d 00h 00m 04s.194303<->00y 003d 04h 21m 13s.712639
 23: 00y 000d 00h 00m 08s.388607<->00y 006d 08h 42m 27s.425279
 24: 00y 000d 00h 00m 16s.777215<->00y 012d 17h 24m 54s.850559
 25: 00y 000d 00h 00m 33s.554431<->00y 025d 10h 49m 49s.701119

 Note that the smallest value is also the incrementation step,
 so the timer precision.";
 }
 container retransmission-timer {
 leaf ticks-duration {
 type uint8;
 default "20";
 description
 "Duration of one tick in micro-seconds:
 2^ticks-duration/10^6 = 1.048s.";

Minaburo & Toutain Expires 12 April 2023 [Page 42]

Internet-Draft LPWAN SCHC YANG module October 2022

 }
 leaf ticks-numbers {
 type uint16 {
 range "1..max";
 }
 description
 "Timer duration = ticks-numbers*2^ticks-duration / 10^6.";
 }

 when "derived-from-or-self(../fragmentation-mode,
 ’fragmentation-mode-ack-on-error’)
 or
 derived-from-or-self(../fragmentation-mode,
 ’fragmentation-mode-ack-always’) ";
 description
 "Duration in seconds of the retransmission timer.
 See inactivity timer.";
 }
 leaf max-ack-requests {
 when "derived-from-or-self(../fragmentation-mode,
 ’fragmentation-mode-ack-on-error’)
 or
 derived-from-or-self(../fragmentation-mode,
 ’fragmentation-mode-ack-always’) ";
 type uint8 {
 range "1..max";
 }
 description
 "The maximum number of retries for a specific SCHC ACK.";
 }
 choice mode {
 case no-ack;
 case ack-always;
 case ack-on-error {
 leaf tile-size {
 when "derived-from-or-self(../fragmentation-mode,
 ’fragmentation-mode-ack-on-error’)";
 type uint8;
 description
 "Size, in bits, of tiles. If not specified or set to 0,
 tiles fill the fragment.";
 }
 leaf tile-in-all-1 {
 when "derived-from-or-self(../fragmentation-mode,
 ’fragmentation-mode-ack-on-error’)";
 type schc:all-1-data-type;
 description
 "Defines whether the sender and receiver expect a tile in

Minaburo & Toutain Expires 12 April 2023 [Page 43]

Internet-Draft LPWAN SCHC YANG module October 2022

 All-1 fragments or not, or if it is left to the sender’s
 choice.";
 }
 leaf ack-behavior {
 when "derived-from-or-self(../fragmentation-mode,
 ’fragmentation-mode-ack-on-error’)";
 type schc:ack-behavior-type;
 description
 "Sender behavior to acknowledge, after All-0, All-1 or
 when the LPWAN allows it.";
 }
 }
 description
 "RFC 8724 defines 3 fragmentation modes.";
 }
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 // Define rule ID. Rule ID is composed of a RuleID value and a
 // Rule ID Length

 grouping rule-id-type {
 leaf rule-id-value {
 type uint32;
 description
 "Rule ID value, this value must be unique, considering its
 length.";
 }
 leaf rule-id-length {
 type uint8 {
 range "0..32";
 }
 description
 "Rule ID length, in bits. The value 0 is for implicit
 rules.";
 }
 description
 "A rule ID is composed of a value and a length, expressed in
 bits.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }

 // SCHC table for a specific device.

Minaburo & Toutain Expires 12 April 2023 [Page 44]

Internet-Draft LPWAN SCHC YANG module October 2022

 container schc {
 list rule {
 key "rule-id-value rule-id-length";
 uses rule-id-type;
 leaf rule-nature {
 type nature-type;
 mandatory true;
 description
 "Specify the rule’s nature.";
 }
 choice nature {
 case fragmentation {
 if-feature "fragmentation";
 uses fragmentation-content;
 }
 case compression {
 if-feature "compression";
 uses compression-content;
 }
 description
 "A rule is for compression, for no-compression or for
 fragmentation.";
 }
 description
 "Set of rules compression, no compression or fragmentation
 rules identified by their rule-id.";
 }
 description
 "A SCHC set of rules is composed of a list of rules which are
 used for compression, no-compression or fragmentation.";
 reference
 "RFC 8724 SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation";
 }
 }
 <CODE ENDS>

 Figure 6

7. Implementation Status

 This section records the status of known implementations of the
 protocol defined by this specification at the time of posting of this
 Internet-Draft, and is based on a proposal described in [RFC7942].
 The description of implementations in this section is intended to
 assist the IETF in its decision processes in progressing drafts to
 RFCs. Please note that the listing of any individual implementation
 here does not imply endorsement by the IETF. Furthermore, no effort

Minaburo & Toutain Expires 12 April 2023 [Page 45]

Internet-Draft LPWAN SCHC YANG module October 2022

 has been spent to verify the information presented here that was
 supplied by IETF contributors. This is not intended as, and must not
 be construed to be, a catalog of available implementations or their
 features. Readers are advised to note that other implementations may
 exist.

 According to [RFC7942], "this will allow reviewers and working groups
 to assign due consideration to documents that have the benefit of
 running code, which may serve as evidence of valuable experimentation
 and feedback that have made the implemented protocols more mature.
 It is up to the individual working groups to use this information as
 they see fit".

 * Openschc is implementing the conversion between the local rule
 representation and the representation conforming to the data model
 in JSON and CBOR (following -08 draft).

8. IANA Considerations

 This document registers one URI and one YANG modules.

8.1. URI Registration

 This document requests IANA to register the following URI in the
 "IETF XML Registry" [RFC3688]:

 URI: urn:ietf:params:xml:ns:yang:ietf-schc

 Registrant Contact: The IESG.

 XML: N/A; the requested URI is an XML namespace.

8.2. YANG Module Name Registration

 This document registers the following one YANG modules in the "YANG
 Module Names" registry [RFC6020].

 name: ietf-schc

 namespace: urn:ietf:params:xml:ns:yang:ietf-schc

 prefix: schc

 reference: RFC XXXX Data Model for Static Context Header
 Compression (SCHC)

Minaburo & Toutain Expires 12 April 2023 [Page 46]

Internet-Draft LPWAN SCHC YANG module October 2022

9. Security Considerations

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC8446].

 The Network Configuration Access Control Model (NACM) [RFC8341]
 provides the means to restrict access for particular NETCONF or
 RESTCONF users to a preconfigured subset of all available NETCONF or
 RESTCONF protocol operations and content.

 This data model formalizes the rules elements described in [RFC8724]
 for compression, and fragmentation. As explained in the architecture
 document [I-D.ietf-lpwan-architecture], a rule can be read, created,
 updated or deleted in response to a management request. These
 actions can be done between two instances of SCHC or between a SCHC
 instance and a rule repository.

 create
 (-------) read +=======+ *
 (rules)<------->|Rule |<--|-------->
 (-------) update |Manager| NETCONF, RESTCONF,...
 . read delete +=======+ request
 .
 +-------+
 <===| R & D |<===
 ===>| C & F |===>
 +-------+

 The rule contains sensitive information such as the application IPv6
 address where the device’s data will be sent after decompression. A
 device may try to modify other devices’ rules by changing the
 application address and may block communication or allows traffic
 eavesdropping. Therefore, a device must be allowed to modify only
 its own rules on the remote SCHC instance. The identity of the
 requester must be validated. This can be done through certificates
 or access lists. By reading a module, an attacker may know the
 traffic a device can generate and learn about application addresses
 or REST API.

 The full tree is sensitive, since it represents all the elements that
 can be managed. This module aims to be encapsulated into a YANG
 module including access controls and identities.

Minaburo & Toutain Expires 12 April 2023 [Page 47]

Internet-Draft LPWAN SCHC YANG module October 2022

10. Annex A : Example

 The informal rules given Figure 7 will represented in XML as shown in
 Figure 8.

 /-------------------------\
 |Rule 6/3 110 |
 |---------------+---+--+--+----------------+-------+----------------\
IPV6.VER	4	1	BI	6	EQUAL	NOT-SENT
IPV6.TC	8	1	BI	0	EQUAL	NOT-SENT
IPV6.FL	20	1	BI	0	IGNORE	NOT-SENT
IPV6.LEN	16	1	BI		IGNORE	COMPUTE-LENGTH
IPV6.NXT	8	1	BI	58	EQUAL	NOT-SENT
IPV6.HOP_LMT	8	1	BI	255	IGNORE	NOT-SENT
IPV6.DEV_PREFIX	64	1	BI	200104701f2101d2	EQUAL	NOT-SENT
IPV6.DEV_IID	64	1	BI	0000000000000003	EQUAL	NOT-SENT
IPV6.APP_PREFIX	64	1	BI		IGNORE	VALUE-SENT
IPV6.APP_IID	64	1	BI		IGNORE	VALUE-SENT
\---------------+---+--+--+----------------+-------+----------------/						
/-------------------------\						
Rule 12/11 00001100						
!=========================+===\						
!^ Fragmentation mode : NoAck header dtag 2 Window 0 FCN 3 UP ^!						
!^ No Tile size specified ^!						
!^ RCS Algorithm: RCS_CRC32 ^!						
\===/						
/-------------------------\						
Rule 100/8 01100100						
NO COMPRESSION RULE						
 \-------------------------/

 Figure 7: Rules example

 <?xml version=’1.0’ encoding=’UTF-8’?>
 <schc xmlns="urn:ietf:params:xml:ns:yang:ietf-schc">
 <rule>
 <rule-id-value>6</rule-id-value>
 <rule-id-length>3</rule-id-length>
 <rule-nature>nature-compression</rule-nature>
 <entry>
 <field-id>fid-ipv6-version</field-id>
 <field-length>4</field-length>
 <field-position>1</field-position>
 <direction-indicator>di-bidirectional</direction-indicator>
 <matching-operator>mo-equal</matching-operator>
 <comp-decomp-action>cda-not-sent</comp-decomp-action>
 <target-value>
 <index>0</index>

Minaburo & Toutain Expires 12 April 2023 [Page 48]

Internet-Draft LPWAN SCHC YANG module October 2022

 <value>AAY=</value>
 </target-value>
 </entry>
 <entry>
 <field-id>fid-ipv6-trafficclass</field-id>
 <field-length>8</field-length>
 <field-position>1</field-position>
 <direction-indicator>di-bidirectional</direction-indicator>
 <matching-operator>mo-equal</matching-operator>
 <comp-decomp-action>cda-not-sent</comp-decomp-action>
 <target-value>
 <index>0</index>
 <value>AA==</value>
 </target-value>
 </entry>
 <entry>
 <field-id>fid-ipv6-flowlabel</field-id>
 <field-length>20</field-length>
 <field-position>1</field-position>
 <direction-indicator>di-bidirectional</direction-indicator>
 <matching-operator>mo-ignore</matching-operator>
 <comp-decomp-action>cda-not-sent</comp-decomp-action>
 <target-value>
 <index>0</index>
 <value>AA==</value>
 </target-value>
 </entry>
 <entry>
 <field-id>fid-ipv6-payload-length</field-id>
 <field-length>16</field-length>
 <field-position>1</field-position>
 <direction-indicator>di-bidirectional</direction-indicator>
 <matching-operator>mo-ignore</matching-operator>
 <comp-decomp-action>cda-compute</comp-decomp-action>
 </entry>
 <entry>
 <field-id>fid-ipv6-nextheader</field-id>
 <field-length>8</field-length>
 <field-position>1</field-position>
 <direction-indicator>di-bidirectional</direction-indicator>
 <matching-operator>mo-equal</matching-operator>
 <comp-decomp-action>cda-not-sent</comp-decomp-action>
 <target-value>
 <index>0</index>
 <value>ADo=</value>
 </target-value>
 </entry>
 <entry>

Minaburo & Toutain Expires 12 April 2023 [Page 49]

Internet-Draft LPWAN SCHC YANG module October 2022

 <field-id>fid-ipv6-hoplimit</field-id>
 <field-length>8</field-length>
 <field-position>1</field-position>
 <direction-indicator>di-bidirectional</direction-indicator>
 <matching-operator>mo-ignore</matching-operator>
 <comp-decomp-action>cda-not-sent</comp-decomp-action>
 <target-value>
 <index>0</index>
 <value>AP8=</value>
 </target-value>
 </entry>
 <entry>
 <field-id>fid-ipv6-devprefix</field-id>
 <field-length>64</field-length>
 <field-position>1</field-position>
 <direction-indicator>di-bidirectional</direction-indicator>
 <matching-operator>mo-equal</matching-operator>
 <comp-decomp-action>cda-not-sent</comp-decomp-action>
 <target-value>
 <index>0</index>
 <value>IAEEcB8hAdI=</value>
 </target-value>
 </entry>
 <entry>
 <field-id>fid-ipv6-deviid</field-id>
 <field-length>64</field-length>
 <field-position>1</field-position>
 <direction-indicator>di-bidirectional</direction-indicator>
 <matching-operator>mo-equal</matching-operator>
 <comp-decomp-action>cda-not-sent</comp-decomp-action>
 <target-value>
 <index>0</index>
 <value>AAAAAAAAAAM=</value>
 </target-value>
 </entry>
 <entry>
 <field-id>fid-ipv6-appprefix</field-id>
 <field-length>64</field-length>
 <field-position>1</field-position>
 <direction-indicator>di-bidirectional</direction-indicator>
 <matching-operator>mo-ignore</matching-operator>
 <comp-decomp-action>cda-value-sent</comp-decomp-action>
 </entry>
 <entry>
 <field-id>fid-ipv6-appiid</field-id>
 <field-length>64</field-length>
 <field-position>1</field-position>
 <direction-indicator>di-bidirectional</direction-indicator>

Minaburo & Toutain Expires 12 April 2023 [Page 50]

Internet-Draft LPWAN SCHC YANG module October 2022

 <matching-operator>mo-ignore</matching-operator>
 <comp-decomp-action>cda-value-sent</comp-decomp-action>
 </entry>
 </rule>
 <rule>
 <rule-id-value>12</rule-id-value>
 <rule-id-length>11</rule-id-length>
 <rule-nature>nature-fragmentation</rule-nature>
 <direction>di-up</direction>
 <rcs-algorithm>rcs-crc32</rcs-algorithm>
 <dtag-size>2</dtag-size>
 <fcn-size>3</fcn-size>
 <fragmentation-mode>fragmentation-mode-no-ack</fragmentation-mode>
 </rule>
 <rule>
 <rule-id-value>100</rule-id-value>
 <rule-id-length>8</rule-id-length>
 <rule-nature>nature-no-compression</rule-nature>
 </rule>
 </schc>

 Figure 8: XML representation of the rules.

11. Acknowledgements

 The authors would like to thank Dominique Barthel, Carsten Bormann,
 Ivan Martinez, Alexander Pelov for their careful reading and valuable
 inputs. A special thanks for Joe Clarke, Carl Moberg, Tom Petch,
 Martin Thomson, and Eric Vyncke for their explanations and wise
 advices when building the model.

12. References

12.1. Normative References

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <https://www.rfc-editor.org/info/rfc768>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

Minaburo & Toutain Expires 12 April 2023 [Page 51]

Internet-Draft LPWAN SCHC YANG module October 2022

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC7136] Carpenter, B. and S. Jiang, "Significance of IPv6
 Interface Identifiers", RFC 7136, DOI 10.17487/RFC7136,
 February 2014, <https://www.rfc-editor.org/info/rfc7136>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8200] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", STD 86, RFC 8200,
 DOI 10.17487/RFC8200, July 2017,
 <https://www.rfc-editor.org/info/rfc8200>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

Minaburo & Toutain Expires 12 April 2023 [Page 52]

Internet-Draft LPWAN SCHC YANG module October 2022

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8613] Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
 <https://www.rfc-editor.org/info/rfc8613>.

 [RFC8724] Minaburo, A., Toutain, L., Gomez, C., Barthel, D., and JC.
 Zuniga, "SCHC: Generic Framework for Static Context Header
 Compression and Fragmentation", RFC 8724,
 DOI 10.17487/RFC8724, April 2020,
 <https://www.rfc-editor.org/info/rfc8724>.

 [RFC8824] Minaburo, A., Toutain, L., and R. Andreasen, "Static
 Context Header Compression (SCHC) for the Constrained
 Application Protocol (CoAP)", RFC 8824,
 DOI 10.17487/RFC8824, June 2021,
 <https://www.rfc-editor.org/info/rfc8824>.

12.2. Informative References

 [I-D.ietf-lpwan-architecture]
 Pelov, A., Thubert, P., and A. Minaburo, "LPWAN Static
 Context Header Compression (SCHC) Architecture", Work in
 Progress, Internet-Draft, draft-ietf-lpwan-architecture-
 02, 30 June 2022, <https://www.ietf.org/archive/id/draft-
 ietf-lpwan-architecture-02.txt>.

 [RFC7942] Sheffer, Y. and A. Farrel, "Improving Awareness of Running
 Code: The Implementation Status Section", BCP 205,
 RFC 7942, DOI 10.17487/RFC7942, July 2016,
 <https://www.rfc-editor.org/info/rfc7942>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC7967] Bhattacharyya, A., Bandyopadhyay, S., Pal, A., and T.
 Bose, "Constrained Application Protocol (CoAP) Option for
 No Server Response", RFC 7967, DOI 10.17487/RFC7967,
 August 2016, <https://www.rfc-editor.org/info/rfc7967>.

 [RFC8376] Farrell, S., Ed., "Low-Power Wide Area Network (LPWAN)
 Overview", RFC 8376, DOI 10.17487/RFC8376, May 2018,
 <https://www.rfc-editor.org/info/rfc8376>.

Minaburo & Toutain Expires 12 April 2023 [Page 53]

Internet-Draft LPWAN SCHC YANG module October 2022

 [RFC9011] Gimenez, O., Ed. and I. Petrov, Ed., "Static Context
 Header Compression and Fragmentation (SCHC) over LoRaWAN",
 RFC 9011, DOI 10.17487/RFC9011, April 2021,
 <https://www.rfc-editor.org/info/rfc9011>.

Authors’ Addresses

 Ana Minaburo
 Acklio
 1137A avenue des Champs Blancs
 35510 Cesson-Sevigne Cedex
 France
 Email: ana@ackl.io

 Laurent Toutain
 Institut MINES TELECOM; IMT Atlantique
 2 rue de la Chataigneraie
 CS 17607
 35576 Cesson-Sevigne Cedex
 France
 Email: Laurent.Toutain@imt-atlantique.fr

Minaburo & Toutain Expires 12 April 2023 [Page 54]

	draft-ietf-lpwan-architecture-02
	draft-ietf-lpwan-schc-compound-ack-17
	draft-ietf-lpwan-schc-over-nbiot-15
	draft-ietf-lpwan-schc-over-sigfox-23
	draft-ietf-lpwan-schc-yang-data-model-21

