
NETMOD Working Group Q. Wu
Internet-Draft B. Claise
Updates: 8407 (if approved) Huawei
Intended status: Standards Track P. Liu
Expires: 24 December 2022 Z. Du
 China Mobile
 M. Boucadair
 Orange
 22 June 2022

 Node Tags in YANG Modules
 draft-ietf-netmod-node-tags-08

Abstract

 This document defines a method to tag nodes that are associated with
 operation and management data in YANG modules. This method for
 tagging YANG nodes is meant to be used for classifying either data
 nodes or instances of data nodes from different YANG modules and
 identifying their characteristic data. Tags may be registered as
 well as assigned during the definition of the module, assigned by
 implementations, or dynamically defined and set by users.

 This document also provides guidance to future YANG data model
 writers; as such, this document updates RFC 8407.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 24 December 2022.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Wu, et al. Expires 24 December 2022 [Page 1]

Internet-Draft YANG Node Tags June 2022

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Sample Use Cases for Node Tags 5
 4. Node Tag Values . 6
 4.1. IETF Tags . 6
 4.2. Vendor Tags . 6
 4.3. User Tags . 6
 4.4. Reserved Tags . 7
 5. Node Tag Management . 7
 5.1. Module Design Tagging 7
 5.2. Implementation Tagging 7
 5.3. User Tagging . 7
 6. Node Tags Module Structure 7
 6.1. Node Tags Module Tree 7
 7. Node Tags YANG Module . 8
 8. Guidelines to Model Writers 12
 8.1. Define Standard Tags 12
 9. IANA Considerations . 13
 9.1. YANG Data Node Tag Prefixes Registry 13
 9.2. IETF YANG Data Node Tags Registry 14
 9.3. Updates to the IETF XML Registry 15
 9.4. Updates to the YANG Module Names Registry 15
 10. Security Considerations 16
 11. Acknowledgements . 16
 12. Contributors . 17
 13. References . 17
 13.1. Normative References 17
 13.2. Informative References 18
 Appendix A. Example: Additional Auxiliary Data Property
 Information . 19
 Appendix B. Instance Level Tunnel Tagging Example 20
 Appendix C. NETCONF Example 22
 Appendix D. Non-NMDA State Module 23
 Appendix E. Targeted Data Fetching Example 27
 Appendix F. Changes between Revisions 29
 Authors’ Addresses . 31

Wu, et al. Expires 24 December 2022 [Page 2]

Internet-Draft YANG Node Tags June 2022

1. Introduction

 The use of tags for classification and organization purposes is
 fairly ubiquitous, not only within IETF protocols, but globally in
 the Internet (e.g., "#hashtags"). For the specific case of YANG data
 models, a module tag is defined as a string that is associated with a
 module name at the module level [RFC8819].

 Many data models have been specified by various Standards Developing
 Organizations (SDOs) and the Open Source community, and it is likely
 that many more will be specified. These models cover many of the
 networking protocols and techniques. However, data nodes defined by
 these technology-specific data models might represent only a portion
 of fault, configuration, accounting, performance, and security
 (FCAPS) management information ([FCAPS]) at different levels and
 network locations, but also categorized in various different ways.
 Furthermore, there is no consistent classification criteria or
 representations for a specific service, feature, or data source.

 This document defines tags for both nodes in the schema tree and
 instance nodes in the data tree and shows how they can be associated
 with nodes within a YANG module, which:

 * Provide dictionary meaning for specific targeted data nodes;

 * Indicate a relationship between data nodes within the same YANG
 module or from different YANG modules;

 * Identify auxiliary data properties related to data nodes;

 * Identify key performance metric related data nodes and the
 absolute XPath expression identifying the element path to the
 nodes.

 To that aim, this document defines a YANG module [RFC7950] that
 augments the YANG Module Tags ([RFC8819]) to provide a list of node
 entries to add or remove node tags as well as to view the set of node
 tags associated with specific data nodes or instance of data nodes
 within YANG modules. This new module is: "ietf-node-tags"
 (Section 7).

 Typically, NETCONF clients can discover node tags supported by a
 NETCONF server by means of the <get-data> operation on the
 operational datastore (Section 3.1 of [RFC8526]) via the "ietf-node-
 tags" module. Alternatively, <get-schema> operation can be used to
 retrieve tags for nodes in the schema tree in any data module. These
 node tags can be used by a NETCONF [RFC6241] or RESTCONF [RFC8040]
 client to classify either data nodes or instance of these data nodes

Wu, et al. Expires 24 December 2022 [Page 3]

Internet-Draft YANG Node Tags June 2022

 from different YANG modules and identify characteristic data and
 associated path to the nodes or node instances. Therefore, the
 NETCONF/ RESTCONF client can query specific configuration or
 operational state on a server corresponding to characteristic data.

 Similar to YANG module tags defined in [RFC8819], these node tags
 (e.g., tags for node in the schema node) may be registered or
 assigned during the module definition, assigned (e.g., tags for nodes
 in the data tree) by implementations, or dynamically defined and set
 by users. The contents of node tags from the operational state view
 are constructed using the following steps:

 1. System tags (i.e., tags of "system" origin) that assigned during
 the module definition time are added;

 2. User-configured tags (i.e., tags of "intended" origin) that
 dynamically defined and set by users at runtime;

 3. Any tag that is equal to a masked-tag is removed.

 This document defines an extension statement to indicate tags for
 data nodes. YANG metadata annotations are also defined in [RFC7952]
 as a YANG extension. The value of YANG metadata annotations is
 attached to a given data node instance and decided and assigned by
 the server and sent to the client (e.g., the origin value indicates
 to the client the origin of a particular data node instance) while
 tags for data node in the schema tree defined in Section 7 are
 retrieved centrally via the "ietf-node-tags" module and can be
 dynamically set by the client.

 This document also defines an IANA registry for tag prefixes and a
 set of globally assigned tags (Section 9).

 Section 8 provides guidelines for authors of YANG data models. This
 document updates [RFC8407].

 The YANG data model in this document conforms to the Network
 Management Datastore Architecture defined in [RFC8342].

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119][RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Wu, et al. Expires 24 December 2022 [Page 4]

Internet-Draft YANG Node Tags June 2022

 The following terms are defined in [RFC7950] and are not redefined
 here:

 * Data Node

 * Data Tree

 * Schema Tree

 This document defines the following term:

 Node Tag: Tag for YANG nodes used for classifying either data nodes
 or instances of data nodes from different YANG modules and
 identifying their characteristic data.

 The meanings of the symbols in tree diagrams are defined in
 [RFC8340].

3. Sample Use Cases for Node Tags

 The following lists a set of use cases to illustrate the use of node
 tags. This section does not intend to be exhaustive.

 An example of the use of tags is to search discrete categories of
 YANG nodes that are scattered across the same or different YANG
 modules supported by a device. For example, if instances of these
 nodes in YANG modules are adequately tagged and set by a first client
 ("client A") via the "ietf-node-tags" module (Section 7) and
 retrieved by another client ("client B") from the operational
 datastore, then "client B" can obtain the path to the tagged nodes
 and subscribe only to network performance related data node instances
 in the operational datastore supported by a device.

 "Client B" can also subscribe to updates from the operational
 datastore using the "ietf-node-tags" module. Any tag changes in the
 updates will then resynchronize to the "client B".

 Also, tag classification is useful for users searching data nodes
 repositories. A query restricted to the "ietf:counter" data node tag
 in the "ietf-node-tags" module can be used to return only the YANG
 nodes that are associated with the counter. Without tags, a user
 would need to know the name of all the IETF YANG data nodes or
 instances of data nodes in different YANG modules.

 Future management protocol extensions could allow for filtering
 queries of configuration or operational state on a server based on
 tags (for example, return all operational state related to system
 management).

Wu, et al. Expires 24 December 2022 [Page 5]

Internet-Draft YANG Node Tags June 2022

4. Node Tag Values

 All node tags (except in some cases of user tags as described in
 Section 4.3) begin with a prefix indicating who owns their
 definition. An IANA registry (Section 9.1) is used to register node
 tag prefixes. Initially, three prefixes are defined.

 No further structure is imposed by this document on the value
 following the registered prefix, and the value can contain any YANG
 type ’string’ characters except carriage returns, newlines, tabs, and
 spaces.

 Except for the conflict-avoiding prefix, this document is
 purposefully not specifying any structure on (i.e., restricting) the
 tag values. The intent is to avoid arbitrarily restricting the
 values that designers, implementers, and users can use. As a result
 of this choice, designers, implementers, and users are free to add or
 not add any structure they may require to their own tag values.

4.1. IETF Tags

 An IETF tag is a node tag that has the prefix "ietf:".

 All IETF node tags are registered with IANA in the registry defined
 in Section 9.2.

4.2. Vendor Tags

 A vendor tag is a tag that has the prefix "vendor:".

 These tags are defined by the vendor that implements the module, and
 are not registered with IANA. However, it is RECOMMENDED that the
 vendor includes extra identification in the tag to avoid collisions,
 such as using the enterprise or organization name following the
 "vendor:" prefix (e.g., vendor:entno:vendor-defined-classifier).

4.3. User Tags

 User tags are defined by a user/administrator and are not registered
 by IANA.

 Any tag with the prefix "user:" is a user tag. Furthermore, any tag
 that does not contain a colon (":", i.e., has no prefix) is also a
 user tag. Users are not required to use the "user:" prefix; however,
 doing so is RECOMMENDED.

Wu, et al. Expires 24 December 2022 [Page 6]

Internet-Draft YANG Node Tags June 2022

4.4. Reserved Tags

 Section 9.1 describes the IANA registry of tag prefixes. Any prefix
 not included in that registry is reserved for future use, but tags
 starting with such a prefix are still valid tags.

5. Node Tag Management

 Tags may be associated with a data node within a YANG module in a
 number of ways. Typically, tags may be defined and associated at the
 module design time, at implementation time without the need of a live
 server, or via user administrative control. As the main consumers of
 node tags are users, users may also remove any tag from a live
 server, no matter how the tag became associated with a data node
 within a YANG module.

5.1. Module Design Tagging

 A data node definition MAY indicate a set of node tags to be added by
 a module’s implementer. These design time tags are indicated using
 ’node-tag’ extension statement.

 If the data node is defined in an IETF Standards Track document, node
 tags MUST be IETF Tags (Section 4.1). Thus, new data nodes can drive
 the addition of new IETF tags to the IANA registry defined in
 Section 9.2, and the IANA registry can serve as a check against
 duplication.

5.2. Implementation Tagging

 An implementation MAY include additional tags associated with data
 nodes within a YANG module. These tags SHOULD be IETF ((i.e.,
 registered)) or vendor tags.

5.3. User Tagging

 Node tags of any kind, with or without a prefix, can be assigned and
 removed by the user from a server using normal configuration
 mechanisms. In order to remove a node tag from the operational
 datastore, the user adds a matching "masked-tag" entry for a given
 node within the ’ietf-node-tags’ module.

6. Node Tags Module Structure

6.1. Node Tags Module Tree

 The tree associated with the "ietf-node-tags" module is as follows:

Wu, et al. Expires 24 December 2022 [Page 7]

Internet-Draft YANG Node Tags June 2022

 module: ietf-node-tags
 augment /tags:module-tags/tags:module:
 +--rw node-tags
 +--rw node* [id]
 +--rw id nacm:node-instance-identifier
 +--rw tags* [tag]
 | +--rw tag tags:tag
 | +--rw type? identityref
 +--rw masked-tag* tags:tag

 Figure 1: YANG Module Node Tags Tree Diagram

7. Node Tags YANG Module

 The "ietf-node-tags" module imports types from [RFC8819] and
 [RFC8341].

 <CODE BEGINS> file "ietf-node-tags@2022-02-04.yang"
 module ietf-node-tags {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-node-tags";
 prefix ntags;

 import ietf-netconf-acm {
 prefix nacm;
 reference
 "RFC 8341: Network Configuration Access Control
 Model";
 }
 import ietf-module-tags {
 prefix tags;
 reference
 "RFC 8819: YANG Module Tags ";
 }

 organization
 "IETF NetMod Working Group (NetMod)";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Editor: Qin Wu
 <mailto:bill.wu@huawei.com>

 Editor: Benoit Claise
 <mailto:benoit.claise@huawei.com>

 Editor: Peng Liu

Wu, et al. Expires 24 December 2022 [Page 8]

Internet-Draft YANG Node Tags June 2022

 <mailto:liupengyjy@chinamobile.com>

 Editor: Zongpeng Du
 <mailto:duzongpeng@chinamobile.com>

 Editor: Mohamed Boucadair
 <mailto:mohamed.boucadair@orange.com>";
 // RFC Ed.: replace XXXX with actual RFC number and
 // remove this note.
 description
 "This module describes a mechanism associating
 tags with YANG node within YANG modules. Tags may be IANA
 assigned or privately defined.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (https://datatracker.ietf.org/html/rfcXXXX); see the RFC itself
 for full legal notices.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and RFC number and remove this note.
 revision 2022-02-04 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: Node Tags in YANG Modules";
 }
 identity node-tag-type {
 description
 "Base identity for node tag type.";
 }
 identity metric {
 base node-tag-type;
 description
 "Identity for metric tag type.";
 }
 identity delay {
 base node-tag-type;
 description

Wu, et al. Expires 24 December 2022 [Page 9]

Internet-Draft YANG Node Tags June 2022

 "Identity for delay metric tag type.";
 }
 identity jitter {
 base node-tag-type;
 description
 "Identity for jitter metric tag type.";
 }
 identity loss {
 base node-tag-type;
 description
 "Identity for loss metric tag type.";
 }
 identity counter {
 base node-tag-type;
 description
 "Identity for counter metric tag type.";
 }
 identity summary {
 base node-tag-type;
 description
 "Identity for summary metric tag type.";
 }
 identity gauge {
 base node-tag-type;
 description
 "Identity for gauge metric tag type.";
 }
 identity unknown {
 base node-tag-type;
 description
 "Identity for unkown metric tag type.";
 }
 identity agg {
 base node-tag-type;
 description
 "Identity for aggregated metric tag type.";
 }
 extension node-tag {
 argument tag;
 description
 "The argument ’tag’ is of type ’tag’. This extension statement
 is used by module authors to indicate node tags that should
 be added automatically by the system. As such, the origin of
 the value for the pre-defined tags should be set to ’system’.";
 }

 augment "/tags:module-tags/tags:module" {
 description

Wu, et al. Expires 24 December 2022 [Page 10]

Internet-Draft YANG Node Tags June 2022

 "Augment the Module Tags module with node tag
 attributes.";
 container node-tags {
 description
 "Contains the list of nodes or node instances and their associated
 node tags.";
 list node {
 key "id";
 description
 "Includes a list of nodes and their associated
 node tags.";
 leaf id {
 type nacm:node-instance-identifier;
 description
 "The YANG data node name or data node instance name.";
 }
 list tags {
 key "tag";
 description
 "Lists the tags associated with the node within
 the YANG module.

 See the IANA ’YANG node Tag Prefixes’ registry
 for reserved prefixes and the IANA ’IETF YANG Data
 Node Tags’ registry for IETF tags.

 The ’operational’ state view of this list is
 constructed using the following steps:

 1) System tags (i.e., tags of ’system’ origin) are
 added.
 2) User configured tags (i.e., tags of ’intended’
 origin) are added.
 3) Any tag that is equal to a masked-tag is removed.";
 reference
 "RFC XXXX: node Tags in YANG Data
 Modules, Section 9";
 leaf tag {
 type tags:tag;
 description
 "Node tag corresponding to type of node tag.";
 }
 leaf type {
 type identityref {
 base node-tag-type;
 }
 description
 "Type of node tag.";

Wu, et al. Expires 24 December 2022 [Page 11]

Internet-Draft YANG Node Tags June 2022

 }
 }
 leaf-list masked-tag {
 type tags:tag;
 description
 "The list of tags that should not be associated with the
 node within the YANG module. The user can remove
 (mask) tags from the operational state datastore by
 adding them to this list. It is not an error to add tags
 to this list that are not associated with the data
 node within YANG module, but they have no operational
 effect.";
 }
 }
 }
 }
 }
 <CODE ENDS>

8. Guidelines to Model Writers

 This section updates [RFC8407] by providing text that may be regarded
 as a new subsection to Section 4 of that document. It does not
 change anything already present in [RFC8407].

8.1. Define Standard Tags

 A module MAY indicate, using node tag extension statements, a set of
 node tags that are to be automatically associated with node within
 the module (i.e., not added through configuration).

 module example-module-A {
 //...
 import ietf-node-tags { prefix ntags; }

 container top {
 list X {
 leaf foo {
 ntags:node-tag "ietf:summary";
 }
 leaf bar {
 ntags:node-tag "ietf:loss";
 }
 }
 }
 // ...
 }

Wu, et al. Expires 24 December 2022 [Page 12]

Internet-Draft YANG Node Tags June 2022

 Figure 2: An Example of Data Object Tag

 The module writer can use existing standard node tags, or use new
 node tags defined in the data node definition, as appropriate. For
 IETF standardized modules, new node tags MUST be assigned in the IANA
 registry defined in Section 9.2.

9. IANA Considerations

9.1. YANG Data Node Tag Prefixes Registry

 This document requests IANA to create "YANG node Tag Prefixes"
 subregistry in "YANG node Tag" registry.

 Prefix entries in this registry should be short strings consisting of
 lowercase ASCII alpha-numeric characters and a final ":" character.

 The allocation policy for this registry is Specification Required
 [RFC8126]. The Reference and Assignee values should be sufficient to
 identify and contact the organization that has been allocated the
 prefix. There is no specific guidance for the Designated Expert and
 there is a presumption that a code point should be granted unless
 there is a compelling reason to the contrary.

 The initial values for this registry are as follows:

 +----------+----------------------------------+-----------+----------+
 | Prefix | Description | Reference | Assignee |
 +----------+----------------------------------+-----------+----------+
ietf:	IETF Tags allocated in the IANA	[This	IETF
	IETF YANG node Tags	document]	
	registry		
vendor:	Non-registered tags allocated by	[This	IETF
	the module’s implementer.	document]	
user:	Non-registered tags allocated by	[This	IETF
	and for the user.	document]	
 +----------+----------------------------------+-----------+----------+

 Figure 3: Table 1

 Other standards organizations (SDOs) wishing to allocate their own
 set of tags should request the allocation of a prefix from this
 registry.

Wu, et al. Expires 24 December 2022 [Page 13]

Internet-Draft YANG Node Tags June 2022

9.2. IETF YANG Data Node Tags Registry

 This document requests IANA to create "IETF Node Tags" subregistry in
 "YANG node Tag" registry. This subregistry appears below "YANG node
 Tag Prefixes" registry.

 This subregistry allocates tags that have the registered prefix
 "ietf:". New values should be well considered and not achievable
 through a combination of already existing IETF tags.

 The allocation policy for this subregistry is IETF Review [RFC8126].
 The Designated Expert is expected to verify that IANA assigned tags
 conform to Net-Unicode as defined in [RFC5198], and shall not need
 normalization.

 The initial values for this subregistry are as follows:

 +----------------------------+--------------------------+-----------+
 | Node Tag | Description | Reference |
 +----------------------------+--------------------------+-----------+
ietf:metric	Represent metric data	[This
	(e.g., ifstatistics)	document]
	associated with specific	
	node (e.g.,	
	interfaces)	
ietf:delay	Represents the delay metric	
	data associated with	[This
	specific node.	document]
ietf:jitter	Represents the jitter metric [This	
	data asociated with	document]
	specific node.	
ietf:loss	Represents the loss metric	[This
	data associated with	document]
	specific node.	
ietf:counter	Represents any metric value	
	associated with specific	
	node that monotonically	[This
	increases over time,	document]
	starting from zero.	
ietf:gauge	Represents current	
	measurements associated	[This
	with specific node	document]

Wu, et al. Expires 24 December 2022 [Page 14]

Internet-Draft YANG Node Tags June 2022

	that may increase,	
	decrease or stay constant.	
ietf:summary	Represents the metric value [This	
	associated with specific	document]
	node that measures	
	distributions of discrete	
	events without knowing	
	predefined range.	
ietf:unknown	Represents the metric value [This	
	associated with specific	document]
	node that can not	
	determine the type of metric.	
ietf:agg	Relates to aggregated metric [This	
	value associated with	document]
	specific node (i.e.,	
	aggregated statistics)	
 +----------------------------+--------------------------+-----------+

 Figure 4: Table 2

 A data node can contain one or multiple node tags.Data node to be
 tagged with the initial value in Table 2 can be one of ’container’,
 ’leaf-list’, ’list’, or ’leaf’ data node. All tag values described
 in Table 2 can be inherited down the containment hierarchy if Data
 nodes tagged with those tag values is one of ’container’, ’leaf-
 list’, ’list’.

9.3. Updates to the IETF XML Registry

 This document registers the following namespace URI in the "ns"
 subregistry within the "IETF XML Registry" [RFC3688]:

 URI: urn:ietf:params:xml:ns:yang:ietf-node-tags
 Registrant Contact: The IESG.
 XML: N/A; the requested URI is an XML namespace.

9.4. Updates to the YANG Module Names Registry

 This document registers the following YANG module in the YANG Module
 Names registry [RFC6020] within the "YANG Parameters" registry:

Wu, et al. Expires 24 December 2022 [Page 15]

Internet-Draft YANG Node Tags June 2022

 name: ietf-node-tags
 namespace: urn:ietf:params:xml:ns:yang:ietf-node-tags
 prefix: ntags
 reference: RFC XXXX
 maintained by IANA: N

10. Security Considerations

 The YANG module specified in this document defines schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC8446].

 The Network Configuration Access Control Model (NACM) [RFC8341]
 provides the means to restrict access for particular NETCONF or
 RESTCONF users to a preconfigured subset of all available NETCONF or
 RESTCONF protocol operations and content, e.g., the presence of tags
 may reveal information about the way in which data nodes or node
 instances are used and therefore providing access to private
 information or revealing an attack vector should be restricted. Note
 that appropriate privilege and security levels need to be applied to
 the addition and removal of user tags to ensure that a user receives
 the correct data.

 This document adds the ability to associate node tag with data nodes
 or instances of data nodes within the YANG modules. This document
 does not define any actions based on these associations, and none are
 yet defined, and therefore it does not by itself introduce any new
 security considerations.

 Users of the node tag meta-data may define various actions to be
 taken based on the node tag meta-data. These actions and their
 definitions are outside the scope of this document. Users will need
 to consider the security implications of any actions they choose to
 define, including the potential for a tag to get ’masked’ by another
 user.

11. Acknowledgements

 The authors would like to thank Ran Tao for his major contributions
 to the initial modeling and use cases.

Wu, et al. Expires 24 December 2022 [Page 16]

Internet-Draft YANG Node Tags June 2022

 The authors would also like to acknowledge the comments and
 suggestions received from Juergen Schoenwaelder, Andy Bierman, Lou
 Berger,Jaehoon Paul Jeong, Wei Wang, Yuan Zhang, Ander Liu, YingZhen
 Qu, Boyuan Yan, Adrian Farrel, and Mahesh Jethanandani.

12. Contributors

 Liang Geng
 Individual
 32 Xuanwumen West St, Xicheng District
 Beijing 10053

13. References

13.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Wu, et al. Expires 24 December 2022 [Page 17]

Internet-Draft YANG Node Tags June 2022

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of
 Documents Containing YANG Data Models", BCP 216, RFC 8407,
 DOI 10.17487/RFC8407, October 2018,
 <https://www.rfc-editor.org/info/rfc8407>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8819] Hopps, C., Berger, L., and D. Bogdanovic, "YANG Module
 Tags", RFC 8819, DOI 10.17487/RFC8819, January 2021,
 <https://www.rfc-editor.org/info/rfc8819>.

13.2. Informative References

 [FCAPS] International Telecommunication Union, "X.700 : Management
 framework for Open Systems Interconnection (OSI) for CCITT
 applications", , September 1992,
 <http://www.itu.int/rec/T-REC-X.700-199209-I/en>.

 [RFC5198] Klensin, J. and M. Padlipsky, "Unicode Format for Network
 Interchange", RFC 5198, DOI 10.17487/RFC5198, March 2008,
 <https://www.rfc-editor.org/info/rfc5198>.

 [RFC6022] Scott, M. and M. Bjorklund, "YANG Module for NETCONF
 Monitoring", RFC 6022, DOI 10.17487/RFC6022, October 2010,
 <https://www.rfc-editor.org/info/rfc6022>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC7952] Lhotka, L., "Defining and Using Metadata with YANG",
 RFC 7952, DOI 10.17487/RFC7952, August 2016,
 <https://www.rfc-editor.org/info/rfc7952>.

Wu, et al. Expires 24 December 2022 [Page 18]

Internet-Draft YANG Node Tags June 2022

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8526] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "NETCONF Extensions to Support the Network
 Management Datastore Architecture", RFC 8526,
 DOI 10.17487/RFC8526, March 2019,
 <https://www.rfc-editor.org/info/rfc8526>.

 [RFC8639] Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard,
 E., and A. Tripathy, "Subscription to YANG Notifications",
 RFC 8639, DOI 10.17487/RFC8639, September 2019,
 <https://www.rfc-editor.org/info/rfc8639>.

 [RFC8641] Clemm, A. and E. Voit, "Subscription to YANG Notifications
 for Datastore Updates", RFC 8641, DOI 10.17487/RFC8641,
 September 2019, <https://www.rfc-editor.org/info/rfc8641>.

 [RFC8792] Watsen, K., Auerswald, E., Farrel, A., and Q. Wu,
 "Handling Long Lines in Content of Internet-Drafts and
 RFCs", RFC 8792, DOI 10.17487/RFC8792, June 2020,
 <https://www.rfc-editor.org/info/rfc8792>.

 [RFC9195] Lengyel, B. and B. Claise, "A File Format for YANG
 Instance Data", RFC 9195, DOI 10.17487/RFC9195, February
 2022, <https://www.rfc-editor.org/info/rfc9195>.

 [RFC9196] Lengyel, B., Clemm, A., and B. Claise, "YANG Modules
 Describing Capabilities for Systems and Datastore Update
 Notifications", RFC 9196, DOI 10.17487/RFC9196, February
 2022, <https://www.rfc-editor.org/info/rfc9196>.

Appendix A. Example: Additional Auxiliary Data Property Information

 This section gives an example of how Auxiliary Data Property Module
 could be defined. It demonstrates how auxiliary data property
 configuration parameters can be conditionally augmented to the
 generic node list. The example is not intended as a complete module
 for Auxiliary Data Property configuration.

Wu, et al. Expires 24 December 2022 [Page 19]

Internet-Draft YANG Node Tags June 2022

 module ex-auxiliary-data-property {
 yang-version 1.1;
 namespace "http://example.com/auxiliary-data-property";
 prefix "dp";

 import ietf-module-tags {
 prefix tags;
 }
 import ietf-node-tags {
 prefix ntags;
 }
 identity critical {
 base ntags:node-tag-type;
 description
 "Identity for critical node tag type.";
 }
 augment "/tags:module-tags/tags:module/ntags:node-tags/ntags:"
 + "node/ntags:tags" {
 when ’derived-from-or-self(ntags:type, "dp:critical")’;
 description "Extend ietf-node-tags module for auxiliary data property.";
 leaf value {
 type string;
 description
 "The auxiliary information corresponding
 to data node instance tagged with ’critical’
 node tag type.";
 }
 // other auxiliary data property config params, etc.
 }
 }

Appendix B. Instance Level Tunnel Tagging Example

 In the example shown in the following figure,the ’tunnel-svc’ data
 node is a list node defined in a ’example-tunnel-pm’ module and has 7
 child nodes: ’name’,’create-time’,’modified-time’,’average-
 latency’,’packet-loss’,’min-latency’,’max-latency’ leaf node. In
 these child nodes, the ’name’ leaf node is the key leaf for the
 ’tunnel-svc’ list. Following is the tree diagram [RFC8340] for the
 "example-tunnel-pm" module:

Wu, et al. Expires 24 December 2022 [Page 20]

Internet-Draft YANG Node Tags June 2022

 +--rw tunnel-svc* [name]
 | +--rw name string
 | +--ro create-time yang:date-and-time
 | +--ro modified-time yang:date-and-time
 | +--ro average-latency yang:gauge64
 | +--ro packet-loss yang:counter64
 | +--ro min-latency yang:gauge64
 | +--ro max-latency yang:gauge64

 To help identify specific data for a customer, users tags on specific
 instances of the data nodes are created as follows:

 <rpc message-id="103"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-data xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-nmda"
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">
 <datastore>ds:running</datastore>
 <config>
 <module-tag>
 <module>
 <name>example-tunnel-pm</name>
 <node-tags
 xmlns="urn:ietf:params:xml:ns:yang:ietf-node-tags">
 <node>
 <id>
 /tp:tunnel-svc[name=’foo’]/tp:packet-loss
 </id>
 <tags>
 <tag>user:customer1_example_com</tag>
 </tags>
 <tags>
 <tag>ietf:critical</tag>
 </tags>
 </node>
 <node>
 <id>
 /tp:tunnel-svc[name=’bar’]/tp:modified-time
 </id>
 <tags>
 <tag>user:customer2_example_com</tag>
 </tags>
 </node>
 </node-tags>
 </module>
 </module-tag>
 </config>
 </edit-data>
 </rpc>

Wu, et al. Expires 24 December 2022 [Page 21]

Internet-Draft YANG Node Tags June 2022

 Note that the ’ietf:critical’ tag is addtional new tag value that
 needs to be allocated from "IETF Node Tags" subregistry in
 Section 9.2.

Appendix C. NETCONF Example

 The following is a NETCONF example result from a query of node tags
 list. For the sake of brevity only a few module and associated data
 node results are provided. The example uses the folding defined in
 [RFC8792].

Wu, et al. Expires 24 December 2022 [Page 22]

Internet-Draft YANG Node Tags June 2022

 =============== NOTE: ’\’ line wrapping per RFC 8792 ================

 <ns0:data xmlns:ns0="urn:ietf:params:xml:ns:netconf:base:1.0">
 <t:module-tags xmlns:t="urn:ietf:params:xml:ns:yang:ietf-module-tags">
 <t:module>
 <t:name>ietf-interfaces</t:name>
 <s:node-tags
 xmlns:s="urn:ietf:params:xml:ns:yang:ietf-node-tags">
 <s:node>
 <s:id>
 /if:interfaces/if:interface/if:statistics/if:in-errors
 </s:id>
 <s:tags>
 <s:tag>ietf:metric</s:tag>
 </s:tags>
 <s:tags>
 <s:tag>ietf:loss</s:tag>
 </s:tags>
 <s:tags>
 <s:tag>ietf:agg</s:tag>
 </s:tags>
 </s:node>
 </s:node-tags>
 </t:module>
 <t:module>
 <t:name>ietf-ip</t:name>
 <s:node-tags
 xmlns:s="urn:ietf:params:xml:ns:yang:ietf-node-tags">
 <s:node>
 <s:id>/if:interfaces/if:interface/ip:ipv4/ip:mtu</s:id>
 <s:tags>
 <s:tag>ietf:metric</s:tag>
 </s:tags>
 </s:node>
 </s:node-tags>
 </t:module>
 </t:module-tags>
 </ns0:data>

 Figure 5: Example NETCONF Query Output

Appendix D. Non-NMDA State Module

 As per [RFC8407], the following is a non-NMDA module to support
 viewing the operational state for non-NMDA compliant servers.

Wu, et al. Expires 24 December 2022 [Page 23]

Internet-Draft YANG Node Tags June 2022

 <CODE BEGINS> file "ietf-node-tags-state@2022-02-03.yang"
 module ietf-node-tags-state {
 yang-version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-node-tags-state";
 prefix ntags-s;

 import ietf-netconf-acm {
 prefix nacm;
 reference
 "RFC 8341: Network Configuration Access Control
 Model";
 }
 import ietf-module-tags {
 prefix tags;
 }
 import ietf-module-tags-state {
 prefix tags-s;
 reference
 "RFC 8819: YANG Module Tags ";
 }
 organization
 "IETF NetMod Working Group (NetMod)";

 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List:<mailto:netmod@ietf.org>

 Editor: Qin Wu
 <mailto:bill.wu@huawei.com>

 Editor: Benoit Claise
 <mailto:benoit.claise@huawei.com>

 Editor: Peng Liu
 <mailto:liupengyjy@chinamobile.com>

 Editor: Zongpeng Du
 <mailto:duzongpeng@chinamobile.com>

 Editor: Mohamed Boucadair
 <mailto:mohamed.boucadair@orange.com>";
 // RFC Ed.: replace XXXX with actual RFC number and
 // remove this note.
 description
 "This module describes a mechanism associating data node
 tags with YANG data node within YANG modules. Tags may be
 IANA assigned or privately defined.

Wu, et al. Expires 24 December 2022 [Page 24]

Internet-Draft YANG Node Tags June 2022

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (https://datatracker.ietf.org/html/rfcXXXX); see the RFC
 itself for full legal notices.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and RFC number and remove this note.
 revision 2022-02-04 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: Node Tags in YANG Data
 Modules";
 }
 identity node-tag-type {
 description
 "Base identity for node tag type.";
 }
 augment "/tags-s:module-tags-state/tags-s:module" {
 description
 "Augments the Module Tags module with node tag
 attributes.";
 container node-tags {
 config false;
 status deprecated;
 description
 "Contains the list of data nodes and their
 associated self describing tags.";
 list node {
 key "id";
 status deprecated;
 description
 "Lists the data nodes and their associated self
 describing tags.";
 leaf id {
 type nacm:node-instance-identifier;
 mandatory true;
 status deprecated;
 description

Wu, et al. Expires 24 December 2022 [Page 25]

Internet-Draft YANG Node Tags June 2022

 "The YANG data node name.";
 }
 list tags {
 key "tag";
 status deprecated;
 description
 "Lists the tags associated with the data node within
 the YANG module.

 See the IANA ’YANG node Tag Prefixes’ registry
 for reserved prefixes and the IANA ’IETF YANG Data
 Node Tags’ registry for IETF tags.

 The ’operational’ state view of this list is
 constructed using the following steps:

 1) System tags (i.e., tags of ’system’ origin) are
 added.
 2) User configured tags (i.e., tags of ’intended’
 origin) are added.
 3) Any tag that is equal to a masked-tag is removed.";
 reference
 "RFC XXXX: Node Tags in YANG Data
 Modules, Section 9";
 leaf tag {
 type tags:tag;
 status deprecated;
 description
 "Node tag corresponding to type of node tag.";
 }
 leaf type {
 type identityref {
 base node-tag-type;
 }
 status deprecated;
 description "type of the node tag.";
 }
 }
 leaf-list masked-tag {
 type tags:tag;
 status deprecated;
 description
 "The list of tags that should not be associated with the
 data node within the YANG module. The user can remove
 (mask) tags from the operational state datastore by
 adding them to this list. It is not an error to add
 tags to this list that are not associated with the
 data node within YANG module, but they have no

Wu, et al. Expires 24 December 2022 [Page 26]

Internet-Draft YANG Node Tags June 2022

 operational effect.";
 }
 }
 }
 }
 }
 <CODE ENDS>

Appendix E. Targeted Data Fetching Example

 The following provides tagged data node Fetching example. The
 subscription "id" values of 22 used below is just an example. In
 production, the actual values of "id" might not be small integers.

 +-----------+ +-----------+
 | Subscriber| | Publisher |
 +-----+-----+ +-----+-----+
 | |
 | Node Tagging Fetching |
 | (id, node-tag = metric) |
 |<-----------------------------------+
 | |
 | establish-subscription |
 +----------------------------------->|
 | |
 | RPC Reply: OK, id = 22 |
 |<-----------------------------------+
 | |
 | Notification Message (for 22) |
 |<-----------------------------------+
 | |

 The subscriber can query node tag list from operational datastore in
 the network device using "ietf-node-tags" module defined in this
 document and fetch tagged data node instances and associated data
 path to the datastore node. The node tag information instruct the
 receiver to subscribe tagged data node (e.g., performance metric data
 nodes) using standard subscribed notification mechanism [RFC8639].

Wu, et al. Expires 24 December 2022 [Page 27]

Internet-Draft YANG Node Tags June 2022

 =============== NOTE: ’\’ line wrapping per RFC 8792 ================

 <?xml version="1.0" encoding="UTF-8"?>
 <t:module-tags
 xmlns:t="urn:ietf:params:xml:ns:yang:ietf-module-tags">
 <t:module>
 <t:name>ietf-interfaces</t:name>
 <s:node-tags
 xmlns:s="urn:ietf:params:xml:ns:yang:ietf-node-tags">
 <s:node>
 <s:id>/if:interfaces/if:interface/if:in-errors</s:id>
 <s:tags>
 <s:tag>ietf:metric</s:tag>
 </s:tags>
 <s:tags>
 <s:tag>ietf:loss</s:tag>
 </s:tags>
 </s:node>
 </s:node-tags>
 </t:module>
 </module-tags>

 Figure 6: List of Available Target Objects

 With node tag information returned,e.g., in the ’get-data’ operation,
 the subscriber identifies tagged data node and associated data path
 to the datastore node and sends a standard establish-subscription RPC
 [RFC8639] to subscribe tagged data nodes that are interests to the
 client application from the publisher. The publisher returns
 specific data node types of operational state (e.g., in-errors
 statistics data) subscribed by the client as follows:

Wu, et al. Expires 24 December 2022 [Page 28]

Internet-Draft YANG Node Tags June 2022

 =============== NOTE: ’\’ line wrapping per RFC 8792 ================

 <netconf:rpc message-id="101"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <establish-subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-notifica\
 tions"
 xmlns:yp="urn:ietf:params:xml:ns:yang:ietf-yang-push">
 <yp:datastore
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">
 ds:operational
 </yp:datastore>
 <yp:datastore-xpath-filter
 xmlns:ex="https://example.com/sample-data/1.0">
 /if:interfaces/if:interface/if:statistics/if:in-errors
 </yp:datastore-xpath-filter>
 <yp:periodic>
 <yp:period>500</yp:period>
 </yp:periodic>
 </establish-subscription>
 </netconf:rpc>

Appendix F. Changes between Revisions

 Editorial Note (To be removed by RFC Editor)

 v07 - v08

 * Make objective clearly, cover tags for both nodes in the schema
 tree and nodes in the data tree.

 * Document clearly which tags can be cached and how applications are
 supposed to resynchronize and pull in any update in section 3.

 * Clarify Instance level tag is not used to guide retrieval
 operations in section 3.

 * Distinguish Instance level tag from Metadata annotation in the
 introduction section.

 * Distinguish Schema Level tag from Instance level tag in the
 introduction section and section 3.

 * Schema Level tag used in xpath query has be clarified in section
 3.

 * Other editorial changes.

Wu, et al. Expires 24 December 2022 [Page 29]

Internet-Draft YANG Node Tags June 2022

 v06 - v07

 * Update use case in section 3 to remove object and subobject
 concept and massive related words.

 * Change the title into Node Tags in YANG Modules.

 * Update Model Tag design in section 5.1 based on Balazs’s comments.

 * Add Instance level tunnel tagging example in the Appendix.

 * Add ’type’ parameter in the base model and add one more model
 extension example in the Appendix.

 * Consolidate opm-tag extension, metric-type extension and multi-
 source-tag extension into one generic yang extension.

 * Remove object tag and property tag.

 * Other Appendix Updates.

 v05 - v06

 * Additional Editorial changes;

 * Use the folding defined in [RFC8792].

 v04 - v05

 * Add user tag formating clarification;

 * Provide guidance to the Designated Expert for evaluation of YANG
 node Tag registry and YANG node Tag prefix registry.

 * Update the figure 1 and figure 2 with additional tags.

 * Security section enhancement for user tag managment.

 * Change data node name into name in the module.

 * Other Editorial changes to address Adrian’s comments and comments
 during YANG docotor review.

 * Open issue: Are there any risks associated with an attacker adding
 or removing tags so that a requester gets the wrong data?

 v03 - v04

Wu, et al. Expires 24 December 2022 [Page 30]

Internet-Draft YANG Node Tags June 2022

 * Remove histogram metric type tag from metric type tags.

 * Clarify the object tag and property tag,metric tag are mutual
 exlusive.

 * Clarify to have two optional node tags (i.e.,object tag and
 property tag) to indicate relationship between data nodes.

 * Update targeted data node collection example.

 v02 - v03

 * Additional Editorial changes.

 * Security section enhancement.

 * Nits fixed.

 v01 - v02

 * Clarify the relation between data node, object tag, property tag
 and metric tag in figure 1 and figure 2 and related description;

 * Change Metric Group into Metric Type in the YANG model;

 * Add 5 metric types in section 7.2;

 v00 - v01

 * Merge node tag use case section into introduction section as a
 subsection;

 * Add one glossary section;

 * Clarify the relation between data node, object tag, property tag
 and metric tag in node Tags Use Case section;

 * Add update to RFC8407 in the front page.

Authors’ Addresses

 Qin Wu
 Huawei
 101 Software Avenue, Yuhua District
 Nanjing
 Jiangsu, 210012
 China
 Email: bill.wu@huawei.com

Wu, et al. Expires 24 December 2022 [Page 31]

Internet-Draft YANG Node Tags June 2022

 Benoit Claise
 Huawei
 De Kleetlaan 6a b1
 1831 Diegem
 Belgium
 Email: benoit.claise@huawei.com

 Peng Liu
 China Mobile
 32 Xuanwumen West St, Xicheng District
 Beijing
 Email: liupengyjy@chinamobile.com

 Zongpeng Du
 China Mobile
 32 Xuanwumen West St, Xicheng District
 Beijing
 Email: duzongpeng@chinamobile.com

 Mohamed Boucadair
 Orange
 35000 Rennes
 France
 Email: mohamed.boucadair@orange.com

Wu, et al. Expires 24 December 2022 [Page 32]

NETMOD Working Group Q. Wu
Internet-Draft B. Claise
Updates: 8407 (if approved) Huawei
Intended status: Standards Track M. Boucadair
Expires: 23 April 2024 Orange
 P. Liu
 Z. Du
 China Mobile
 21 October 2023

 Node Tags in YANG Modules
 draft-ietf-netmod-node-tags-11

Abstract

 This document defines a method to tag nodes that are associated with
 the operation and management data in YANG modules. This method for
 tagging YANG nodes is meant to be used for classifying either data
 nodes or instances of data nodes from different YANG modules and
 identifying their characteristic data. Tags may be registered as
 well as assigned during the definition of the module, assigned by
 implementations, or dynamically defined and set by users.

 This document also provides guidance to future YANG data model
 writers; as such, this document updates RFC 8407.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 23 April 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Wu, et al. Expires 23 April 2024 [Page 1]

Internet-Draft YANG Node Tags October 2023

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 5
 3. Sample Use Cases for Node Tags 6
 4. Node Tag Values . 6
 4.1. IETF Tags . 7
 4.2. Vendor Tags . 7
 4.3. User Tags . 7
 4.4. Reserved Tags . 7
 5. Node Tag Management . 8
 5.1. Module Design Tagging 8
 5.2. Implementation Tagging 8
 5.3. User Tagging . 8
 6. Node Tags Module Structure 8
 6.1. Node Tags Module Tree 8
 7. Node Tags YANG Module . 9
 8. Guidelines to Model Writers 12
 8.1. Define Standard Tags 12
 9. IANA Considerations . 13
 9.1. YANG Data Node Tag Prefixes Registry 13
 9.2. IETF YANG Data Node Tags Registry 14
 9.3. Updates to the IETF XML Registry 15
 9.4. Updates to the YANG Module Names Registry 15
 10. Security Considerations 15
 11. Acknowledgements . 16
 12. Contributors . 16
 13. References . 16
 13.1. Normative References 16
 13.2. Informative References 18
 Appendix A. Instance Level Tunnel Tagging Example 19
 Appendix B. NETCONF Example 20
 Appendix C. Non-NMDA State Module 21
 Appendix D. Targeted Data Fetching Example 24
 Appendix E. Changes between Revisions 26
 Authors’ Addresses . 29

Wu, et al. Expires 23 April 2024 [Page 2]

Internet-Draft YANG Node Tags October 2023

1. Introduction

 The use of tags for classification and organization purposes is
 widespread, not only within IETF protocols, but globally in the
 Internet (e.g., "#hashtags"). For the specific case of YANG data
 models, a module tag has already been defined as a string that is
 associated with a module name at the module level [RFC8819]for YANG
 modules classification.

 Many data models have been specified by various Standards Developing
 Organizations (SDOs) and the Open Source community, and it is likely
 that many more will be specified. These models cover many of the
 networking protocols and techniques. However, data nodes defined by
 these technology-specific data models might represent only a portion
 of fault, configuration, accounting, performance, and security
 (FCAPS) management information ([FCAPS]) at different levels and
 network locations, but also categorized in various different ways.
 Furthermore, there is no consistent classification criteria or
 representations for a specific service, feature, or data source.

 This document defines tags for both nodes in the schema tree and
 instance nodes in the data tree, and shows how these tags can be
 associated with nodes within a YANG module, to:

 * Provide dictionary meaning for specific targeted data nodes;

 * Indicate a relationship between data nodes within the same YANG
 module or from different YANG modules;

 * Identify auxiliary data properties related to data nodes;

 * Identify key performance metric related data nodes and the
 absolute XPath expression identifying the element path to the
 nodes.

 To that aim, this document defines a YANG module [RFC7950] that
 augments the YANG Module Tags ([RFC8819]) to provide a list of node
 entries to which add node tags or from which to remove node tags, as
 well as a way to view the set of node tags associated with specific
 data nodes or instance of data nodes within YANG modules.This new
 module is: "ietf-node-tags" (Section 7).

 Typically, NETCONF clients can discover node tags supported by a
 NETCONF server by means of the <get-data> operation on the
 operational datastore (Section 3.1 of [RFC8526]) via the "ietf-node-
 tags" module. Alternatively, <get-schema> operation [RFC6022] can be
 used to retrieve tags for nodes in the schema tree in any data
 module. These node tags can be used by a NETCONF [RFC6241] or

Wu, et al. Expires 23 April 2024 [Page 3]

Internet-Draft YANG Node Tags October 2023

 RESTCONF [RFC8040] client to classify either data nodes or instance
 of these data nodes from different YANG modules and identify
 characteristic data and associated path to the nodes or node
 instances. Therefore, the NETCONF/ RESTCONF client can query
 specific configuration or operational state on a server corresponding
 to characteristic data.

 Similar to YANG module tags defined in [RFC8819], these node tags
 (e.g., tags for node in the schema node) may be registered or
 assigned during the module definition, assigned (e.g., tags for nodes
 in the data tree) by implementations, or dynamically defined and set
 by users. The contents of node tags from the operational state view
 are constructed using the following steps:

 1. System tags (i.e., tags of "system" origin) that are assigned
 during the module definition time are added;

 2. User-configured tags (i.e., tags of "intended" origin) that are
 dynamically defined and added by users at runtime;

 3. Any tag that is equal to a masked-tag is removed.

 This document defines an extension statement to indicate tags for
 data nodes. YANG metadata annotations are also defined in [RFC7952]
 as a YANG extension. The values of YANG metadata annotation are
 attached to a given data node instance and decided and assigned by
 the server and sent to the client (e.g., the origin value indicates
 to the client the origin of a particular data node instance) while
 tags for data node in the schema tree defined in Section 6 are
 retrieved centrally via the "ietf-node-tags" module and can be either
 assigned during the module defintion time or dynamically set by the
 client for a given data node instance.

 This document also defines an IANA registry for tag prefixes and a
 set of globally assigned tags (Section 9).

 Section 8 provides guidelines for authors of YANG data models. This
 document updates [RFC8407].

 The YANG data model in this document conforms to the Network
 Management Datastore Architecture defined in [RFC8342].

Wu, et al. Expires 23 April 2024 [Page 4]

Internet-Draft YANG Node Tags October 2023

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119][RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The following terms are defined in [RFC7950] and are not redefined
 here:

 * Data Node

 * Data Tree

 * Schema Tree

 This document defines the following term:

 Node Tag: Tag for YANG nodes used for classifying either data nodes
 or instances of data nodes from different YANG modules and
 identifying their characteristic data.

 Metrics: Metrics are a specific kind of telemetry data. They
 represent a snapshot of the current state for a set of data, e.g.,
 the current value of CPU resource. They are distinct from logs or
 events, which focus on records or information about individual
 events [OpenTelemetry].

 Logs: Logs are detailed information about discrete event within a
 component or a set of components, particularly errors, warnings or
 other exceptional situations. This rich data tends to be much
 larger than metric data and can cause processing issues,
 especially if components are logging too frequently
 [OpenTelemetry].

 Traces: Traces provide visibility into how a request is processed
 across multiple services in a microservices environment. Every
 trace needs to have a unique identifier associated with it. Where
 logging provides an overview to a discrete, event-triggered log,
 tracing encompasses a much wider, continuous view of an
 application [OpenTelemetry].

 Info: Info is used to expose textual information which SHOULD NOT
 change during process lifetime. Common examples are an
 application’s version [OpenMetric].

Wu, et al. Expires 23 April 2024 [Page 5]

Internet-Draft YANG Node Tags October 2023

 The meanings of the symbols in tree diagrams are defined in
 [RFC8340].

3. Sample Use Cases for Node Tags

 The following describes some use cases to illustrate the use of node
 tags. This section does not intend to be exhaustive.

 An example of the use of tags is to search discrete categories of
 YANG nodes that are scattered across the same or different YANG
 modules supported by a device. For example, if instances of these
 nodes in YANG modules are adequately tagged and set by a first client
 ("Client A") via the "ietf-node-tags" module (Section 7) and
 retrieved by another client ("Client B") from the operational
 datastore, then "Client B" can obtain the path to the tagged nodes
 and subscribe only to network performance related data node instances
 in the operational datastore supported by a device.

 "Client B" can also subscribe to updates from the operational
 datastore using the "ietf-node-tags" module. Any tag changes in the
 updates will then resynchronize to the "Client B".

 Also, tag classification is useful for users searching data node
 repositories. A query restricted to the "ietf:metric" data node tag
 in the "ietf-node-tags" module can be used to return only the YANG
 nodes that are associated with the metric. Without tags, a user
 would need to know the name of all the IETF YANG data nodes or
 instances of data nodes in different YANG modules.

 Future management protocol extensions could allow for filtering
 queries of configuration or operational state on a server based on
 tags (for example, return all operational state related to system
 management).

4. Node Tag Values

 All node tags (except in some cases of user tags as described in
 Section 4.3) begin with a prefix indicating who owns their
 definition. All tag prefixes MUST end with a colon and Colons MUST
 NOT be used within a prefix. An IANA registry (Section 9.1) is used
 to register node tag prefixes. Three prefixes are defined in the
 subsections that follow.

 No further structure is imposed by this document on the value
 following the registered prefix, and the value can contain any YANG
 type ’string’ characters except carriage returns, newlines, tabs, and
 spaces.

Wu, et al. Expires 23 April 2024 [Page 6]

Internet-Draft YANG Node Tags October 2023

 Except for the conflict-avoiding prefix, this document is
 purposefully not specifying any structure on (i.e., restricting) the
 tag values. The intent is to avoid arbitrarily restricting the
 values that designers, implementers, and users can use. As a result
 of this choice, designers, implementers, and users are free to add or
 not add any structure they may require to their own tag values.

4.1. IETF Tags

 An IETF tag is a node tag that has the prefix "ietf:".

 All IETF node tags are registered with IANA in the registry defined
 in Section 9.2. These IETF Node Tags MUST conform to Net-Unicode as
 defined in [RFC5198], and SHOULD not need normalization.

4.2. Vendor Tags

 A vendor tag is a tag that has the prefix "vendor:".

 These tags are defined by the vendor that implements the module, and
 are not registered with IANA. However, it is RECOMMENDED that the
 vendor includes extra identification in the tag to avoid collisions,
 such as using the enterprise or organization name following the
 "vendor:" prefix (e.g., vendor:entno:vendor-defined-classifier)
 [RFC9371].

4.3. User Tags

 User tags are defined by a user/administrator and are not registered
 by IANA.

 Any tag with the prefix "user:" is a user tag. Furthermore, any tag
 that does not contain a colon (":", i.e., has no prefix) is also a
 user tag.

 Users are not required to use the "user:" prefix; however, doing so
 is RECOMMENDED.

4.4. Reserved Tags

 Section 9.1 describes the IANA registry of tag prefixes. Any prefix
 not included in that registry is reserved for future use, but tags
 starting with such a prefix are still valid tags.

 Therefore an implementation SHOULD be able to process all tags
 regardless of their prefixes.

Wu, et al. Expires 23 April 2024 [Page 7]

Internet-Draft YANG Node Tags October 2023

5. Node Tag Management

 Tags may be associated with a data node within a YANG module in a
 number of ways. Typically, tags may be defined and associated at the
 module design time, at implementation time without the need of a live
 server, or via user administrative control. As the main consumers of
 node tags are users, users may also remove any tag from a live
 server, no matter how the tag became associated with a data node
 within a YANG module.

5.1. Module Design Tagging

 A data node definition MAY indicate a set of node tags to be added by
 a module’s implementer. These design time tags are indicated using
 ’node-tag’ extension statement.

 If the data node is defined in an IETF Standards Track document, node
 tags MUST be IETF Tags (Section 4.1). Thus, new data nodes can drive
 the addition of new IETF tags to the IANA registry defined in
 Section 9.2, and the IANA registry can serve as a check against
 duplication.

5.2. Implementation Tagging

 An implementation that wishes to define additional tags to associate
 with data nodes within a YANG module MAY do so at implementation
 time. These tags SHOULD be IETF (i.e., registered)), but MAY be
 vendor tags. IETF tags allows better interoperability than vendor
 tags.

5.3. User Tagging

 Node tags that are dynamically defined, with or without a prefix, can
 be added by the user from a server using normal configuration
 mechanisms.

 In order to remove a node tag from the operational datastore, the
 user adds a matching "masked-tag" entry for a given node within the
 ’ietf-node-tags’ module.

6. Node Tags Module Structure

6.1. Node Tags Module Tree

 The tree associated with the "ietf-node-tags" module is shown as
 figure 1:

Wu, et al. Expires 23 April 2024 [Page 8]

Internet-Draft YANG Node Tags October 2023

 module: ietf-node-tags
 augment /tags:module-tags/tags:module:
 +--rw node-tags
 +--rw node* [id]
 +--rw id unit64
 +--rw node-selector nacm:node-instance-identifier
 +--rw tags* tags:tag
 +--rw masked-tag* tags:tag

 Figure 1: YANG Module Node Tags Tree Diagram

7. Node Tags YANG Module

 The "ietf-node-tags" module imports types from [RFC8819] and
 [RFC8341].

 <CODE BEGINS> file "ietf-node-tags@2022-02-04.yang"
 module ietf-node-tags {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-node-tags";
 prefix ntags;

 import ietf-netconf-acm {
 prefix nacm;
 reference
 "RFC 8341: Network Configuration Access Control
 Model";
 }
 import ietf-module-tags {
 prefix tags;
 reference
 "RFC 8819: YANG Module Tags";
 }

 organization
 "IETF NetMod Working Group (NetMod)";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Editor: Qin Wu
 <mailto:bill.wu@huawei.com>

 Editor: Benoit Claise
 <mailto:benoit.claise@huawei.com>

 Editor: Mohamed Boucadair
 <mailto:mohamed.boucadair@orange.com>

Wu, et al. Expires 23 April 2024 [Page 9]

Internet-Draft YANG Node Tags October 2023

 Editor: Peng Liu
 <mailto:liupengyjy@chinamobile.com>

 Editor: Zongpeng Du
 <mailto:duzongpeng@chinamobile.com>";
 // RFC Ed.: replace XXXX with actual RFC number and
 // remove this note.
 description
 "This module describes a mechanism associating
 tags with YANG node within YANG modules. Tags may be IANA
 assigned or privately defined.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (https://datatracker.ietf.org/html/rfcXXXX); see the RFC
 itself for full legal notices.";

 // RFC Ed.: Update the date below with the date of RFC
 // publication and RFC number and remove this note.
 revision 2022-02-04 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: Node Tags in YANG Modules";
 }
 extension node-tag {
 argument tag;
 description
 "The argument ’tag’ is of type ’tag’. This extension statement
 is used by module authors to indicate node tags that should
 be added automatically by the system. As such, the origin of
 the value for the pre-defined tags should be set to ’system’.";
 }

 augment "/tags:module-tags/tags:module" {
 description
 "Augment the Module Tags module with node tag
 attributes.";
 container node-tags {

Wu, et al. Expires 23 April 2024 [Page 10]

Internet-Draft YANG Node Tags October 2023

 description
 "Contains the list of nodes or node instances and their
 associated node tags.";
 list node {
 key "id";
 description
 "Includes a list of nodes and their associated
 node tags.";
 leaf id {
 type uint64;
 description
 "Identification of each data node within YANG module. It is
 unique 64-bit unsigned integers.";
 }
 leaf node-selector {
 type nacm:node-instance-identifier;
 description
 "Selects the data nodes for which tags are specified.";
 }
 leaf-list tags {
 type tags:tag;
 description
 "Lists the tags associated with the node within
 the YANG module.

 See the IANA ’YANG Node Tag Prefixes’ registry
 for reserved prefixes and the IANA ’IETF YANG Data
 Node Tags’ registry for IETF tags.

 The ’operational’ state view of this list is
 constructed using the following steps:

 1) System tags (i.e., tags of ’system’ origin) are
 added.
 2) User configured tags (i.e., tags of ’intended’
 origin) are added.
 3) Any tag that is equal to a masked-tag is removed.";
 reference
 "RFC XXXX: node Tags in YANG Data
 Modules, Section 9";
 }
 leaf-list masked-tag {
 type tags:tag;
 description
 "The list of tags that should not be associated with the
 node within the YANG module. The user can remove (mask)
 tags from the operational state datastore by adding them
 to this list. It is not an error to add tags to this list

Wu, et al. Expires 23 April 2024 [Page 11]

Internet-Draft YANG Node Tags October 2023

 that are not associated with the data node within YANG
 module, but they have no operational effect.";
 }
 }
 }
 }
 }
 <CODE ENDS>

8. Guidelines to Model Writers

 This section updates [RFC8407] by providing text that may be regarded
 as a new subsection to Section 4 of that document. It does not
 change anything already present in [RFC8407].

8.1. Define Standard Tags

 A module MAY indicate, using node tag extension statements, a set of
 node tags that are to be automatically associated with nodes within
 the module (i.e., not added through configuration).

 module example-module-A {
 //...
 import ietf-node-tags { prefix ntags; }

 container top {
 list X {
 leaf foo {
 ntags:node-tag "ietf:metric";
 }
 leaf bar {
 ntags:node-tag "ietf:info";
 }
 }
 }
 // ...
 }

 The module writer can use existing standard node tags, or use new
 node tags defined in the data node definition, as appropriate.

 For IETF standardized modules, new node tags MUST be assigned in the
 IANA registry defined in section 9.2 of RFC xxxx.

Wu, et al. Expires 23 April 2024 [Page 12]

Internet-Draft YANG Node Tags October 2023

 A data node can contain one or multiple node tags. Not all data
 nodes need to be tagged. A data node to be tagged with an initial
 value from Table 2 can be one of ’container’, ’leaf-list’, ’list’, or
 ’leaf’. The ’container’,’leaf-list’,’list’, or ’leaf’ node not
 representing a snapshot of the current state for a set of data MUST
 not be tagged. The notification and action nodes MUST not be tagged.

 All tag values described in Table 2 can be inherited down the
 containment hierarchy if the data nodes tagged with those tag values
 is one of ’container’, ’leaf-list’, or ’list’.

9. IANA Considerations

9.1. YANG Data Node Tag Prefixes Registry

 This document requests IANA to create "YANG Node Tag Prefixes"
 subregistry in "YANG Node Tag" registry.

 Prefix entries in this registry should be short strings consisting of
 lowercase ASCII alpha-numeric characters and a final ":" character.

 The allocation policy for this registry is Specification Required
 [RFC8126].

 The Reference and Assignee values should be sufficient to identify
 and contact the organization that has been allocated the prefix.

 There is no specific guidance for the Designated Expert and there is
 a presumption that a code point should be granted unless there is a
 compelling reason to the contrary. The initial values for this
 registry are as follows:

 +----------+----------------------------------+-----------+----------+
 | Prefix | Description | Reference | Assignee |
 +----------+----------------------------------+-----------+----------+
ietf:	IETF Tags allocated in the IANA	[This	IETF
	IETF YANG Node Tags	document]	
	registry		
vendor:	Non-registered tags allocated by	[This	IETF
	the module’s implementer.	document]	
user:	Non-registered tags allocated by	[This	IETF
	and for the user.	document]	
 +----------+----------------------------------+-----------+----------+

 Figure 2: Table 1

Wu, et al. Expires 23 April 2024 [Page 13]

Internet-Draft YANG Node Tags October 2023

 Other standards organizations (SDOs) wishing to allocate their own
 set of tags should request the allocation of a prefix from this
 registry.

9.2. IETF YANG Data Node Tags Registry

 This document requests IANA to create "IETF Node Tags" subregistry in
 "YANG Node Tag" registry. This subregistry appears below "YANG Node
 Tag Prefixes" registry.

 This subregistry allocates tags that have the registered prefix
 "ietf:". New values should be well considered and not achievable
 through a combination of already existing IETF tags.

 The allocation policy for this subregistry is IETF Review with Expert
 Review[RFC8126]. The Designated Expert is expected to verify that
 IANA assigned tags conform to Net-Unicode as defined in [RFC5198],
 and shall not need normalization.

 The initial values for this subregistry are as follows:

 +----------------------------+--------------------------+-----------+
 | Node Tag | Description | Reference |
 +----------------------------+--------------------------+-----------+
ietf:metrics	Represent dynamic change	
	metric data	[This
	(e.g., ifstatistics)	document]
	associated with specific	[Open
	node (e.g.,interfaces)	Telemetry]
ietf:logs	Represent detailed info	
	about discrete event	[This
	(e.g., errors, warnings)	document]
	associated with specific	[Open
	node (e.g.,system)	Telemetry]
ietf:traces	Represent a single user	
	journey (e.g.,which	[This
	function, duration)	document]
	through entire application	[Open
	stack	Telemetry]
ietf:info	Represent static texture	[This
	info (e.g., software	document]
	revision)associated with	[Open
	specific node (e.g.,	Metric]
	hardware component)	
 +----------------------------+--------------------------+-----------+

Wu, et al. Expires 23 April 2024 [Page 14]

Internet-Draft YANG Node Tags October 2023

 Figure 3: Table 2

9.3. Updates to the IETF XML Registry

 This document registers the following namespace URIs in the "ns"
 subregistry within the "IETF XML Registry" [RFC3688]:

 URI: urn:ietf:params:xml:ns:yang:ietf-node-tags
 Registrant Contact: The IESG.
 XML: N/A; the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-node-tags-state
 Registrant Contact: The IESG.
 XML: N/A; the requested URI is an XML namespace.

9.4. Updates to the YANG Module Names Registry

 This document registers the following two YANG modules in the YANG
 Module Names registry [RFC6020] within the "YANG Parameters"
 registry:

 name: ietf-node-tags
 namespace: urn:ietf:params:xml:ns:yang:ietf-node-tags
 prefix: ntags
 reference: RFC XXXX

 name: ietf-node-tags-state
 namespace: urn:ietf:params:xml:ns:yang:ietf-node-tags-state
 prefix: ntags-s
 reference: RFC XXXX

10. Security Considerations

 The YANG module specified in this document defines schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC8446].

 The Network Configuration Access Control Model (NACM) [RFC8341]
 provides the means to restrict access for particular NETCONF or
 RESTCONF users to a preconfigured subset of all available NETCONF or
 RESTCONF protocol operations and content, e.g., the presence of tags
 may reveal information about the way in which data nodes or node
 instances are used and therefore providing access to private
 information or revealing an attack vector should be restricted. Note

Wu, et al. Expires 23 April 2024 [Page 15]

Internet-Draft YANG Node Tags October 2023

 that appropriate privilege and security levels need to be applied to
 the addition and removal of user tags to ensure that a user receives
 the correct data.

 This document adds the ability to associate node tag with data nodes
 or instances of data nodes within the YANG modules. This document
 does not define any actions based on these associations, and none are
 yet defined, and therefore it does not by itself introduce any new
 security considerations.

 Users of the node tag meta-data may define various actions to be
 taken based on the node tag meta-data. These actions and their
 definitions are outside the scope of this document. Users will need
 to consider the security implications of any actions they choose to
 define, including the potential for a tag to get ’masked’ by another
 user.

11. Acknowledgements

 The authors would like to thank Ran Tao for his major contributions
 to the initial modeling and use cases.

 The authors would also like to acknowledge the comments and
 suggestions received from Juergen Schoenwaelder, Andy Bierman, Lou
 Berger, Jaehoon Paul Jeong, Wei Wang, Yuan Zhang, Ander Liu, YingZhen
 Qu, Boyuan Yan, Adrian Farrel, and Mahesh Jethanandani.

12. Contributors

 Liang Geng
 Individual
 32 Xuanwumen West St, Xicheng District
 Beijing 10053

13. References

13.1. Normative References

 [OpenMetric]
 OpenMetric, "OpenMetrics, a cloud-native, highly scalable
 metrics protocol", ,
 <https://github.com/OpenObservability/OpenMetrics/blob/
 main/specification/OpenMetrics.md>.

 [OpenTelemetry]
 OpenTelemetry, "High-quality, ubiquitous, and portable
 telemetry to enable effective observability", ,
 <https://github.com/open-telemetry>.

Wu, et al. Expires 23 April 2024 [Page 16]

Internet-Draft YANG Node Tags October 2023

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC5198] Klensin, J. and M. Padlipsky, "Unicode Format for Network
 Interchange", RFC 5198, DOI 10.17487/RFC5198, March 2008,
 <https://www.rfc-editor.org/info/rfc5198>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of
 Documents Containing YANG Data Models", BCP 216, RFC 8407,
 DOI 10.17487/RFC8407, October 2018,
 <https://www.rfc-editor.org/info/rfc8407>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

Wu, et al. Expires 23 April 2024 [Page 17]

Internet-Draft YANG Node Tags October 2023

 [RFC8819] Hopps, C., Berger, L., and D. Bogdanovic, "YANG Module
 Tags", RFC 8819, DOI 10.17487/RFC8819, January 2021,
 <https://www.rfc-editor.org/info/rfc8819>.

13.2. Informative References

 [FCAPS] International Telecommunication Union, "X.700 : Management
 framework for Open Systems Interconnection (OSI) for CCITT
 applications", , September 1992,
 <http://www.itu.int/rec/T-REC-X.700-199209-I/en>.

 [RFC6022] Scott, M. and M. Bjorklund, "YANG Module for NETCONF
 Monitoring", RFC 6022, DOI 10.17487/RFC6022, October 2010,
 <https://www.rfc-editor.org/info/rfc6022>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC7952] Lhotka, L., "Defining and Using Metadata with YANG",
 RFC 7952, DOI 10.17487/RFC7952, August 2016,
 <https://www.rfc-editor.org/info/rfc7952>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8526] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "NETCONF Extensions to Support the Network
 Management Datastore Architecture", RFC 8526,
 DOI 10.17487/RFC8526, March 2019,
 <https://www.rfc-editor.org/info/rfc8526>.

 [RFC8639] Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard,
 E., and A. Tripathy, "Subscription to YANG Notifications",
 RFC 8639, DOI 10.17487/RFC8639, September 2019,
 <https://www.rfc-editor.org/info/rfc8639>.

Wu, et al. Expires 23 April 2024 [Page 18]

Internet-Draft YANG Node Tags October 2023

 [RFC8641] Clemm, A. and E. Voit, "Subscription to YANG Notifications
 for Datastore Updates", RFC 8641, DOI 10.17487/RFC8641,
 September 2019, <https://www.rfc-editor.org/info/rfc8641>.

 [RFC8792] Watsen, K., Auerswald, E., Farrel, A., and Q. Wu,
 "Handling Long Lines in Content of Internet-Drafts and
 RFCs", RFC 8792, DOI 10.17487/RFC8792, June 2020,
 <https://www.rfc-editor.org/info/rfc8792>.

 [RFC9195] Lengyel, B. and B. Claise, "A File Format for YANG
 Instance Data", RFC 9195, DOI 10.17487/RFC9195, February
 2022, <https://www.rfc-editor.org/info/rfc9195>.

 [RFC9196] Lengyel, B., Clemm, A., and B. Claise, "YANG Modules
 Describing Capabilities for Systems and Datastore Update
 Notifications", RFC 9196, DOI 10.17487/RFC9196, February
 2022, <https://www.rfc-editor.org/info/rfc9196>.

 [RFC9371] Baber, A. and P. Hoffman, "Registration Procedures for
 Private Enterprise Numbers (PENs)", RFC 9371,
 DOI 10.17487/RFC9371, March 2023,
 <https://www.rfc-editor.org/info/rfc9371>.

Appendix A. Instance Level Tunnel Tagging Example

 In the example shown in the following figure,the ’tunnel-svc’ data
 node is a list node defined in a ’example-tunnel-pm’ module and has 7
 child nodes: ’name’,’create-time’,’modified-time’,’average-
 latency’,’packet-loss’,’min-latency’,’max-latency’ leaf node. In
 these child nodes, the ’name’ leaf node is the key leaf for the
 ’tunnel-svc’ list. Following is the tree diagram [RFC8340] for the
 "example-tunnel-pm" module:

 module: example-tunnel-pm
 +--rw tunnel-svc* [name]
 | +--rw name string
 | +--ro create-time yang:date-and-time
 | +--ro modified-time yang:date-and-time
 | +--ro average-latency yang:gauge64
 | +--ro packet-loss yang:counter64
 | +--ro min-latency yang:gauge64
 | +--ro max-latency yang:gauge64

 To help identify specific data for a customer, users tags on specific
 instances of the data nodes [RFC9195][RFC9196] are created as
 follows:

Wu, et al. Expires 23 April 2024 [Page 19]

Internet-Draft YANG Node Tags October 2023

 <rpc message-id="103"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-data xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-nmda"
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">
 <datastore>ds:running</datastore>
 <config>
 <module-tag>
 <module>
 <name>example-tunnel-pm</name>
 <node-tags
 xmlns="urn:ietf:params:xml:ns:yang:ietf-node-tags">
 <node>
 <id>1743</id>
 <node-selector>/tp:tunnel-svc[name=’foo’]/tp:packet-loss
 /</node-selector>
 <tag>user:customer1_example_com</tag>
 <tag>user:critical</tag>
 </node>
 <node>
 <id>1744</id>
 <node-selector>/tp:tunnel-svc[name=’bar’]/tp:modified-time
 /</node-selctor>
 <tag>user:customer2_example_com</tag>
 </node>
 </node-tags>
 </module>
 </module-tag>
 </config>
 </edit-data>
 </rpc>

 Note that the ’user:critical’ tag is one addtional new tag value.

Appendix B. NETCONF Example

 The following is a NETCONF example result from a query of node tags
 list. For the sake of brevity only a few module and associated data
 node results are provided. The example uses the folding defined in
 [RFC8792].

Wu, et al. Expires 23 April 2024 [Page 20]

Internet-Draft YANG Node Tags October 2023

 =============== NOTE: ’\’ line wrapping per RFC 8792 ================
 <ns0:data xmlns:ns0="urn:ietf:params:xml:ns:netconf:base:1.0">
 <t:module-tags xmlns:t="urn:ietf:params:xml:ns:yang:ietf-module-tags">
 <t:module>
 <t:name>ietf-interfaces</t:name>
 <s:node-tags
 xmlns:s="urn:ietf:params:xml:ns:yang:ietf-node-tags">
 <s:node>
 <s:id>1723</s:id>
 <s:node-selector>
 /if:interfaces/if:interface/if:statistics/if:in-errors
 </s:node-selector>
 <s:tag>ietf:metric</s:tag>
 <s:tag>user:critical</s:tag>
 </s:node>
 </s:node-tags>
 </t:module>
 <t:module>
 <t:name>ietf-ip</t:name>
 <s:node-tags
 xmlns:s="urn:ietf:params:xml:ns:yang:ietf-node-tags">
 <s:node>
 <s:id>1733</s:id>
 <s:node-selector>/if:interfaces/if:interface/ip:ipv4/ip:mtu
 </s:node-selector>
 <s:tag>ietf:metric</s:tag>
 </s:node>
 </s:node-tags>
 </t:module>
 </t:module-tags>
 </ns0:data>

 Figure 4: Example NETCONF Query Output

Appendix C. Non-NMDA State Module

 As per [RFC8407], the following is a non-NMDA module to support
 viewing the operational state for non-NMDA compliant servers.

 <CODE BEGINS> file "ietf-node-tags-state@2022-02-03.yang"
 module ietf-node-tags-state {
 yang-version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-node-tags-state";
 prefix ntags-s;

 import ietf-netconf-acm {
 prefix nacm;

Wu, et al. Expires 23 April 2024 [Page 21]

Internet-Draft YANG Node Tags October 2023

 reference
 "RFC 8341: Network Configuration Access Control
 Model";
 }
 import ietf-module-tags {
 prefix tags;
 }
 import ietf-module-tags-state {
 prefix tags-s;
 reference
 "RFC 8819: YANG Module Tags ";
 }
 organization
 "IETF NetMod Working Group (NetMod)";

 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List:<mailto:netmod@ietf.org>

 Editor: Qin Wu
 <mailto:bill.wu@huawei.com>

 Editor: Benoit Claise
 <mailto:benoit.claise@huawei.com>

 Editor: Mohamed Boucadair
 <mailto:mohamed.boucadair@orange.com>

 Editor: Peng Liu
 <mailto:liupengyjy@chinamobile.com>

 Editor: Zongpeng Du
 <mailto:duzongpeng@chinamobile.com>";
 // RFC Ed.: replace XXXX with actual RFC number and
 // remove this note.
 description
 "This module describes a mechanism associating data node
 tags with YANG data node within YANG modules. Tags may be
 IANA assigned or privately defined.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents

Wu, et al. Expires 23 April 2024 [Page 22]

Internet-Draft YANG Node Tags October 2023

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (https://datatracker.ietf.org/html/rfcXXXX); see the RFC
 itself for full legal notices.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and RFC number and remove this note.
 revision 2022-02-04 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: Node Tags in YANG Data
 Modules";
 }
 augment "/tags-s:module-tags-state/tags-s:module" {
 description
 "Augments the Module Tags module with node tag
 attributes.";
 container node-tags {
 config false;
 status deprecated;
 description
 "Contains the list of data nodes and their
 associated self describing tags.";
 list node {
 key "id";
 status deprecated;
 description
 "Lists the data nodes and their associated self
 describing tags.";
 leaf id {
 type uint64;
 status deprecated;
 description
 "Identification of each data node within YANG module. It is
 unique 64-bit unsigned integers.";
 }
 leaf node-selctor {
 type nacm:node-instance-identifier;
 mandatory true;
 status deprecated;
 description
 "Selects the data nodes for which tags are
 specified.";
 }
 leaf-list tags {
 type tags:tag;

Wu, et al. Expires 23 April 2024 [Page 23]

Internet-Draft YANG Node Tags October 2023

 status deprecated;
 description
 "Lists the tags associated with the data node within
 the YANG module.

 See the IANA ’YANG Node Tag Prefixes’ registry
 for reserved prefixes and the IANA ’IETF YANG Data
 Node Tags’ registry for IETF tags.

 The ’operational’ state view of this list is
 constructed using the following steps:

 1) System tags (i.e., tags of ’system’ origin) are
 added.
 2) User configured tags (i.e., tags of ’intended’
 origin) are added.
 3) Any tag that is equal to a masked-tag is removed.";
 reference
 "RFC XXXX: Node Tags in YANG Data
 Modules, Section 9";
 }
 leaf-list masked-tag {
 type tags:tag;
 status deprecated;
 description
 "The list of tags that should not be associated with the
 data node within the YANG module. The user can remove
 (mask) tags from the operational state datastore by
 adding them to this list. It is not an error to add
 tags to this list that are not associated with the
 data node within YANG module, but they have no
 operational effect.";
 }
 }
 }
 }
 }
 <CODE ENDS>

Appendix D. Targeted Data Fetching Example

 The following provides tagged data node Fetching example. The
 subscription "id" values of 22 used below is just an example. In
 production, the actual values of "id" might not be small integers.

Wu, et al. Expires 23 April 2024 [Page 24]

Internet-Draft YANG Node Tags October 2023

 +-----------+ +-----------+
 | Subscriber| | Publisher |
 +-----+-----+ +-----+-----+
 | |
 | Node Tagging Fetching |
 | (id, node-tag = metric) |
 |<-----------------------------------+
 | |
 | establish-subscription |
 +----------------------------------->|
 | |
 | RPC Reply: OK, id = 22 |
 |<-----------------------------------+
 | |
 | Notification Message (for 22) |
 |<-----------------------------------+
 | |

 The subscriber can query node tag list from operational datastore in
 the network device using "ietf-node-tags" module defined in this
 document and fetch tagged data node instances and associated data
 path to the datastore node. The node tag information instruct the
 receiver to subscribe tagged data node (e.g., performance metric data
 nodes) using standard subscribed notification mechanism [RFC8639]
 [RFC8641].

 =============== NOTE: ’\’ line wrapping per RFC 8792 ================

 <?xml version="1.0" encoding="UTF-8"?>
 <t:module-tags
 xmlns:t="urn:ietf:params:xml:ns:yang:ietf-module-tags">
 <t:module>
 <t:name>ietf-interfaces</t:name>
 <s:node-tags
 xmlns:s="urn:ietf:params:xml:ns:yang:ietf-node-tags">
 <s:node>
 <s:id>1723</s:id>
 <s:node-selector>/if:interfaces/if:interface/if:in-errors
 /</s:node-selector>
 <s:tag>ietf:metric</s:tag>
 <s:tag>vendor:critical</s:tag>
 </s:node>
 </s:node-tags>
 </t:module>
 </module-tags>

 Figure 5: List of Available Target Objects

Wu, et al. Expires 23 April 2024 [Page 25]

Internet-Draft YANG Node Tags October 2023

 With node tag information returned,e.g., in the ’get-data’ operation,
 the subscriber identifies tagged data node and associated data path
 to the datastore node and sends a standard establish-subscription RPC
 [RFC8639]and [RFC8641] to subscribe tagged data nodes that are
 interests to the client application from the publisher. The
 publisher returns specific data node types of operational state
 (e.g., in-errors statistics data) subscribed by the client as
 follows:

 =============== NOTE: ’\’ line wrapping per RFC 8792 ================

 <netconf:rpc message-id="101"
 xmlns:netconf="urn:ietf:params:xml:ns:netconf:base:1.0">
 <establish-subscription
 xmlns="urn:ietf:params:xml:ns:yang:ietf-subscribed-notifica\
 tions"
 xmlns:yp="urn:ietf:params:xml:ns:yang:ietf-yang-push">
 <yp:datastore
 xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">
 ds:operational
 </yp:datastore>
 <yp:datastore-xpath-filter
 xmlns:ex="https://example.com/sample-data/1.0">
 /if:interfaces/if:interface/if:statistics/if:in-errors
 </yp:datastore-xpath-filter>
 <yp:periodic>
 <yp:period>500</yp:period>
 </yp:periodic>
 </establish-subscription>
 </netconf:rpc>

Appendix E. Changes between Revisions

 Editorial Note (To be removed by RFC Editor)

 v10 - v11

 * Remove all specific metrics from both terminology section and
 section 9.2 on IETF YANG Data Node Tags Registry based on WGLC
 discussion.

 * Align with OpenTelemetry and Open Metrics open source
 implementation specification, introduce traces, log for data nodes
 classification.

 * Fix normative reference issues in section 9.2.

 v09 - v10

Wu, et al. Expires 23 April 2024 [Page 26]

Internet-Draft YANG Node Tags October 2023

 * Remove identityref type from YANG module to avoid duplciation with
 IETF node tag and align with Module tag design in RFC 8819.

 * Add one key leaf using unsigned integer type to identify each data
 node and modify the id leaf into path leaf.

 * Clarify the colon’s meaning and how it is used in the node tags.

 * Remove Appendix A and Update Appendix B to explain how additonal
 tags can be added at the implementation time.

 * Module structure changes and YANG module code changes to align
 with Module tag design in RFC 8819.

 * Add relevant RFCs referencing to IETF node tags defined in section
 9.2 and provide additional term definition to support IETF node
 tags defined in section 9.2.

 * Specify which data nodes can be tagged, which data nodes can not
 in section 8.1.

 v08 - v09

 * Clarification on the relation with metadata annotation in section
 1.

 * Clarification on how masked-tag is used in section 5.3.

 * Other editorial changes.

 v07 - v08

 * Make objective clearly, cover tags for both nodes in the schema
 tree and nodes in the data tree.

 * Document clearly which tags can be cached and how applications are
 supposed to resynchronize and pull in any update in section 3.

 * Clarify Instance level tag is not used to guide retrieval
 operations in section 3.

 * Distinguish Instance level tag from Metadata annotation in the
 introduction section.

 * Distinguish Schema Level tag from Instance level tag in the
 introduction section and section 3.

Wu, et al. Expires 23 April 2024 [Page 27]

Internet-Draft YANG Node Tags October 2023

 * Schema Level tag used in xpath query has be clarified in section
 3.

 * Other editorial changes.

 v06 - v07

 * Update use case in section 3 to remove object and subobject
 concept and massive related words.

 * Change the title into Node Tags in YANG Modules.

 * Update Model Tag design in section 5.1 based on Balazs’s comments.

 * Add Instance level tunnel tagging example in the Appendix.

 * Add ’type’ parameter in the base model and add one more model
 extension example in the Appendix.

 * Consolidate opm-tag extension, metric-type extension and multi-
 source-tag extension into one generic yang extension.

 * Remove object tag and property tag.

 * Other Appendix Updates.

 v05 - v06

 * Additional Editorial changes;

 * Use the folding defined in [RFC8792].

 v04 - v05

 * Add user tag formating clarification;

 * Provide guidance to the Designated Expert for evaluation of YANG
 Node Tag registry and YANG Node Tag prefix registry.

 * Update the figure 1 and figure 2 with additional tags.

 * Security section enhancement for user tag managment.

 * Change data node name into name in the module.

 * Other Editorial changes to address Adrian’s comments and comments
 during YANG docotor review.

Wu, et al. Expires 23 April 2024 [Page 28]

Internet-Draft YANG Node Tags October 2023

 * Open issue: Are there any risks associated with an attacker adding
 or removing tags so that a requester gets the wrong data?

 v03 - v04

 * Remove histogram metric type tag from metric type tags.

 * Clarify the object tag and property tag,metric tag are mutual
 exlusive.

 * Clarify to have two optional node tags (i.e.,object tag and
 property tag) to indicate relationship between data nodes.

 * Update targeted data node collection example.

 v02 - v03

 * Additional Editorial changes.

 * Security section enhancement.

 * Nits fixed.

 v01 - v02

 * Clarify the relation between data node, object tag, property tag
 and metric tag in figure 1 and figure 2 and related description;

 * Change Metric Group into Metric Type in the YANG model;

 * Add 5 metric types in section 7.2;

 v00 - v01

 * Merge node tag use case section into introduction section as a
 subsection;

 * Add one glossary section;

 * Clarify the relation between data node, object tag, property tag
 and metric tag in node Tags Use Case section;

 * Add update to RFC8407 in the front page.

Authors’ Addresses

Wu, et al. Expires 23 April 2024 [Page 29]

Internet-Draft YANG Node Tags October 2023

 Qin Wu
 Huawei
 101 Software Avenue, Yuhua District
 Nanjing
 Jiangsu, 210012
 China
 Email: bill.wu@huawei.com

 Benoit Claise
 Huawei
 De Kleetlaan 6a b1
 1831 Diegem
 Belgium
 Email: benoit.claise@huawei.com

 Mohamed Boucadair
 Orange
 35000 Rennes
 France
 Email: mohamed.boucadair@orange.com

 Peng Liu
 China Mobile
 32 Xuanwumen West St, Xicheng District
 Beijing
 Email: liupengyjy@chinamobile.com

 Zongpeng Du
 China Mobile
 32 Xuanwumen West St, Xicheng District
 Beijing
 Email: duzongpeng@chinamobile.com

Wu, et al. Expires 23 April 2024 [Page 30]

NETMOD WG J. Clarke, Ed.
Internet-Draft Cisco
Intended status: Standards Track M. Jethanandani, Ed.
Expires: 7 October 2022 Kloud Services
 C. Wildes, Ed.
 Cisco Systems Inc.
 K. Koushik, Ed.
 Verizon Wireless
 5 April 2022

 A YANG Data Model for Syslog Configuration
 draft-ietf-netmod-syslog-model-27

Abstract

 This document defines a YANG data model for the configuration of a
 syslog process. It is intended this model be used by vendors who
 implement syslog in their systems.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 7 October 2022.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Clarke, et al. Expires 7 October 2022 [Page 1]

Internet-Draft Syslog Management April 2022

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Requirements Language 3
 2. Terminology . 3
 3. NDMA Compliance . 3
 4. Editorial Note (To be removed by RFC Editor) 4
 5. Design of the Syslog Model 4
 5.1. Syslog Module . 6
 6. Syslog YANG Module . 14
 6.1. The ietf-syslog Module 14
 7. Usage Examples . 32
 7.1. Syslog Configuration for Severity Critical 32
 7.2. Remote Syslog Configuration 33
 8. Acknowledgements . 34
 9. IANA Considerations . 34
 9.1. The IETF XML Registry 34
 9.2. The YANG Module Names Registry 35
 10. Security Considerations 35
 11. References . 36
 11.1. Normative References 36
 11.2. Informative References 37
 Appendix A. Implementer Guidelines 38
 A.1. Extending Facilities 38
 A.2. Syslog Terminal Output 39
 A.3. Syslog File Naming Convention 40
 Authors’ Addresses . 40

1. Introduction

 This document defines a YANG [RFC7950] configuration data model that
 may be used to configure the syslog feature running on a system.
 YANG models can be used with network management protocols such as
 NETCONF [RFC6241] to install, manipulate, and delete the
 configuration of network devices.

 The data model makes use of the YANG "feature" construct which allows
 implementations to support only those syslog features that lie within
 their capabilities.

Clarke, et al. Expires 7 October 2022 [Page 2]

Internet-Draft Syslog Management April 2022

 This module can be used to configure the syslog application
 conceptual layers as implemented on the target system.

 Essentially, a syslog process receives messages (from the kernel,
 processes, applications or other syslog processes) and processes
 them. The processing may involve logging to a local file, and/or
 displaying on console, and/or relaying to syslog processes on other
 machines. The processing is determined by the "facility" that
 originated the message and the "severity" assigned to the message by
 the facility.

 Such definitions of syslog protocol are defined in [RFC5424], and are
 used in this RFC.

 The YANG model in this document conforms to the Network Management
 Datastore Architecture defined in [RFC8342].

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Terminology

 The term "originator" is defined in [RFC5424]: an "originator"
 generates syslog content to be carried in a message.

 The term "relay" is defined in [RFC5424]: a "relay" forwards
 messages, accepting messages from originators or other relays and
 sending them to collectors or other relays

 The term "collectors" is defined in [RFC5424]: a "collector" gathers
 syslog content for further analysis.

 The term "action" refers to the processing that takes place for each
 syslog message received.

3. NDMA Compliance

 The YANG model in this document conforms to the Network Management
 Datastore Architecture defined in [RFC8342].

Clarke, et al. Expires 7 October 2022 [Page 3]

Internet-Draft Syslog Management April 2022

4. Editorial Note (To be removed by RFC Editor)

 This document contains many placeholder values that need to be
 replaced with finalized values at the time of publication. This note
 summarizes all of the substitutions that are needed. No other RFC
 Editor instructions are specified elsewhere in this document.

 Artwork in this document contains shorthand references to drafts in
 progress. Please apply the following replacements:

 * I-D.ietf-netconf-crypto-types --> the assigned RFC value for
 draft-ietf-netconf-crypto-types

 * I-D.ietf-netconf-tls-client-server --> the assigned RFC value for
 draft-ietf-netconf-tls-client-server

 * zzzz --> the assigned RFC value for this draft

5. Design of the Syslog Model

 The syslog model was designed by comparing various syslog features
 implemented by various vendors’ in different implementations.

 This document addresses the common leafs between implementations and
 creates a common model, which can be augmented with proprietary
 features, if necessary. This model is designed to be very simple for
 maximum flexibility.

 Some optional features are defined in this document to specify
 functionality that is present in specific vendor configurations.

 Syslog consists of originators and collectors. The following diagram
 shows syslog messages flowing from originators, to collectors where
 filtering can take place.

Clarke, et al. Expires 7 October 2022 [Page 4]

Internet-Draft Syslog Management April 2022

 Originators
 +-------------+ +-------------+ +-------------+ +-------------+
 | Various | | OS | | | | Remote |
 | Components | | Kernel | | Line Cards | | Servers |
 +-------------+ +-------------+ +-------------+ +-------------+

 +-------------+ +-------------+ +-------------+ +-------------+
 | SNMP | | Interface | | Standby | | Syslog |
 | Events | | Events | | Supervisor | | Itself |
 +-------------+ +-------------+ +-------------+ +-------------+

 | |
 +--+
 |
 |
 |
 |
 +-------------+--------------+
 | | |
 v v v
 Collectors
 +----------+ +----------+ +----------------+
 | | | Log | |Remote Relay(s)/|
 | Console | | File(s) | |Collector(s) |
 +----------+ +----------+ +----------------+

 Figure 1. Syslog Processing Flow

 Collectors are configured using the leaves in the syslog model
 "actions" container which correspond to each message collector:

 console

 log file(s)

 remote relay(s)/collector(s)

 Within each action, a selector is used to filter syslog messages. A
 selector consists of a list of one or more filters specified by
 facility-severity pairs, and, if supported via the select-match
 feature, an optional regular expression pattern match that is
 performed on the [RFC5424] field.

 A syslog message is processed if:

Clarke, et al. Expires 7 October 2022 [Page 5]

Internet-Draft Syslog Management April 2022

 There is an element of facility-list (F, S) where
 the message facility matches F
 and the message severity matches S
 and/or the message text matches the regex pattern (if it
 is present)

 The facility is one of a specific syslog-facility, or all facilities.

 The severity is one of type syslog-severity, all severities, or none.
 None is a special case that can be used to disable a filter. When
 filtering severity, the default comparison is that messages of the
 specified severity and higher are selected to be logged. This is
 shown in the model as "default equals-or-higher". This behavior can
 be altered if the select-adv-compare feature is enabled to specify a
 compare operation and an action. Compare operations are: "equals" to
 select messages with this single severity, or "equals-or-higher" to
 select messages of the specified severity and higher. Actions are
 used to log the message or block the message from being logged.

 Many vendors extend the list of facilities available for logging in
 their implementation. An example is included in Extending Facilities
 (Appendix A.1).

5.1. Syslog Module

 A simplified graphical representation of the data model is used in
 this document. Please see [RFC8340] for tree diagram notation.

 module: ietf-syslog
 +--rw syslog!
 +--rw actions
 +--rw console! {console-action}?
 | +--rw facility-filter
 | | +--rw facility-list* [facility severity]
 | | +--rw facility union
 | | +--rw severity union
 | | +--rw advanced-compare {select-adv-compare}?
 | | +--rw compare? enumeration
 | | +--rw action? enumeration
 | +--rw pattern-match? string {select-match}?
 +--rw file {file-action}?
 | +--rw log-file* [name]
 | +--rw name inet:uri
 | +--rw facility-filter
 | | +--rw facility-list* [facility severity]
 | | +--rw facility union
 | | +--rw severity union
 | | +--rw advanced-compare {select-adv-compare}?

Clarke, et al. Expires 7 October 2022 [Page 6]

Internet-Draft Syslog Management April 2022

 | | +--rw compare? enumeration
 | | +--rw action? enumeration
 | +--rw pattern-match? string {select-match}?
 | +--rw structured-data? boolean {structured-data}?
 | +--rw file-rotation
 | +--rw number-of-files? uint32 {file-limit-size}?
 | +--rw max-file-size? uint32 {file-limit-size}?
 | +--rw rollover? uint32
 | | {file-limit-duration}?
 | +--rw retention? uint32
 | {file-limit-duration}?
 +--rw remote {remote-action}?
 +--rw destination* [name]
 +--rw name string
 +--rw (transport)
 | +--:(udp)
 | | +--rw udp
 | | +--rw address? inet:host
 | | +--rw port? inet:port-number
 | +--:(tls)
 | +--rw tls
 | +--rw address? inet:host
 | +--rw port?
 | | inet:port-number
 | +--rw client-identity!
 | | +--rw (auth-type)
 | | +--:(certificate)
 | | | {client-ident-x509-cert}?
 | | | +--rw certificate
 | | | +--rw (local-or-keystore)
 | | | +--:(local)
 | | | | {local-definitions-suppo
 rted,asymmetric-keys}?
 | | | | +--rw local-definition
 | | | | +--rw public-key-format
 | | | | | identityref
 | | | | +--rw public-key
 | | | | | binary
 | | | | +--rw private-key-format?
 | | | | | identityref
 | | | | +--rw (private-key-type)
 | | | | | +--:(cleartext-private-k
 ey)
 | | | | | | +--rw cleartext-priva
 te-key?
 | | | | | | binary
 | | | | | +--:(hidden-private-key)
 | | | | | | {hidden-keys}?

Clarke, et al. Expires 7 October 2022 [Page 7]

Internet-Draft Syslog Management April 2022

 | | | | | | +--rw hidden-private-
 key?
 | | | | | | empty
 | | | | | +--:(encrypted-private-k
 ey)
 | | | | | {private-key-en
 cryption}?
 | | | | | +--rw encrypted-priva
 te-key
 | | | | | +--rw encrypted-by
 | | | | | +--rw encrypted-va
 lue-format
 | | | | | | identityre
 f
 | | | | | +--rw encrypted-va
 lue
 | | | | | binary
 | | | | +--rw cert-data?
 | | | | | end-entity-cert-cms
 | | | | +---n certificate-expiratio
 n
 | | | | | {certificate-expira
 tion-notification}?
 | | | | | +-- expiration-date
 | | | | | yang:date-and-ti
 me
 | | | | +---x generate-certificate-
 signing-request
 | | | | {certificate-signin
 g-request-generation}?
 | | | | +---w input
 | | | | | +---w csr-info
 | | | | | ct:csr-info
 | | | | +--ro output
 | | | | +--ro certificate-sig
 ning-request
 | | | | ct:csr
 | | | +--:(keystore)
 | | | {central-keystore-suppor
 ted,asymmetric-keys}?
 | | | +--rw keystore-reference
 | | | +--rw asymmetric-key?
 | | | | ks:asymmetric-key-r
 ef
 | | | | {central-keystore-s
 upported,asymmetric-keys}?
 | | | +--rw certificate? lea
 fref

Clarke, et al. Expires 7 October 2022 [Page 8]

Internet-Draft Syslog Management April 2022

 | | +--:(raw-public-key)
 | | | {client-ident-raw-public-key}?
 | | | +--rw raw-private-key
 | | | +--rw (local-or-keystore)
 | | | +--:(local)
 | | | | {local-definitions-suppo
 rted,asymmetric-keys}?
 | | | | +--rw local-definition
 | | | | +--rw public-key-format
 | | | | | identityref
 | | | | +--rw public-key
 | | | | | binary
 | | | | +--rw private-key-format?
 | | | | | identityref
 | | | | +--rw (private-key-type)
 | | | | +--:(cleartext-private-k
 ey)
 | | | | | +--rw cleartext-priva
 te-key?
 | | | | | binary
 | | | | +--:(hidden-private-key)
 | | | | | {hidden-keys}?
 | | | | | +--rw hidden-private-
 key?
 | | | | | empty
 | | | | +--:(encrypted-private-k
 ey)
 | | | | {private-key-en
 cryption}?
 | | | | +--rw encrypted-priva
 te-key
 | | | | +--rw encrypted-by
 | | | | +--rw encrypted-va
 lue-format
 | | | | | identityre
 f
 | | | | +--rw encrypted-va
 lue
 | | | | binary
 | | | +--:(keystore)
 | | | {central-keystore-suppor
 ted,asymmetric-keys}?
 | | | +--rw keystore-reference?
 | | | ks:asymmetric-key-ref
 | | +--:(tls12-psk)
 | | | {client-ident-tls12-psk}?
 | | | +--rw tls12-psk
 | | | +--rw (local-or-keystore)

Clarke, et al. Expires 7 October 2022 [Page 9]

Internet-Draft Syslog Management April 2022

 | | | | +--:(local)
 | | | | | {local-definitions-suppo
 rted,symmetric-keys}?
 | | | | | +--rw local-definition
 | | | | | +--rw key-format?
 | | | | | | identityref
 | | | | | +--rw (key-type)
 | | | | | +--:(cleartext-key)
 | | | | | | +--rw cleartext-key?
 | | | | | | binary
 | | | | | +--:(hidden-key)
 | | | | | | {hidden-keys}?
 | | | | | | +--rw hidden-key?
 | | | | | | empty
 | | | | | +--:(encrypted-key)
 | | | | | {symmetric-key-
 encryption}?
 | | | | | +--rw encrypted-key
 | | | | | +--rw encrypted-by
 | | | | | +--rw encrypted-va
 lue-format
 | | | | | | identityre
 f
 | | | | | +--rw encrypted-va
 lue
 | | | | | binary
 | | | | +--:(keystore)
 | | | | {central-keystore-suppor
 ted,symmetric-keys}?
 | | | | +--rw keystore-reference?
 | | | | ks:symmetric-key-ref
 | | | +--rw id?
 | | | string
 | | +--:(tls13-epsk)
 | | {client-ident-tls13-epsk}?
 | | +--rw tls13-epsk
 | | +--rw (local-or-keystore)
 | | | +--:(local)
 | | | | {local-definitions-suppo
 rted,symmetric-keys}?
 | | | | +--rw local-definition
 | | | | +--rw key-format?
 | | | | | identityref
 | | | | +--rw (key-type)
 | | | | +--:(cleartext-key)
 | | | | | +--rw cleartext-key?
 | | | | | binary
 | | | | +--:(hidden-key)

Clarke, et al. Expires 7 October 2022 [Page 10]

Internet-Draft Syslog Management April 2022

 | | | | | {hidden-keys}?
 | | | | | +--rw hidden-key?
 | | | | | empty
 | | | | +--:(encrypted-key)
 | | | | {symmetric-key-
 encryption}?
 | | | | +--rw encrypted-key
 | | | | +--rw encrypted-by
 | | | | +--rw encrypted-va
 lue-format
 | | | | | identityre
 f
 | | | | +--rw encrypted-va
 lue
 | | | | binary
 | | | +--:(keystore)
 | | | {central-keystore-suppor
 ted,symmetric-keys}?
 | | | +--rw keystore-reference?
 | | | ks:symmetric-key-ref
 | | +--rw external-identity
 | | | string
 | | +--rw hash
 | | | tlscmn:epsk-supported-hash
 | | +--rw context?
 | | | string
 | | +--rw target-protocol?
 | | | uint16
 | | +--rw target-kdf?
 | | uint16
 | +--rw server-authentication
 | | +--rw ca-certs! {server-auth-x509-cert}?
 | | | +--rw (local-or-truststore)
 | | | +--:(local)
 | | | | {local-definitions-supported}?
 | | | | +--rw local-definition
 | | | | +--rw certificate* [name]
 | | | | +--rw name
 | | | | | string
 | | | | +--rw cert-data
 | | | | | trust-anchor-cert-cms
 | | | | +---n certificate-expiration
 | | | | {certificate-expiratio
 n-notification}?
 | | | | +-- expiration-date
 | | | | yang:date-and-time
 | | | +--:(truststore)
 | | | {central-truststore-supported,

Clarke, et al. Expires 7 October 2022 [Page 11]

Internet-Draft Syslog Management April 2022

 certificates}?
 | | | +--rw truststore-reference?
 | | | ts:certificate-bag-ref
 | | +--rw ee-certs! {server-auth-x509-cert}?
 | | | +--rw (local-or-truststore)
 | | | +--:(local)
 | | | | {local-definitions-supported}?
 | | | | +--rw local-definition
 | | | | +--rw certificate* [name]
 | | | | +--rw name
 | | | | | string
 | | | | +--rw cert-data
 | | | | | trust-anchor-cert-cms
 | | | | +---n certificate-expiration
 | | | | {certificate-expiratio
 n-notification}?
 | | | | +-- expiration-date
 | | | | yang:date-and-time
 | | | +--:(truststore)
 | | | {central-truststore-supported,
 certificates}?
 | | | +--rw truststore-reference?
 | | | ts:certificate-bag-ref
 | | +--rw raw-public-keys!
 | | | {server-auth-raw-public-key}?
 | | | +--rw (local-or-truststore)
 | | | +--:(local)
 | | | | {local-definitions-supported}?
 | | | | +--rw local-definition
 | | | | +--rw public-key* [name]
 | | | | +--rw name
 | | | | | string
 | | | | +--rw public-key-format
 | | | | | identityref
 | | | | +--rw public-key
 | | | | binary
 | | | +--:(truststore)
 | | | {central-truststore-supported,
 public-keys}?
 | | | +--rw truststore-reference?
 | | | ts:public-key-bag-ref
 | | +--rw tls12-psks? empty
 | | | {server-auth-tls12-psk}?
 | | +--rw tls13-epsks? empty
 | | {server-auth-tls13-epsk}?
 | +--rw hello-params {tlscmn:hello-params}?
 | | +--rw tls-versions
 | | | +--rw tls-version* identityref

Clarke, et al. Expires 7 October 2022 [Page 12]

Internet-Draft Syslog Management April 2022

 | | +--rw cipher-suites
 | | +--rw cipher-suite* identityref
 | +--rw keepalives {tls-client-keepalives}?
 | +--rw peer-allowed-to-send? empty
 | +--rw test-peer-aliveness!
 | +--rw max-wait? uint16
 | +--rw max-attempts? uint8
 +--rw facility-filter
 | +--rw facility-list* [facility severity]
 | +--rw facility union
 | +--rw severity union
 | +--rw advanced-compare {select-adv-compare}?
 | +--rw compare? enumeration
 | +--rw action? enumeration
 +--rw pattern-match? string {select-match}?
 +--rw structured-data? boolean {structured-data}?
 +--rw facility-override? identityref
 +--rw source-interface? if:interface-ref
 | {remote-source-interface}?
 +--rw signing! {signed-messages}?
 +--rw cert-signers
 +--rw cert-signer* [name]
 | +--rw name string
 | +--rw cert
 | | +--rw public-key-format
 | | | identityref
 | | +--rw public-key
 | | | binary
 | | +--rw private-key-format?
 | | | identityref
 | | +--rw (private-key-type)
 | | | +--:(cleartext-private-key)
 | | | | +--rw cleartext-private-key?
 | | | | binary
 | | | +--:(hidden-private-key) {hidden-keys}?
 | | | | +--rw hidden-private-key?
 | | | | empty
 | | | +--:(encrypted-private-key)
 | | | {private-key-encryption}?
 | | | +--rw encrypted-private-key
 | | | +--rw encrypted-by
 | | | +--rw encrypted-value-format
 | | | | identityref
 | | | +--rw encrypted-value
 | | | binary
 | | +--rw certificates
 | | | +--rw certificate* [name]
 | | | +--rw name

Clarke, et al. Expires 7 October 2022 [Page 13]

Internet-Draft Syslog Management April 2022

 | | | | string
 | | | +--rw cert-data
 | | | | end-entity-cert-cms
 | | | +---n certificate-expiration
 | | | {certificate-expiration-notific
 ation}?
 | | | +-- expiration-date
 | | | yang:date-and-time
 | | +---x generate-certificate-signing-request
 | | {certificate-signing-request-generati
 on}?
 | | +---w input
 | | | +---w csr-info ct:csr-info
 | | +--ro output
 | | +--ro certificate-signing-request
 | | ct:csr
 | +--rw hash-algorithm? enumeration
 +--rw cert-initial-repeat? uint32
 +--rw cert-resend-delay? uint32
 +--rw cert-resend-count? uint32
 +--rw sig-max-delay? uint32
 +--rw sig-number-resends? uint32
 +--rw sig-resend-delay? uint32
 +--rw sig-resend-count? uint32

 Figure 1: Tree Diagram for Syslog Model

6. Syslog YANG Module

6.1. The ietf-syslog Module

 This module imports typedefs from [RFC6991], [RFC8343], groupings
 from [I-D.ietf-netconf-crypto-types], and
 [I-D.ietf-netconf-tls-client-server], and it references [RFC5424],
 [RFC5425], [RFC5426], and [RFC5848], [RFC8089], [RFC8174], and
 [Std-1003.1-2008].

 <CODE BEGINS> file "ietf-syslog@2022-04-05.yang"
 module ietf-syslog {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-syslog";
 prefix syslog;

 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }

Clarke, et al. Expires 7 October 2022 [Page 14]

Internet-Draft Syslog Management April 2022

 import ietf-interfaces {
 prefix if;
 reference
 "RFC 8343: A YANG Data Model for Interface Management";
 }
 import ietf-tls-client {
 prefix tlsc;
 reference
 "I-D.ietf-netconf-tls-client-server:
 YANG Groupings for TLS Clients and TLS Servers";
 }
 import ietf-crypto-types {
 prefix ct;
 reference
 "I-D.ietf-netconf-crypto-types: YANG Data Types for
 Cryptography";
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Editor: Mahesh Jethanandani
 <mailto:mjethanandani@gmail.com>

 Editor: Joe Clarke
 <mailto:jclarke@cisco.com>

 Editor: Kiran Agrahara Sreenivasa
 <mailto:kirankoushik.agraharasreenivasa@
 verizonwireless.com>

 Editor: Clyde Wildes
 <mailto:cwildes@cisco.com>";
 description
 "This module contains a collection of YANG definitions
 for syslog configuration.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents

Clarke, et al. Expires 7 October 2022 [Page 15]

Internet-Draft Syslog Management April 2022

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC zzzz
 (https://www.rfc-editor.org/info/rfczzzz); see the RFC itself
 for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 revision 2022-04-05 {
 description
 "Initial Revision";
 reference
 "RFC zzzz: Syslog YANG Model";
 }

 feature console-action {
 description
 "This feature indicates that the local console action is
 supported.";
 }

 feature file-action {
 description
 "This feature indicates that the local file action is
 supported.";
 }

 feature file-limit-size {
 description
 "This feature indicates that file logging resources
 are managed using size and number limits.";
 }

 feature file-limit-duration {
 description
 "This feature indicates that file logging resources
 are managed using time based limits.";
 }

 feature remote-action {
 description
 "This feature indicates that the remote server action is
 supported.";
 }

Clarke, et al. Expires 7 October 2022 [Page 16]

Internet-Draft Syslog Management April 2022

 feature remote-source-interface {
 description
 "This feature indicates that source-interface is supported
 supported for the remote-action.";
 }

 feature select-adv-compare {
 description
 "This feature represents the ability to select messages
 using the additional comparison operators when comparing
 the syslog message severity.";
 }

 feature select-match {
 description
 "This feature represents the ability to select messages
 based on a Posix 1003.2 regular expression pattern match.";
 }

 feature structured-data {
 description
 "This feature represents the ability to log messages
 in structured-data format.";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 feature signed-messages {
 description
 "This feature represents the ability to configure signed
 syslog messages.";
 reference
 "RFC 5848: Signed Syslog Messages";
 }

 typedef syslog-severity {
 type enumeration {
 enum emergency {
 value 0;
 description
 "The severity level ’Emergency’ indicating that the
 system is unusable.";
 }
 enum alert {
 value 1;
 description
 "The severity level ’Alert’ indicating that an action
 must be taken immediately.";

Clarke, et al. Expires 7 October 2022 [Page 17]

Internet-Draft Syslog Management April 2022

 }
 enum critical {
 value 2;
 description
 "The severity level ’Critical’ indicating a critical
 condition.";
 }
 enum error {
 value 3;
 description
 "The severity level ’Error’ indicating an error
 condition.";
 }
 enum warning {
 value 4;
 description
 "The severity level ’Warning’ indicating a warning
 condition.";
 }
 enum notice {
 value 5;
 description
 "The severity level ’Notice’ indicating a normal but
 significant condition.";
 }
 enum info {
 value 6;
 description
 "The severity level ’Info’ indicating an informational
 message.";
 }
 enum debug {
 value 7;
 description
 "The severity level ’Debug’ indicating a debug-level
 message.";
 }
 }
 description
 "The definitions for Syslog message severity.
 Note that a lower value is a higher severity. Comparisons of
 equal-or-higher severity mean equal or lower numeric value";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity syslog-facility {
 description

Clarke, et al. Expires 7 October 2022 [Page 18]

Internet-Draft Syslog Management April 2022

 "This identity is used as a base for all syslog facilities.";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity kern {
 base syslog-facility;
 description
 "The facility for kernel messages (0).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity user {
 base syslog-facility;
 description
 "The facility for user-level messages (1).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity mail {
 base syslog-facility;
 description
 "The facility for the mail system (2).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity daemon {
 base syslog-facility;
 description
 "The facility for the system daemons (3).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity auth {
 base syslog-facility;
 description
 "The facility for security/authorization messages (4).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity syslog {
 base syslog-facility;
 description

Clarke, et al. Expires 7 October 2022 [Page 19]

Internet-Draft Syslog Management April 2022

 "The facility for messages generated internally by syslogd
 facility (5).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity lpr {
 base syslog-facility;
 description
 "The facility for the line printer subsystem (6).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity news {
 base syslog-facility;
 description
 "The facility for the network news subsystem (7).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity uucp {
 base syslog-facility;
 description
 "The facility for the UUCP subsystem (8).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity cron {
 base syslog-facility;
 description
 "The facility for the clock daemon (9).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity authpriv {
 base syslog-facility;
 description
 "The facility for privileged security/authorization messages
 (10).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity ftp {

Clarke, et al. Expires 7 October 2022 [Page 20]

Internet-Draft Syslog Management April 2022

 base syslog-facility;
 description
 "The facility for the FTP daemon (11).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity ntp {
 base syslog-facility;
 description
 "The facility for the NTP subsystem (12).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity audit {
 base syslog-facility;
 description
 "The facility for log audit messages (13).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity console {
 base syslog-facility;
 description
 "The facility for log alert messages (14).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity cron2 {
 base syslog-facility;
 description
 "The facility for the second clock daemon (15).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity local0 {
 base syslog-facility;
 description
 "The facility for local use 0 messages (16).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity local1 {

Clarke, et al. Expires 7 October 2022 [Page 21]

Internet-Draft Syslog Management April 2022

 base syslog-facility;
 description
 "The facility for local use 1 messages (17).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity local2 {
 base syslog-facility;
 description
 "The facility for local use 2 messages (18).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity local3 {
 base syslog-facility;
 description
 "The facility for local use 3 messages (19).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity local4 {
 base syslog-facility;
 description
 "The facility for local use 4 messages (20).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity local5 {
 base syslog-facility;
 description
 "The facility for local use 5 messages (21).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity local6 {
 base syslog-facility;
 description
 "The facility for local use 6 messages (22).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity local7 {

Clarke, et al. Expires 7 October 2022 [Page 22]

Internet-Draft Syslog Management April 2022

 base syslog-facility;
 description
 "The facility for local use 7 messages (23).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 grouping severity-filter {
 description
 "This grouping defines the processing used to select
 log messages by comparing syslog message severity using
 the following processing rules:
 - if ’none’, do not match.
 - if ’all’, match.
 - else compare message severity with the specified severity
 according to the default compare rule (all messages of the
 specified severity and greater match) or if the
 select-adv-compare feature is present, use the
 advance-compare rule.";
 leaf severity {
 type union {
 type syslog-severity;
 type enumeration {
 enum none {
 value 2147483647;
 description
 "This enum describes the case where no severities
 are selected.";
 }
 enum all {
 value -2147483648;
 description
 "This enum describes the case where all severities
 are selected.";
 }
 }
 }
 mandatory true;
 description
 "This leaf specifies the syslog message severity.";
 }
 container advanced-compare {
 when "../severity != \"all\" and
 ../severity != \"none\"" {
 description
 "The advanced compare container is not applicable for
 severity ’all’ or severity ’none’";
 }

Clarke, et al. Expires 7 October 2022 [Page 23]

Internet-Draft Syslog Management April 2022

 if-feature "select-adv-compare";
 leaf compare {
 type enumeration {
 enum equals {
 description
 "This enum specifies that the severity comparison
 operation will be equals.";
 }
 enum equals-or-higher {
 description
 "This enum specifies that the severity comparison
 operation will be equals or higher.";
 }
 }
 default "equals-or-higher";
 description
 "The compare can be used to specify the comparison
 operator that should be used to compare the syslog message
 severity with the specified severity.";
 }
 leaf action {
 type enumeration {
 enum log {
 description
 "This enum specifies that if the compare operation is
 true the message will be logged.";
 }
 enum block {
 description
 "This enum specifies that if the compare operation is
 true the message will not be logged.";
 }
 }
 default "log";
 description
 "The action can be used to specify if the message should
 be logged or blocked based on the outcome of the compare
 operation.";
 }
 description
 "This container describes additional severity compare
 operations that can be used in place of the default
 severity comparison. The compare leaf specifies the type of
 the compare that is done and the action leaf specifies the
 intended result.
 Example: compare->equals and action->block means
 messages that have a severity that are equal to the
 specified severity will not be logged.";

Clarke, et al. Expires 7 October 2022 [Page 24]

Internet-Draft Syslog Management April 2022

 }
 }

 grouping selector {
 description
 "This grouping defines a syslog selector which is used to
 select log messages for the log-actions (console, file,
 remote, etc.). Choose one or both of the following:
 facility [<facility> <severity>...]
 pattern-match regular-expression-match-string
 If both facility and pattern-match are specified, both must
 match in order for a log message to be selected.";
 container facility-filter {
 description
 "This container describes the syslog filter parameters.";
 list facility-list {
 key "facility severity";
 ordered-by user;
 description
 "This list describes a collection of syslog
 facilities and severities.";
 leaf facility {
 type union {
 type identityref {
 base syslog-facility;
 }
 type enumeration {
 enum all {
 description
 "This enum describes the case where all
 facilities are requested.";
 }
 }
 }
 description
 "The leaf uniquely identifies a syslog facility.";
 }
 uses severity-filter;
 }
 }
 leaf pattern-match {
 if-feature "select-match";
 type string;
 description
 "This leaf describes a Posix 1003.2 regular expression
 string that can be used to select a syslog message for
 logging. The match is performed on the SYSLOG-MSG field.";
 reference

Clarke, et al. Expires 7 October 2022 [Page 25]

Internet-Draft Syslog Management April 2022

 "RFC 5424: The Syslog Protocol
 Std-1003.1-2008 Regular Expressions";
 }
 }

 grouping structured-data {
 description
 "This grouping defines the syslog structured data option
 which is used to select the format used to write log
 messages.";
 leaf structured-data {
 if-feature "structured-data";
 type boolean;
 default "false";
 description
 "This leaf describes how log messages are written.
 If true, messages will be written with one or more
 STRUCTURED-DATA elements; if false, messages will be
 written with STRUCTURED-DATA = NILVALUE.";
 reference
 "RFC 5424: The Syslog Protocol";
 }
 }

 container syslog {
 presence "Enables logging.";
 description
 "This container describes the configuration parameters for
 syslog.";
 container actions {
 description
 "This container describes the log-action parameters
 for syslog.";
 container console {
 if-feature "console-action";
 presence "Enables logging to the console";
 description
 "This container describes the configuration parameters
 for console logging.";
 uses selector;
 }
 container file {
 if-feature "file-action";
 description
 "This container describes the configuration parameters for
 file logging. If file-archive limits are not supplied, it
 is assumed that the local implementation defined limits
 will be used.";

Clarke, et al. Expires 7 October 2022 [Page 26]

Internet-Draft Syslog Management April 2022

 list log-file {
 key "name";
 description
 "This list describes a collection of local logging
 files.";
 leaf name {
 type inet:uri {
 pattern ’file:.*’;
 }
 description
 "This leaf specifies the name of the log file which
 MUST use the uri scheme file:.";
 reference
 "RFC 8089: The file URI Scheme";
 }
 uses selector;
 uses structured-data;
 container file-rotation {
 description
 "This container describes the configuration
 parameters for log file rotation.";
 leaf number-of-files {
 if-feature "file-limit-size";
 type uint32;
 default "1";
 description
 "This leaf specifies the maximum number of log
 files retained. Specify 1 for implementations
 that only support one log file.";
 }
 leaf max-file-size {
 if-feature "file-limit-size";
 type uint32;
 units "megabytes";
 description
 "This leaf specifies the maximum log file size.";
 }
 leaf rollover {
 if-feature "file-limit-duration";
 type uint32;
 units "minutes";
 description
 "This leaf specifies the length of time that log
 events should be written to a specific log file.
 Log events that arrive after the rollover period
 cause the current log file to be closed and a new
 log file to be opened.";
 }

Clarke, et al. Expires 7 October 2022 [Page 27]

Internet-Draft Syslog Management April 2022

 leaf retention {
 if-feature "file-limit-duration";
 type uint32;
 units "minutes";
 description
 "This leaf specifies the length of time that
 completed/closed log event files should be stored
 in the file system before they are removed.";
 }
 }
 }
 }
 container remote {
 if-feature "remote-action";
 description
 "This container describes the configuration parameters
 for forwarding syslog messages to remote relays or
 collectors.";
 list destination {
 key "name";
 description
 "This list describes a collection of remote logging
 destinations.";
 leaf name {
 type string;
 description
 "An arbitrary name for the endpoint to connect to.";
 }
 choice transport {
 mandatory true;
 description
 "This choice describes the transport option.";
 case udp {
 container udp {
 description
 "This container describes the UDP transport
 options.";
 reference
 "RFC 5426: Transmission of Syslog Messages over
 UDP";
 leaf address {
 type inet:host;
 description
 "The leaf uniquely specifies the address of
 the remote host. One of the following must be
 specified: an ipv4 address, an ipv6 address,
 or a host name.";
 }

Clarke, et al. Expires 7 October 2022 [Page 28]

Internet-Draft Syslog Management April 2022

 leaf port {
 type inet:port-number;
 default "514";
 description
 "This leaf specifies the port number used to
 deliver messages to the remote server.";
 }
 }
 }
 case tls {
 container tls {
 description
 "This container describes the TLS transport
 options.";
 reference
 "RFC 5425: Transport Layer Security (TLS)
 Transport Mapping for Syslog ";
 leaf address {
 type inet:host;
 description
 "The leaf uniquely specifies the address of
 the remote host. One of the following must be
 specified: an ipv4 address, an ipv6 address,
 or a host name.";
 }
 leaf port {
 type inet:port-number;
 default "6514";
 description
 "TCP port 6514 has been allocated as the default
 port for syslog over TLS.";
 }
 uses tlsc:tls-client-grouping;
 }
 }
 }
 uses selector;
 uses structured-data;
 leaf facility-override {
 type identityref {
 base syslog-facility;
 }
 description
 "If specified, this leaf specifies the facility used
 to override the facility in messages delivered to
 the remote server.";
 }
 leaf source-interface {

Clarke, et al. Expires 7 October 2022 [Page 29]

Internet-Draft Syslog Management April 2022

 if-feature "remote-source-interface";
 type if:interface-ref;
 description
 "This leaf sets the source interface to be used to
 send messages to the remote syslog server. If not
 set, messages can be sent on any interface.";
 }
 container signing {
 if-feature "signed-messages";
 presence "If present, syslog-signing options is activated.";
 description
 "This container describes the configuration
 parameters for signed syslog messages.";
 reference
 "RFC 5848: Signed Syslog Messages";
 container cert-signers {
 description
 "This container describes the signing certificate
 configuration for Signature Group 0 which covers
 the case for administrators who want all Signature
 Blocks to be sent to a single destination.";
 list cert-signer {
 key "name";
 description
 "This list describes a collection of syslog
 message signers.";
 leaf name {
 type string;
 description
 "This leaf specifies the name of the syslog
 message signer.";
 }
 container cert {
 uses ct:asymmetric-key-pair-with-certs-grouping;
 description
 "This is the certificate that is periodically
 sent to the remote receiver. The certificate
 is inherintly associated with its private
 and public keys.";
 }
 leaf hash-algorithm {
 type enumeration {
 enum SHA1 {
 value 1;
 description
 "This enum describes the SHA1 algorithm.";
 }
 enum SHA256 {

Clarke, et al. Expires 7 October 2022 [Page 30]

Internet-Draft Syslog Management April 2022

 value 2;
 description
 "This enum describes the SHA256 algorithm.";
 }
 }
 description
 "This leaf describes the syslog signer hash
 algorithm used.";
 }
 }
 leaf cert-initial-repeat {
 type uint32;
 default "3";
 description
 "This leaf specifies the number of times each
 Certificate Block should be sent before the first
 message is sent.";
 }
 leaf cert-resend-delay {
 type uint32;
 units "seconds";
 default "3600";
 description
 "This leaf specifies the maximum time delay in
 seconds until resending the Certificate Block.";
 }
 leaf cert-resend-count {
 type uint32;
 default "0";
 description
 "This leaf specifies the maximum number of other
 syslog messages to send until resending the
 Certificate Block.";
 }
 leaf sig-max-delay {
 type uint32;
 units "seconds";
 default "60";
 description
 "This leaf specifies when to generate a new
 Signature Block. If this many seconds have
 elapsed since the message with the first message
 number of the Signature Block was sent, a new
 Signature Block should be generated.";
 }
 leaf sig-number-resends {
 type uint32;
 default "0";

Clarke, et al. Expires 7 October 2022 [Page 31]

Internet-Draft Syslog Management April 2022

 description
 "This leaf specifies the number of times a
 Signature Block is resent. (It is recommended to
 select a value of greater than 0 in particular
 when the UDP transport RFC 5426 is used.).";
 }
 leaf sig-resend-delay {
 type uint32;
 units "seconds";
 default "5";
 description
 "This leaf specifies when to send the next
 Signature Block transmission based on time. If
 this many seconds have elapsed since the previous
 sending of this Signature Block, resend it.";
 }
 leaf sig-resend-count {
 type uint32;
 default "0";
 description
 "This leaf specifies when to send the next
 Signature Block transmission based on a count.
 If this many other syslog messages have been
 sent since the previous sending of this
 Signature Block, resend it. A value of 0 means
 that you don’t resend based on the number of
 messages.";
 }
 }
 }
 }
 }
 }
 }
 }
 <CODE ENDS>

 Figure 2: Sylog YANG Model

7. Usage Examples

7.1. Syslog Configuration for Severity Critical

Clarke, et al. Expires 7 October 2022 [Page 32]

Internet-Draft Syslog Management April 2022

 [note: ’\’ line wrapping for formatting only]

 <!--
 Enable console logging of syslogs of severity critical
 -->

 <?xml version="1.0" encoding="UTF-8"?>
 <syslog xmlns="urn:ietf:params:xml:ns:yang:ietf-syslog">
 <actions>
 <console>
 <facility-filter>
 <facility-list>
 <facility>all</facility>
 <severity>critical</severity>
 </facility-list>
 </facility-filter>
 </console>
 </actions>
 </syslog>

 Figure 3: Syslog Configuration for Severity Critical

7.2. Remote Syslog Configuration

Clarke, et al. Expires 7 October 2022 [Page 33]

Internet-Draft Syslog Management April 2022

 [note: ’\’ line wrapping for formatting only]

 <!--
 Enable remote logging of syslogs to udp destination
 foo.example.com for facility auth, severity error
 -->
 <?xml version="1.0" encoding="UTF-8"?>
 <syslog xmlns="urn:ietf:params:xml:ns:yang:ietf-syslog">
 <actions>
 <remote>
 <destination>
 <name>remote1</name>
 <udp>
 <address>foo.example.com</address>
 </udp>
 <facility-filter>
 <facility-list>
 <facility>auth</facility>
 <severity>error</severity>
 </facility-list>
 </facility-filter>
 </destination>
 </remote>
 </actions>
 </syslog>

 Figure 4: Remote Syslog Configuration

8. Acknowledgements

 The authors wish to thank the following who commented on this
 proposal:

 Andy Bierman, Martin Bjorklund, Alex Campbell, Alex Clemm, Francis
 Dupont, Jim Gibson, Jeffrey Haas, Bob Harold, John Heasley, Giles
 Heron, Lisa Huang, Mahesh Jethanandani, Warren Kumari, Jeffrey K
 Lange, Jan Lindblad, Chris Lonvick, Alexey Melnikov, Kathleen
 Moriarty, Tom Petch, Adam Roach, Juergen Schoenwaelder, Phil Shafer,
 Yaron Sheffer, Jason Sterne, Peter Van Horne, Kent Watsen, Bert
 Wijnen, Dale R Worley, and Aleksandr Zhdankin.

9. IANA Considerations

9.1. The IETF XML Registry

 This document registers one URI in the IETF XML registry [RFC3688] .
 Following the format in [RFC3688], the following registration is
 requested:

Clarke, et al. Expires 7 October 2022 [Page 34]

Internet-Draft Syslog Management April 2022

 URI: urn:ietf:params:xml:ns:yang:ietf-syslog
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

9.2. The YANG Module Names Registry

 This document registers one YANG module in the YANG Module Names
 registry [RFC7895]. Following the format in [RFC7950], the following
 registration is requested:

 name: ietf-syslog
 namespace: urn:ietf:params:xml:ns:yang:ietf-syslog
 prefix: ietf-syslog
 reference: RFC zzzz

10. Security Considerations

 The YANG module defined in this document is designed to be accessed
 via YANG based management protocols, such as NETCONF [RFC6241] and
 RESTCONF [RFC8040]. Both of these protocols have mandatory-to-
 implement secure transport layers (e.g., SSH, TLS) with mutual
 authentication.

 The NETCONF access control model (NACM) [RFC6536] provides the means
 to restrict access for particular users to a pre-configured subset of
 all available protocol operations and content.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes should be considered sensitive or
 vulnerable in all network environments. Logging in particular is
 used to assess the state of systems and can be used to indicate a
 network compromise. If logging were to be disabled through malicious
 means, attacks may not be readily detectable. Therefore write
 operations (e.g., edit-config) to these data nodes without proper
 protection can have a negative effect on network operations and on
 network security.

 In addition there are data nodes that require careful analysis and
 review. These are the subtrees and data nodes and their sensitivity/
 vulnerability:

 facility-filter/pattern-match: When writing this node,
 implementations MUST ensure that the regular expression pattern
 match is not constructed to cause a regular expression denial
 of service attack due to a pattern that causes the regular
 expression implementation to work very slowly (exponentially
 related to input size).

Clarke, et al. Expires 7 October 2022 [Page 35]

Internet-Draft Syslog Management April 2022

 remote/destination/signing/cert-signer: When writing this subtree,
 implementations MUST NOT specify a private key that is used for
 any other purpose.

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 remote/destination/transport: This subtree contains information
 about other hosts in the network, and the TLS transport
 certificate properties if TLS is selected as the transport
 protocol.

 remote/destination/signing: This subtree contains information about
 the syslog message signing properties including signing
 certificate information.

 There are no RPC operations defined in this YANG module.

11. References

11.1. Normative References

 [I-D.ietf-netconf-crypto-types]
 Watsen, K., "YANG Data Types and Groupings for
 Cryptography", Work in Progress, Internet-Draft, draft-
 ietf-netconf-crypto-types-22, 7 March 2022,
 <https://www.ietf.org/archive/id/draft-ietf-netconf-
 crypto-types-22.txt>.

 [I-D.ietf-netconf-tls-client-server]
 Watsen, K., "YANG Groupings for TLS Clients and TLS
 Servers", Work in Progress, Internet-Draft, draft-ietf-
 netconf-tls-client-server-27, 7 March 2022,
 <https://www.ietf.org/archive/id/draft-ietf-netconf-tls-
 client-server-27.txt>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5424] Gerhards, R., "The Syslog Protocol", RFC 5424,
 DOI 10.17487/RFC5424, March 2009,
 <https://www.rfc-editor.org/info/rfc5424>.

Clarke, et al. Expires 7 October 2022 [Page 36]

Internet-Draft Syslog Management April 2022

 [RFC5425] Miao, F., Ed., Ma, Y., Ed., and J. Salowey, Ed.,
 "Transport Layer Security (TLS) Transport Mapping for
 Syslog", RFC 5425, DOI 10.17487/RFC5425, March 2009,
 <https://www.rfc-editor.org/info/rfc5425>.

 [RFC5426] Okmianski, A., "Transmission of Syslog Messages over UDP",
 RFC 5426, DOI 10.17487/RFC5426, March 2009,
 <https://www.rfc-editor.org/info/rfc5426>.

 [RFC5848] Kelsey, J., Callas, J., and A. Clemm, "Signed Syslog
 Messages", RFC 5848, DOI 10.17487/RFC5848, May 2010,
 <https://www.rfc-editor.org/info/rfc5848>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7895] Bierman, A., Bjorklund, M., and K. Watsen, "YANG Module
 Library", RFC 7895, DOI 10.17487/RFC7895, June 2016,
 <https://www.rfc-editor.org/info/rfc7895>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8089] Kerwin, M., "The "file" URI Scheme", RFC 8089,
 DOI 10.17487/RFC8089, February 2017,
 <https://www.rfc-editor.org/info/rfc8089>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8343] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
 <https://www.rfc-editor.org/info/rfc8343>.

 [Std-1003.1-2008]
 Group, I. A. T. O., ""Chapter 9: Regular Expressions". The
 Open Group Base Specifications Issue 6, IEEE Std
 1003.1-2008, 2016 Edition.", September 2016,
 <http://pubs.opengroup.org/onlinepubs/9699919799/>.

11.2. Informative References

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

Clarke, et al. Expires 7 October 2022 [Page 37]

Internet-Draft Syslog Management April 2022

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 DOI 10.17487/RFC6536, March 2012,
 <https://www.rfc-editor.org/info/rfc6536>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

Appendix A. Implementer Guidelines

A.1. Extending Facilities

 Many vendors extend the list of facilities available for logging in
 their implementation. Additional facilities may not work with the
 syslog protocol as defined in [RFC5424] and hence such facilities
 apply for local syslog-like logging functionality.

 The following is an example that shows how additional facilities
 could be added to the list of available facilities (in this example
 two facilities are added):

Clarke, et al. Expires 7 October 2022 [Page 38]

Internet-Draft Syslog Management April 2022

 module example-vendor-syslog-types {
 namespace "http://example.com/ns/vendor-syslog-types";
 prefix vendor-syslogtypes;

 import ietf-syslog {
 prefix syslogtypes;
 }

 organization "Example, Inc.";
 contact
 "Example, Inc.
 Customer Service

 E-mail: syslog-yang@example.com";

 description
 "This module contains a collection of vendor-specific YANG type
 definitions for SYSLOG.";

 revision 2017-08-11 {
 description
 "Version 1.0";
 reference
 "Vendor SYSLOG Types: SYSLOG YANG Model";
 }

 identity vendor_specific_type_1 {
 base syslogtypes:syslog-facility;
 description
 "Adding vendor specific type 1 to syslog-facility";
 }

 identity vendor_specific_type_2 {
 base syslogtypes:syslog-facility;
 description
 "Adding vendor specific type 2 to syslog-facility";
 }
 }

A.2. Syslog Terminal Output

 Terminal output with requirements more complex than the console
 subtree currently provides, are expected to be supported via vendor
 extensions rather than handled via the file subtree.

Clarke, et al. Expires 7 October 2022 [Page 39]

Internet-Draft Syslog Management April 2022

A.3. Syslog File Naming Convention

 The syslog/file/log-file/file-rotation container contains
 configuration parameters for syslog file rotation. This section
 describes how these fields might be used by an implementer to name
 syslog files in a rotation process. This information is offered as
 an informative guide only.

 When an active syslog file with a name specified by log-file/name,
 reaches log-file/max-file-size and/or syslog events arrive after the
 period specified by log-file/rollover, the logging system can close
 the file, can compress it, and can name the archive file <log-file/
 name>.0.gz. The logging system can then open a new active syslog
 file <log-file/name>.

 When the new syslog file reaches either of the size limits referenced
 above, <log-file/name>.0.gz can be renamed <log-file/name>.1.gz and
 the new syslog file can be closed, compressed and renamed <log-file/
 name>.0.gz. Each time that a new syslog file is closed, each of the
 prior syslog archive files named <log-file/name>.<n>.gz can be
 renamed to <log-file/name>.<n + 1>.gz.

 Removal of archive log files could occur when either or both:

 - log-file/number-of-files specified - the logging system can create
 up to log-file/number-of-files syslog archive files after which, the
 contents of the oldest archived file could be overwritten.

 - log-file/retention specified - the logging system can remove those
 syslog archive files whose file expiration time (file creation time
 plus the specified log-file/retention time) is prior to the current
 time.

Authors’ Addresses

 Joe Clarke (editor)
 Cisco
 United States of America
 Email: jclarke@cisco.com

 Mahesh Jethanandani (editor)
 Kloud Services
 United States of America
 Email: mjethanandai@gmail.com

Clarke, et al. Expires 7 October 2022 [Page 40]

Internet-Draft Syslog Management April 2022

 Clyde Wildes (editor)
 Cisco Systems Inc.
 170 West Tasman Drive
 San Jose, CA 95134
 United States of America
 Phone: +1 408 527-2672
 Email: cwildes@cisco.com

 Kiran Koushik (editor)
 Verizon Wireless
 500 W Dove Rd.
 Southlake, TX 76092
 United States of America
 Phone: +1 512 650-0210
 Email: kirankoushik.agraharasreenivasa@verizonwireless.com

Clarke, et al. Expires 7 October 2022 [Page 41]

NETMOD WG J. Clarke, Ed.
Internet-Draft Cisco
Intended status: Standards Track M. Jethanandani, Ed.
Expires: 21 September 2024 Kloud Services
 C. Wildes, Ed.
 Cisco Systems Inc.
 K. Koushik, Ed.
 Verizon Wireless
 20 March 2024

 A YANG Data Model for Syslog Configuration
 draft-ietf-netmod-syslog-model-32

Abstract

 This document defines a YANG data model for the configuration of a
 syslog process. It is intended this model be used by vendors who
 implement syslog in their systems.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 21 September 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Clarke, et al. Expires 21 September 2024 [Page 1]

Internet-Draft Syslog Management March 2024

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Requirements Language 3
 2. Terminology . 3
 3. NDMA Compliance . 3
 4. Editorial Note (To be removed by RFC Editor) 4
 5. Design of the Syslog Model 4
 5.1. Syslog Module . 6
 6. Syslog YANG Module . 15
 6.1. The ietf-syslog Module 15
 7. Usage Examples . 35
 7.1. Syslog Configuration for Severity Critical 35
 7.2. Remote Syslog Configuration 35
 8. Acknowledgements . 36
 9. IANA Considerations . 36
 9.1. The IETF XML Registry 36
 9.2. The YANG Module Names Registry 37
 10. Security Considerations 37
 11. References . 38
 11.1. Normative References 38
 11.2. Informative References 40
 Appendix A. Implementer Guidelines 40
 A.1. Extending Facilities 41
 A.2. Syslog Terminal Output 42
 A.3. Syslog File Naming Convention 43
 Authors’ Addresses . 43

1. Introduction

 This document defines a YANG [RFC7950] configuration data model that
 may be used to configure the syslog feature running on a system.
 YANG models can be used with network management protocols such as
 NETCONF [RFC6241] to install, manipulate, and delete the
 configuration of network devices.

 The data model makes use of the YANG "feature" construct which allows
 implementations to support only those syslog features that lie within
 their capabilities.

Clarke, et al. Expires 21 September 2024 [Page 2]

Internet-Draft Syslog Management March 2024

 This module can be used to configure the syslog application
 conceptual layers as implemented on the target system.

 Essentially, a syslog process receives messages (from the kernel,
 processes, applications or other syslog processes) and processes
 them. The processing may involve logging to a local file, and/or
 displaying on console, and/or relaying to syslog processes on other
 machines. The processing is determined by the "facility" that
 originated the message and the "severity" assigned to the message by
 the facility.

 Such definitions of syslog protocol are defined in [RFC5424] , and
 are used in this RFC.

 The YANG model in this document conforms to the Network Management
 Datastore Architecture defined in [RFC8342].

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Terminology

 The term "originator" is defined in [RFC5424] : an "originator"
 generates syslog content to be carried in a message.

 The term "relay" is defined in [RFC5424] : a "relay" forwards
 messages, accepting messages from originators or other relays and
 sending them to collectors or other relays

 The term "collectors" is defined in [RFC5424] : a "collector" gathers
 syslog content for further analysis.

 The term "action" refers to the processing that takes place for each
 syslog message received.

3. NDMA Compliance

 The YANG model in this document conforms to the Network Management
 Datastore Architecture defined in [RFC8342] .

Clarke, et al. Expires 21 September 2024 [Page 3]

Internet-Draft Syslog Management March 2024

4. Editorial Note (To be removed by RFC Editor)

 This document contains many placeholder values that need to be
 replaced with finalized values at the time of publication. This note
 summarizes all of the substitutions that are needed. No other RFC
 Editor instructions are specified elsewhere in this document.

 Artwork in this document contains shorthand references to drafts in
 progress. Please apply the following replacements:

 * I-D.ietf-netconf-crypto-types --> the assigned RFC value for
 draft-ietf-netconf-crypto-types

 * I-D.ietf-netconf-tls-client-server --> the assigned RFC value for
 draft-ietf-netconf-tls-client-server

 * zzzz --> the assigned RFC value for this draft

5. Design of the Syslog Model

 The syslog model was designed by comparing various syslog features
 implemented by various vendors’ in different implementations.

 This document addresses the common leafs between implementations and
 creates a common model, which can be augmented with proprietary
 features, if necessary. This model is designed to be very simple for
 maximum flexibility.

 Some optional features are defined in this document to specify
 functionality that is present in specific vendor configurations.

 Syslog consists of originators and collectors. The following diagram
 shows syslog messages flowing from originators, to collectors where
 filtering can take place.

Clarke, et al. Expires 21 September 2024 [Page 4]

Internet-Draft Syslog Management March 2024

 Originators
 +-------------+ +-------------+ +-------------+ +-------------+
 | Various | | OS | | | | Remote |
 | Components | | Kernel | | Line Cards | | Servers |
 +-------------+ +-------------+ +-------------+ +-------------+

 +-------------+ +-------------+ +-------------+ +-------------+
 | SNMP | | Interface | | Standby | | Syslog |
 | Events | | Events | | Supervisor | | Itself |
 +-------------+ +-------------+ +-------------+ +-------------+

 | |
 +--+
 |
 |
 |
 |
 +-------------+--------------+
 | | |
 v v v
 Collectors
 +----------+ +----------+ +----------------+
 | | | Log | |Remote Relay(s)/|
 | Console | | File(s) | |Collector(s) |
 +----------+ +----------+ +----------------+

 Figure 1. Syslog Processing Flow

 Collectors are configured using the leaves in the syslog model
 "actions" container which correspond to each message collector:

 console

 log file(s)

 remote relay(s)/collector(s)

 Within each action, a selector is used to filter syslog messages. A
 selector consists of a list of one or more filters specified by
 facility-severity pairs, and, if supported via the select-match
 feature, an optional regular expression pattern match that is
 performed on the [RFC5424] field.

 A syslog message is processed if:

Clarke, et al. Expires 21 September 2024 [Page 5]

Internet-Draft Syslog Management March 2024

 There is an element of facility-list (F, S) where
 the message facility matches F
 and the message severity matches S
 and/or the message text matches the regex pattern (if it
 is present)

 The facility is one of a specific syslog-facility, or all facilities.

 The severity is one of type syslog-severity, all severities, or none.
 None is a special case that can be used to disable a filter. When
 filtering severity, the default comparison is that messages of the
 specified severity and higher are selected to be logged. This is
 shown in the model as "default equals-or-higher". This behavior can
 be altered if the select-adv-compare feature is enabled to specify a
 compare operation and an action. Compare operations are: "equals" to
 select messages with this single severity, or "equals-or-higher" to
 select messages of the specified severity and higher. Actions are
 used to log the message, block the message, or stop the message from
 being logged.

 Many vendors extend the list of facilities available for logging in
 their implementation. An example is included in Extending Facilities
 (Appendix A.1).

5.1. Syslog Module

 A simplified graphical representation of the data model is used in
 this document. Please see [RFC8340] for tree diagram notation.

 module: ietf-syslog
 +--rw syslog!
 +--rw actions
 +--rw console! {console-action}?
 | +--rw facility-filter
 | | +--rw facility-list* [facility severity]
 | | +--rw facility union
 | | +--rw severity union
 | | +--rw advanced-compare {select-adv-compare}?
 | | +--rw compare? enumeration
 | | +--rw action? identityref
 | +--rw pattern-match? string {select-match}?
 +--rw file {file-action}?
 | +--rw log-file* [name]
 | +--rw name inet:uri
 | +--rw facility-filter
 | | +--rw facility-list* [facility severity]
 | | +--rw facility union
 | | +--rw severity union

Clarke, et al. Expires 21 September 2024 [Page 6]

Internet-Draft Syslog Management March 2024

 | | +--rw advanced-compare {select-adv-compare}?
 | | +--rw compare? enumeration
 | | +--rw action? identityref
 | +--rw pattern-match? string {select-match}?
 | +--rw structured-data? boolean {structured-data}?
 | +--rw file-rotation
 | +--rw number-of-files? uint32 {file-limit-size}?
 | +--rw max-file-size? uint32 {file-limit-size}?
 | +--rw rollover? uint32
 | | {file-limit-duration}?
 | +--rw retention? uint32
 | {file-limit-duration}?
 +--rw remote {remote-action}?
 +--rw destination* [name]
 +--rw name string
 +--rw (transport)
 | +--:(udp)
 | | +--rw udp
 | | +--rw address? inet:host
 | | +--rw port? inet:port-number
 | +--:(tls)
 | +--rw tls
 | +--rw address? inet:host
 | +--rw port?
 | | inet:port-number
 | +--rw client-identity!
 | | +--rw (auth-type)
 | | +--:(certificate)
 | | | {client-ident-x509-cert}?
 | | | +--rw certificate
 | | | +--rw (inline-or-keystore)
 | | | +--:(inline)
 | | | | {inline-definitions-supp
 orted}?
 | | | | +--rw inline-definition
 | | | | +--rw public-key-format?
 | | | | | identityref
 | | | | +--rw public-key?
 | | | | | binary
 | | | | +--rw private-key-format?
 | | | | | identityref
 | | | | +--rw (private-key-type)
 | | | | | +--:(cleartext-private-k
 ey)
 | | | | | | {cleartext-priv
 ate-keys}?
 | | | | | | +--rw cleartext-priva
 te-key?

Clarke, et al. Expires 21 September 2024 [Page 7]

Internet-Draft Syslog Management March 2024

 | | | | | | binary
 | | | | | +--:(hidden-private-key)
 | | | | | | {hidden-private
 -keys}?
 | | | | | | +--rw hidden-private-
 key?
 | | | | | | empty
 | | | | | +--:(encrypted-private-k
 ey)
 | | | | | {encrypted-priv
 ate-keys}?
 | | | | | +--rw encrypted-priva
 te-key
 | | | | | +--rw encrypted-by
 | | | | | +--rw encrypted-va
 lue-format
 | | | | | | identityre
 f
 | | | | | +--rw encrypted-va
 lue
 | | | | | binary
 | | | | +--rw cert-data?
 | | | | | end-entity-cert-cms
 | | | | +---n certificate-expiratio
 n
 | | | | | {certificate-expira
 tion-notification}?
 | | | | | +-- expiration-date
 | | | | | yang:date-and-ti
 me
 | | | | +---x generate-csr
 | | | | {csr-generation}?
 | | | | +---w input
 | | | | | +---w csr-format
 | | | | | | identityref
 | | | | | +---w csr-info
 | | | | | csr-info
 | | | | +--ro output
 | | | | +--ro (csr-type)
 | | | | +--:(p10-csr)
 | | | | +--ro p10-csr?
 | | | | p10-csr
 | | | +--:(central-keystore)
 | | | {central-keystore-suppor
 ted,asymmetric-keys}?
 | | | +--rw central-keystore-referen
 ce
 | | | +--rw asymmetric-key?

Clarke, et al. Expires 21 September 2024 [Page 8]

Internet-Draft Syslog Management March 2024

 | | | | ks:central-asymmetr
 ic-key-ref
 | | | | {central-keystore-s
 upported,asymmetric-keys}?
 | | | +--rw certificate?
 | | | leafref
 | | +--:(raw-public-key)
 | | | {client-ident-raw-public-key}?
 | | | +--rw raw-private-key
 | | | +--rw (inline-or-keystore)
 | | | +--:(inline)
 | | | | {inline-definitions-supp
 orted}?
 | | | | +--rw inline-definition
 | | | | +--rw public-key-format?
 | | | | | identityref
 | | | | +--rw public-key?
 | | | | | binary
 | | | | +--rw private-key-format?
 | | | | | identityref
 | | | | +--rw (private-key-type)
 | | | | +--:(cleartext-private-k
 ey)
 | | | | | {cleartext-priv
 ate-keys}?
 | | | | | +--rw cleartext-priva
 te-key?
 | | | | | binary
 | | | | +--:(hidden-private-key)
 | | | | | {hidden-private
 -keys}?
 | | | | | +--rw hidden-private-
 key?
 | | | | | empty
 | | | | +--:(encrypted-private-k
 ey)
 | | | | {encrypted-priv
 ate-keys}?
 | | | | +--rw encrypted-priva
 te-key
 | | | | +--rw encrypted-by
 | | | | +--rw encrypted-va
 lue-format
 | | | | | identityre
 f
 | | | | +--rw encrypted-va
 lue
 | | | | binary

Clarke, et al. Expires 21 September 2024 [Page 9]

Internet-Draft Syslog Management March 2024

 | | | +--:(central-keystore)
 | | | {central-keystore-suppor
 ted,asymmetric-keys}?
 | | | +--rw central-keystore-referen
 ce?
 | | | ks:central-asymmetric-
 key-ref
 | | +--:(tls12-psk)
 | | | {client-ident-tls12-psk}?
 | | | +--rw tls12-psk
 | | | +--rw (inline-or-keystore)
 | | | | +--:(inline)
 | | | | | {inline-definitions-supp
 orted}?
 | | | | | +--rw inline-definition
 | | | | | +--rw key-format?
 | | | | | | identityref
 | | | | | +--rw (key-type)
 | | | | | +--:(cleartext-symmetric
 -key)
 | | | | | | +--rw cleartext-symme
 tric-key?
 | | | | | | binary
 | | | | | | {cleartext-sy
 mmetric-keys}?
 | | | | | +--:(hidden-symmetric-ke
 y)
 | | | | | | {hidden-symmetr
 ic-keys}?
 | | | | | | +--rw hidden-symmetri
 c-key?
 | | | | | | empty
 | | | | | +--:(encrypted-symmetric
 -key)
 | | | | | {encrypted-symm
 etric-keys}?
 | | | | | +--rw encrypted-symme
 tric-key
 | | | | | +--rw encrypted-by
 | | | | | +--rw encrypted-va
 lue-format
 | | | | | | identityre
 f
 | | | | | +--rw encrypted-va
 lue
 | | | | | binary
 | | | | +--:(central-keystore)
 | | | | {central-keystore-suppor

Clarke, et al. Expires 21 September 2024 [Page 10]

Internet-Draft Syslog Management March 2024

 ted,symmetric-keys}?
 | | | | +--rw central-keystore-referen
 ce?
 | | | | ks:central-symmetric-k
 ey-ref
 | | | +--rw id?
 | | | string
 | | +--:(tls13-epsk)
 | | {client-ident-tls13-epsk}?
 | | +--rw tls13-epsk
 | | +--rw (inline-or-keystore)
 | | | +--:(inline)
 | | | | {inline-definitions-supp
 orted}?
 | | | | +--rw inline-definition
 | | | | +--rw key-format?
 | | | | | identityref
 | | | | +--rw (key-type)
 | | | | +--:(cleartext-symmetric
 -key)
 | | | | | +--rw cleartext-symme
 tric-key?
 | | | | | binary
 | | | | | {cleartext-sy
 mmetric-keys}?
 | | | | +--:(hidden-symmetric-ke
 y)
 | | | | | {hidden-symmetr
 ic-keys}?
 | | | | | +--rw hidden-symmetri
 c-key?
 | | | | | empty
 | | | | +--:(encrypted-symmetric
 -key)
 | | | | {encrypted-symm
 etric-keys}?
 | | | | +--rw encrypted-symme
 tric-key
 | | | | +--rw encrypted-by
 | | | | +--rw encrypted-va
 lue-format
 | | | | | identityre
 f
 | | | | +--rw encrypted-va
 lue
 | | | | binary
 | | | +--:(central-keystore)
 | | | {central-keystore-suppor

Clarke, et al. Expires 21 September 2024 [Page 11]

Internet-Draft Syslog Management March 2024

 ted,symmetric-keys}?
 | | | +--rw central-keystore-referen
 ce?
 | | | ks:central-symmetric-k
 ey-ref
 | | +--rw external-identity
 | | | string
 | | +--rw hash?
 | | | tlscmn:epsk-supported-hash
 | | +--rw context?
 | | | string
 | | +--rw target-protocol?
 | | | uint16
 | | +--rw target-kdf?
 | | uint16
 | +--rw server-authentication
 | | +--rw ca-certs! {server-auth-x509-cert}?
 | | | +--rw (inline-or-truststore)
 | | | +--:(inline)
 | | | | {inline-definitions-supported}
 ?
 | | | | +--rw inline-definition
 | | | | +--rw certificate* [name]
 | | | | +--rw name
 | | | | | string
 | | | | +--rw cert-data
 | | | | | trust-anchor-cert-cms
 | | | | +---n certificate-expiration
 | | | | {certificate-expiratio
 n-notification}?
 | | | | +-- expiration-date
 | | | | yang:date-and-time
 | | | +--:(central-truststore)
 | | | {central-truststore-supported,
 certificates}?
 | | | +--rw central-truststore-reference?
 | | | ts:central-certificate-bag-r
 ef
 | | +--rw ee-certs! {server-auth-x509-cert}?
 | | | +--rw (inline-or-truststore)
 | | | +--:(inline)
 | | | | {inline-definitions-supported}
 ?
 | | | | +--rw inline-definition
 | | | | +--rw certificate* [name]
 | | | | +--rw name
 | | | | | string
 | | | | +--rw cert-data

Clarke, et al. Expires 21 September 2024 [Page 12]

Internet-Draft Syslog Management March 2024

 | | | | | trust-anchor-cert-cms
 | | | | +---n certificate-expiration
 | | | | {certificate-expiratio
 n-notification}?
 | | | | +-- expiration-date
 | | | | yang:date-and-time
 | | | +--:(central-truststore)
 | | | {central-truststore-supported,
 certificates}?
 | | | +--rw central-truststore-reference?
 | | | ts:central-certificate-bag-r
 ef
 | | +--rw raw-public-keys!
 | | | {server-auth-raw-public-key}?
 | | | +--rw (inline-or-truststore)
 | | | +--:(inline)
 | | | | {inline-definitions-supported}
 ?
 | | | | +--rw inline-definition
 | | | | +--rw public-key* [name]
 | | | | +--rw name
 | | | | | string
 | | | | +--rw public-key-format
 | | | | | identityref
 | | | | +--rw public-key
 | | | | binary
 | | | +--:(central-truststore)
 | | | {central-truststore-supported,
 public-keys}?
 | | | +--rw central-truststore-reference?
 | | | ts:central-public-key-bag-re
 f
 | | +--rw tls12-psks? empty
 | | | {server-auth-tls12-psk}?
 | | +--rw tls13-epsks? empty
 | | {server-auth-tls13-epsk}?
 | +--rw hello-params {tlscmn:hello-params}?
 | | +--rw tls-versions
 | | | +--rw min? identityref
 | | | +--rw max? identityref
 | | +--rw cipher-suites
 | | +--rw cipher-suite*
 | | tlscsa:tls-cipher-suite-algorithm
 | +--rw keepalives {tls-client-keepalives}?
 | +--rw peer-allowed-to-send? empty
 | +--rw test-peer-aliveness!
 | +--rw max-wait? uint16
 | +--rw max-attempts? uint8

Clarke, et al. Expires 21 September 2024 [Page 13]

Internet-Draft Syslog Management March 2024

 +--rw facility-filter
 | +--rw facility-list* [facility severity]
 | +--rw facility union
 | +--rw severity union
 | +--rw advanced-compare {select-adv-compare}?
 | +--rw compare? enumeration
 | +--rw action? identityref
 +--rw pattern-match? string {select-match}?
 +--rw structured-data? boolean {structured-data}?
 +--rw facility-override? identityref
 +--rw source-interface? if:interface-ref
 | {remote-source-interface}?
 +--rw signing! {signed-messages}?
 +--rw cert-signers
 +--rw cert-signer* [name]
 | +--rw name string
 | +--rw cert
 | | +--rw public-key-format?
 | | | identityref
 | | +--rw public-key? binary
 | | +--rw private-key-format?
 | | | identityref
 | | +--rw (private-key-type)
 | | | +--:(cleartext-private-key)
 | | | | {cleartext-private-keys}?
 | | | | +--rw cleartext-private-key? binary
 | | | +--:(hidden-private-key)
 | | | | {hidden-private-keys}?
 | | | | +--rw hidden-private-key? empty
 | | | +--:(encrypted-private-key)
 | | | {encrypted-private-keys}?
 | | | +--rw encrypted-private-key
 | | | +--rw encrypted-by
 | | | +--rw encrypted-value-format
 | | | | identityref
 | | | +--rw encrypted-value
 | | | binary
 | | +--rw cert-data?
 | | | end-entity-cert-cms
 | | +---n certificate-expiration
 | | | {certificate-expiration-notification}
 ?
 | | | +-- expiration-date
 | | | yang:date-and-time
 | | +---x generate-csr {csr-generation}?
 | | +---w input
 | | | +---w csr-format identityref
 | | | +---w csr-info csr-info

Clarke, et al. Expires 21 September 2024 [Page 14]

Internet-Draft Syslog Management March 2024

 | | +--ro output
 | | +--ro (csr-type)
 | | +--:(p10-csr)
 | | +--ro p10-csr? p10-csr
 | +--rw hash-algorithm? enumeration
 +--rw cert-initial-repeat? uint32
 +--rw cert-resend-delay? uint32
 +--rw cert-resend-count? uint32
 +--rw sig-max-delay? uint32
 +--rw sig-number-resends? uint32
 +--rw sig-resend-delay? uint32
 +--rw sig-resend-count? uint32

 Figure 1: Tree Diagram for Syslog Model

6. Syslog YANG Module

6.1. The ietf-syslog Module

 This module imports typedefs from [RFC6991] , [RFC8343] , groupings
 from [I-D.ietf-netconf-crypto-types] , and
 [I-D.ietf-netconf-tls-client-server] , and it references [RFC5424] ,
 [RFC5425] ,[RFC5426] , and [RFC5848] ,[RFC8089] , [RFC8174] , and
 [Std-1003.1-2008] .

 <CODE BEGINS> file "ietf-syslog@2024-03-21.yang"
 module ietf-syslog {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-syslog";
 prefix syslog;

 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types";
 }
 import ietf-interfaces {
 prefix if;
 reference
 "RFC 8343: A YANG Data Model for Interface Management";
 }
 import ietf-tls-client {
 prefix tlsc;
 reference
 "I-D.ietf-netconf-tls-client-server:
 YANG Groupings for TLS Clients and TLS Servers";
 }

Clarke, et al. Expires 21 September 2024 [Page 15]

Internet-Draft Syslog Management March 2024

 import ietf-crypto-types {
 prefix ct;
 reference
 "I-D.ietf-netconf-crypto-types: YANG Data Types for
 Cryptography";
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Editor: Mahesh Jethanandani
 <mailto:mjethanandani@gmail.com>

 Editor: Joe Clarke
 <mailto:jclarke@cisco.com>

 Editor: Kiran Agrahara Sreenivasa
 <mailto:kirankoushik.agraharasreenivasa@
 verizonwireless.com>

 Editor: Clyde Wildes
 <mailto:clyde@clydewildes.com>";
 description
 "This module contains a collection of YANG definitions
 for syslog configuration.

 Copyright (c) 2024 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC zzzz
 (https://www.rfc-editor.org/info/rfczzzz);
 see the RFC itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’,
 ’NOT RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this document
 are to be interpreted as described in BCP 14 (RFC 2119)
 (RFC 8174) when, and only when, they appear in all capitals,

Clarke, et al. Expires 21 September 2024 [Page 16]

Internet-Draft Syslog Management March 2024

 as shown here.";

 revision 2024-03-21 {
 description
 "Initial Revision";
 reference
 "RFC zzzz: Syslog YANG Model";
 }

 feature console-action {
 description
 "This feature indicates that the local console action is
 supported.";
 }

 feature file-action {
 description
 "This feature indicates that the local file action is
 supported.";
 }

 feature file-limit-size {
 description
 "This feature indicates that file logging resources
 are managed using size and number limits.";
 }

 feature file-limit-duration {
 description
 "This feature indicates that file logging resources
 are managed using time based limits.";
 }

 feature remote-action {
 description
 "This feature indicates that the remote server action is
 supported.";
 }

 feature remote-source-interface {
 description
 "This feature indicates that source-interface is supported
 supported for the remote-action.";
 }

 feature select-adv-compare {
 description
 "This feature represents the ability to select messages

Clarke, et al. Expires 21 September 2024 [Page 17]

Internet-Draft Syslog Management March 2024

 using the additional comparison operators when comparing
 the syslog message severity.";
 }

 feature select-match {
 description
 "This feature represents the ability to select messages
 based on a Posix 1003.2 regular expression pattern
 match.";
 }

 feature structured-data {
 description
 "This feature represents the ability to log messages
 in structured-data format.";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 feature signed-messages {
 description
 "This feature represents the ability to configure signed
 syslog messages.";
 reference
 "RFC 5848: Signed Syslog Messages";
 }

 typedef syslog-severity {
 type enumeration {
 enum emergency {
 value 0;
 description
 "The severity level ’Emergency’ indicating that the
 system is unusable.";
 }
 enum alert {
 value 1;
 description
 "The severity level ’Alert’ indicating that an
 action must be taken immediately.";
 }
 enum critical {
 value 2;
 description
 "The severity level ’Critical’ indicating a
 critical condition.";
 }
 enum error {

Clarke, et al. Expires 21 September 2024 [Page 18]

Internet-Draft Syslog Management March 2024

 value 3;
 description
 "The severity level ’Error’ indicating an error
 condition.";
 }
 enum warning {
 value 4;
 description
 "The severity level ’Warning’ indicating a warning
 condition.";
 }
 enum notice {
 value 5;
 description
 "The severity level ’Notice’ indicating a normal
 but significant condition.";
 }
 enum info {
 value 6;
 description
 "The severity level ’Info’ indicating an
 informational message.";
 }
 enum debug {
 value 7;
 description
 "The severity level ’Debug’ indicating a
 debug-level message.";
 }
 }
 description
 "The definitions for Syslog message severity.
 Note that a lower value is a higher severity. Comparisons
 of equal-or-higher severity mean equal or lower numeric
 value";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity syslog-facility {
 description
 "This identity is used as a base for all syslog
 facilities.";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity kern {

Clarke, et al. Expires 21 September 2024 [Page 19]

Internet-Draft Syslog Management March 2024

 base syslog-facility;
 description
 "The facility for kernel messages (0).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity user {
 base syslog-facility;
 description
 "The facility for user-level messages (1).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity mail {
 base syslog-facility;
 description
 "The facility for the mail system (2).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity daemon {
 base syslog-facility;
 description
 "The facility for the system daemons (3).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity auth {
 base syslog-facility;
 description
 "The facility for security/authorization messages (4).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity syslog {
 base syslog-facility;
 description
 "The facility for messages generated internally by syslogd
 facility (5).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

Clarke, et al. Expires 21 September 2024 [Page 20]

Internet-Draft Syslog Management March 2024

 identity lpr {
 base syslog-facility;
 description
 "The facility for the line printer subsystem (6).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity news {
 base syslog-facility;
 description
 "The facility for the network news subsystem (7).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity uucp {
 base syslog-facility;
 description
 "The facility for the UUCP subsystem (8).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity cron {
 base syslog-facility;
 description
 "The facility for the clock daemon (9).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity authpriv {
 base syslog-facility;
 description
 "The facility for privileged security/authorization
 messages (10).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity ftp {
 base syslog-facility;
 description
 "The facility for the FTP daemon (11).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

Clarke, et al. Expires 21 September 2024 [Page 21]

Internet-Draft Syslog Management March 2024

 identity ntp {
 base syslog-facility;
 description
 "The facility for the NTP subsystem (12).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity audit {
 base syslog-facility;
 description
 "The facility for log audit messages (13).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity console {
 base syslog-facility;
 description
 "The facility for log alert messages (14).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity cron2 {
 base syslog-facility;
 description
 "The facility for the second clock daemon (15).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity local0 {
 base syslog-facility;
 description
 "The facility for local use 0 messages (16).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity local1 {
 base syslog-facility;
 description
 "The facility for local use 1 messages (17).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

Clarke, et al. Expires 21 September 2024 [Page 22]

Internet-Draft Syslog Management March 2024

 identity local2 {
 base syslog-facility;
 description
 "The facility for local use 2 messages (18).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity local3 {
 base syslog-facility;
 description
 "The facility for local use 3 messages (19).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity local4 {
 base syslog-facility;
 description
 "The facility for local use 4 messages (20).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity local5 {
 base syslog-facility;
 description
 "The facility for local use 5 messages (21).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity local6 {
 base syslog-facility;
 description
 "The facility for local use 6 messages (22).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

 identity local7 {
 base syslog-facility;
 description
 "The facility for local use 7 messages (23).";
 reference
 "RFC 5424: The Syslog Protocol";
 }

Clarke, et al. Expires 21 September 2024 [Page 23]

Internet-Draft Syslog Management March 2024

 identity action {
 description
 "Base identity for action for how a message will be
 handled.";
 }

 identity log {
 base action;
 description
 "This identity specifies that if the compare operation is
 true the message will be logged.";
 }

 identity block {
 base action;
 description
 "This identity specifies that if the compare operation is
 true the message will not be logged.";
 }

 identity stop {
 base action;
 description
 "This identity specifies that if the compare operation is
 true the message will not be logged and no further
 processing will occur for it.";
 }

 grouping severity-filter {
 description
 "This grouping defines the processing used to select
 log messages by comparing syslog message severity using
 the following processing rules:
 - if ’none’, do not match.
 - if ’all’, match.
 - else compare message severity with the specified
 severity according to the default compare rule (all
 messages of the specified severity and greater match)
 or if the select-adv-compare feature is present, use
 the advance-compare rule.";
 leaf severity {
 type union {
 type syslog-severity;
 type enumeration {
 enum none {
 value 2147483647;
 description
 "This enum describes the case where no

Clarke, et al. Expires 21 September 2024 [Page 24]

Internet-Draft Syslog Management March 2024

 severities are selected.";
 }
 enum all {
 value -2147483648;
 description
 "This enum describes the case where all
 severities are selected.";
 }
 }
 }
 mandatory true;
 description
 "This leaf specifies the syslog message severity.";
 }
 container advanced-compare {
 when "../severity != \"all\" and
 ../severity != \"none\"" {
 description
 "The advanced compare container is not applicable
 for severity ’all’ or severity ’none’";
 }
 if-feature "select-adv-compare";
 leaf compare {
 type enumeration {
 enum equals {
 description
 "This enum specifies that the severity
 comparison operation will be equals.";
 }
 enum equals-or-higher {
 description
 "This enum specifies that the severity
 comparison operation will be equals or
 higher.";
 }
 }
 default "equals-or-higher";
 description
 "The compare can be used to specify the comparison
 operator that should be used to compare the syslog
 message severity with the specified severity.";
 }
 leaf action {
 type identityref {
 base "action";
 }
 default "log";
 description

Clarke, et al. Expires 21 September 2024 [Page 25]

Internet-Draft Syslog Management March 2024

 "The action can be used to specify how the message
 should be handled. This may include logging the
 message, not logging the message (i.e., blocking
 it), or stopping further processing.";
 }
 description
 "This container describes additional severity compare
 operations that can be used in place of the default
 severity comparison. The compare leaf specifies the
 type of the compare that is done and the action leaf
 specifies the intended result.
 Example: compare->equals and action->block means
 messages that have a severity that are equal to the
 specified severity will not be logged.";
 }
 }

 grouping selector {
 description
 "This grouping defines a syslog selector which is used to
 select log messages for the log-actions (console, file,
 remote, etc.). Choose one or both of the following:
 facility [<facility> <severity>...]
 pattern-match regular-expression-match-string
 If both facility and pattern-match are specified, both
 must match in order for a log message to be selected.";
 container facility-filter {
 description
 "This container describes the syslog filter
 parameters.";
 list facility-list {
 key "facility severity";
 ordered-by user;
 description
 "This list describes a collection of syslog
 facilities and severities.";
 leaf facility {
 type union {
 type identityref {
 base syslog-facility;
 }
 type enumeration {
 enum all {
 description
 "This enum describes the case where
 all facilities are requested.";
 }
 }

Clarke, et al. Expires 21 September 2024 [Page 26]

Internet-Draft Syslog Management March 2024

 }
 description
 "The leaf uniquely identifies a syslog
 facility.";
 }
 uses severity-filter;
 }
 }
 leaf pattern-match {
 if-feature "select-match";
 type string;
 description
 "This leaf describes a Posix 1003.2 regular expression
 string that can be used to select a syslog message for
 logging. The match is performed on the SYSLOG-MSG
 field.";
 reference
 "RFC 5424: The Syslog Protocol
 Std-1003.1-2008 Regular Expressions";
 }
 }

 grouping structured-data {
 description
 "This grouping defines the syslog structured data option
 which is used to select the format used to write log
 messages.";
 leaf structured-data {
 if-feature "structured-data";
 type boolean;
 default "false";
 description
 "This leaf describes how log messages are written.
 If true, messages will be written with one or more
 STRUCTURED-DATA elements; if false, messages will be
 written with STRUCTURED-DATA = NILVALUE.";
 reference
 "RFC 5424: The Syslog Protocol";
 }
 }

 container syslog {
 presence
 "Enables logging.";
 description
 "This container describes the configuration parameters for
 syslog.";
 container actions {

Clarke, et al. Expires 21 September 2024 [Page 27]

Internet-Draft Syslog Management March 2024

 description
 "This container describes the log-action parameters
 for syslog.";
 container console {
 if-feature "console-action";
 presence
 "Enables logging to the console";
 description
 "This container describes the configuration
 parameters for console logging.";
 uses selector;
 }
 container file {
 if-feature "file-action";
 description
 "This container describes the configuration
 parameters for file logging. If file-archive
 limits are not supplied, it is assumed that
 the local implementation defined limits will
 be used.";
 list log-file {
 key "name";
 description
 "This list describes a collection of local
 logging files.";
 leaf name {
 type inet:uri {
 pattern
 ’file:.*’;
 }
 description
 "This leaf specifies the name of the log
 file which MUST use the uri scheme
 file:.";
 reference
 "RFC 8089: The file URI Scheme";
 }
 uses selector;
 uses structured-data;
 container file-rotation {
 description
 "This container describes the configuration
 parameters for log file rotation.";
 leaf number-of-files {
 if-feature "file-limit-size";
 type uint32;
 default "1";
 description

Clarke, et al. Expires 21 September 2024 [Page 28]

Internet-Draft Syslog Management March 2024

 "This leaf specifies the maximum number
 of log files retained. Specify 1 for
 implementations that only support one
 log file.";
 }
 leaf max-file-size {
 if-feature "file-limit-size";
 type uint32;
 units "megabytes";
 description
 "This leaf specifies the maximum log
 file size.";
 }
 leaf rollover {
 if-feature "file-limit-duration";
 type uint32;
 units "minutes";
 description
 "This leaf specifies the length of time
 that log events should be written to a
 specific log file. Log events that
 arrive after the rollover period cause
 the current log file to be closed and
 a new log file to be opened.";
 }
 leaf retention {
 if-feature "file-limit-duration";
 type uint32;
 units "minutes";
 description
 "This leaf specifies the length of time
 that completed/closed log event files
 should be stored in the file system
 before they are removed.";
 }
 }
 }
 }
 container remote {
 if-feature "remote-action";
 description
 "This container describes the configuration
 parameters for forwarding syslog messages
 to remote relays or collectors.";
 list destination {
 key "name";
 description
 "This list describes a collection of remote

Clarke, et al. Expires 21 September 2024 [Page 29]

Internet-Draft Syslog Management March 2024

 logging destinations.";
 leaf name {
 type string;
 description
 "An arbitrary name for the endpoint to
 connect to.";
 }
 choice transport {
 mandatory true;
 description
 "This choice describes the transport
 option.";
 case udp {
 container udp {
 description
 "This container describes the UDP
 transport options.";
 reference
 "RFC 5426: Transmission of Syslog
 Messages over UDP";
 leaf address {
 type inet:host;
 description
 "The leaf uniquely specifies
 the address of the remote
 host. One of the following
 must be specified: an ipv4
 address, an ipv6 address, or a
 host name.";
 }
 leaf port {
 type inet:port-number;
 default "514";
 description
 "This leaf specifies the port
 number used to deliver
 messages to the remote
 server.";
 }
 }
 }
 case tls {
 container tls {
 description
 "This container describes the TLS
 transport options.";
 reference
 "RFC 5425: Transport Layer Security

Clarke, et al. Expires 21 September 2024 [Page 30]

Internet-Draft Syslog Management March 2024

 (TLS) Transport Mapping for
 Syslog ";
 leaf address {
 type inet:host;
 description
 "The leaf uniquely specifies
 the address of the remote
 host. One of the following
 must be specified: an ipv4
 address, an ipv6 address, or
 a host name.";
 }
 leaf port {
 type inet:port-number;
 default "6514";
 description
 "TCP port 6514 has been
 allocated as the default port
 for syslog over TLS.";
 }
 uses tlsc:tls-client-grouping;
 }
 }
 }
 uses selector;
 uses structured-data;
 leaf facility-override {
 type identityref {
 base syslog-facility;
 }
 description
 "If specified, this leaf specifies the
 facility used to override the facility
 in messages delivered to the remote
 server.";
 }
 leaf source-interface {
 if-feature "remote-source-interface";
 type if:interface-ref;
 description
 "This leaf sets the source interface to be
 used to send messages to the remote syslog
 server. If not set, messages can be sent
 on any interface.";
 }
 container signing {
 if-feature "signed-messages";
 presence

Clarke, et al. Expires 21 September 2024 [Page 31]

Internet-Draft Syslog Management March 2024

 "If present, syslog-signing options is
 activated.";
 description
 "This container describes the configuration
 parameters for signed syslog messages.";
 reference
 "RFC 5848: Signed Syslog Messages";
 container cert-signers {
 description
 "This container describes the signing
 certificate configuration for
 Signature Group 0 which covers the
 case for administrators who want all
 Signature Blocks to be sent to a
 single destination.";
 list cert-signer {
 key "name";
 description
 "This list describes a collection
 of syslog message signers.";
 leaf name {
 type string;
 description
 "This leaf specifies the name
 of the syslog message
 signer.";
 }
 container cert {
 uses ct:asymmetric-key-pair-with-cert-grou
ping;
 description
 "This is the certificate that
 is periodically sent to the
 remote receiver. The
 certificate is inherently
 associated with its private
 and public keys.";
 }
 leaf hash-algorithm {
 type enumeration {
 enum SHA1 {
 value 1;
 description
 "This enum describes
 the SHA1 algorithm.";
 }
 enum SHA256 {
 value 2;
 description

Clarke, et al. Expires 21 September 2024 [Page 32]

Internet-Draft Syslog Management March 2024

 "This enum describes
 the SHA256
 algorithm.";
 }
 }
 description
 "This leaf describes the syslog
 signer hash algorithm used.";
 }
 }
 leaf cert-initial-repeat {
 type uint32;
 default "3";
 description
 "This leaf specifies the number of
 times each Certificate Block
 should be sent before the first
 message is sent.";
 }
 leaf cert-resend-delay {
 type uint32;
 units "seconds";
 default "3600";
 description
 "This leaf specifies the maximum
 time delay in seconds until
 resending the Certificate Block.";
 }
 leaf cert-resend-count {
 type uint32;
 default "0";
 description
 "This leaf specifies the maximum
 number of other syslog messages to
 send until resending the
 Certificate Block.";
 }
 leaf sig-max-delay {
 type uint32;
 units "seconds";
 default "60";
 description
 "This leaf specifies when to
 generate a new Signature Block. If
 this many seconds have elapsed
 since the message with the first
 message number of the Signature
 Block was sent, a new Signature

Clarke, et al. Expires 21 September 2024 [Page 33]

Internet-Draft Syslog Management March 2024

 Block should be generated.";
 }
 leaf sig-number-resends {
 type uint32;
 default "0";
 description
 "This leaf specifies the number of
 times a Signature Block is resent.
 (It is recommended to select a
 value of greater than 0 in
 particular when the UDP transport
 RFC 5426 is used.).";
 }
 leaf sig-resend-delay {
 type uint32;
 units "seconds";
 default "5";
 description
 "This leaf specifies when to send
 the next Signature Block
 transmission based on time. If
 this many seconds have elapsed
 since the previous sending of this
 Signature Block, resend it.";
 }
 leaf sig-resend-count {
 type uint32;
 default "0";
 description
 "This leaf specifies when to send
 the next Signature Block
 transmission based on a count. If
 this many other syslog messages
 have been sent since the previous
 sending of this Signature Block,
 resend it. A value of 0 means that
 you don’t resend based on the
 number of messages.";
 }
 }
 }
 }
 }
 }
 }
 }
 <CODE ENDS>

Clarke, et al. Expires 21 September 2024 [Page 34]

Internet-Draft Syslog Management March 2024

 Figure 2: Sylog YANG Model

7. Usage Examples

7.1. Syslog Configuration for Severity Critical

 [note: ’\’ line wrapping for formatting only]

 <!--
 Enable console logging of syslogs of severity critical
 -->

 <?xml version="1.0" encoding="UTF-8"?>
 <syslog xmlns="urn:ietf:params:xml:ns:yang:ietf-syslog">
 <actions>
 <console>
 <facility-filter>
 <facility-list>
 <facility>all</facility>
 <severity>critical</severity>
 </facility-list>
 </facility-filter>
 </console>
 </actions>
 </syslog>

 Figure 3: Syslog Configuration for Severity Critical

7.2. Remote Syslog Configuration

Clarke, et al. Expires 21 September 2024 [Page 35]

Internet-Draft Syslog Management March 2024

 [note: ’\’ line wrapping for formatting only]

 <!--
 Enable remote logging of syslogs to udp destination
 foo.example.com for facility auth, severity error
 -->
 <?xml version="1.0" encoding="UTF-8"?>
 <syslog xmlns="urn:ietf:params:xml:ns:yang:ietf-syslog">
 <actions>
 <remote>
 <destination>
 <name>remote1</name>
 <udp>
 <address>foo.example.com</address>
 </udp>
 <facility-filter>
 <facility-list>
 <facility>auth</facility>
 <severity>error</severity>
 </facility-list>
 </facility-filter>
 </destination>
 </remote>
 </actions>
 </syslog>

 Figure 4: Remote Syslog Configuration

8. Acknowledgements

 The authors wish to thank the following who commented on this
 proposal:

 Andy Bierman, Martin Bjorklund, Alex Campbell, Alex Clemm, Francis
 Dupont, Jim Gibson, Jeffrey Haas, Bob Harold, John Heasley, Giles
 Heron, Lisa Huang, Mahesh Jethanandani, Warren Kumari, Jeffrey K
 Lange, Jan Lindblad, Chris Lonvick, Alexey Melnikov, Kathleen
 Moriarty, Tom Petch, Adam Roach, Juergen Schoenwaelder, Phil Shafer,
 Yaron Sheffer, Jason Sterne, Peter Van Horne, Kent Watsen, Bert
 Wijnen, Dale R Worley, and Aleksandr Zhdankin.

9. IANA Considerations

9.1. The IETF XML Registry

 This document registers one URI in the IETF XML registry [RFC3688] .
 Following the format in [RFC3688] , the following registration is
 requested:

Clarke, et al. Expires 21 September 2024 [Page 36]

Internet-Draft Syslog Management March 2024

 URI: urn:ietf:params:xml:ns:yang:ietf-syslog
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

9.2. The YANG Module Names Registry

 This document registers one YANG module in the YANG Module Names
 registry [RFC8525] . Following the format in [RFC7950] , the
 following registration is requested:

 name: ietf-syslog
 namespace: urn:ietf:params:xml:ns:yang:ietf-syslog
 prefix: syslog
 reference: RFC zzzz

10. Security Considerations

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC8446].

 The NETCONF access control model [RFC8341] provides the means to
 restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes should be considered sensitive or
 vulnerable in all network environments. Logging in particular is
 used to assess the state of systems and can be used to indicate a
 network compromise. If logging were to be disabled through malicious
 means, attacks may not be readily detectable. Therefore write
 operations (e.g., edit-config) to these data nodes without proper
 protection can have a negative effect on network operations and on
 network security.

 In addition there are data nodes that require careful analysis and
 review. These are the subtrees and data nodes and their sensitivity/
 vulnerability:

 facility-filter/pattern-match: When writing this node,

Clarke, et al. Expires 21 September 2024 [Page 37]

Internet-Draft Syslog Management March 2024

 implementations MUST ensure that the regular expression pattern
 match is not constructed to cause a regular expression denial
 of service attack due to a pattern that causes the regular
 expression implementation to work very slowly (exponentially
 related to input size).

 remote/destination/signing/cert-signer: When writing this subtree,
 implementations MUST NOT specify a private key that is used for
 any other purpose.

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 remote/destination/transport: This subtree contains information
 about other hosts in the network, and the TLS transport
 certificate properties if TLS is selected as the transport
 protocol.

 remote/destination/signing: This subtree contains information about
 the syslog message signing properties including signing
 certificate information.

 There are no RPC operations defined in this YANG module.

11. References

11.1. Normative References

 [I-D.ietf-netconf-crypto-types]
 Watsen, K., "YANG Data Types and Groupings for
 Cryptography", Work in Progress, Internet-Draft, draft-
 ietf-netconf-crypto-types-33, 1 March 2024,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
 crypto-types-33>.

 [I-D.ietf-netconf-tls-client-server]
 Watsen, K., "YANG Groupings for TLS Clients and TLS
 Servers", Work in Progress, Internet-Draft, draft-ietf-
 netconf-tls-client-server-40, 1 March 2024,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
 tls-client-server-40>.

Clarke, et al. Expires 21 September 2024 [Page 38]

Internet-Draft Syslog Management March 2024

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC5424] Gerhards, R., "The Syslog Protocol", RFC 5424,
 DOI 10.17487/RFC5424, March 2009,
 <https://www.rfc-editor.org/info/rfc5424>.

 [RFC5425] Miao, F., Ed., Ma, Y., Ed., and J. Salowey, Ed.,
 "Transport Layer Security (TLS) Transport Mapping for
 Syslog", RFC 5425, DOI 10.17487/RFC5425, March 2009,
 <https://www.rfc-editor.org/info/rfc5425>.

 [RFC5426] Okmianski, A., "Transmission of Syslog Messages over UDP",
 RFC 5426, DOI 10.17487/RFC5426, March 2009,
 <https://www.rfc-editor.org/info/rfc5426>.

 [RFC5848] Kelsey, J., Callas, J., and A. Clemm, "Signed Syslog
 Messages", RFC 5848, DOI 10.17487/RFC5848, May 2010,
 <https://www.rfc-editor.org/info/rfc5848>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

Clarke, et al. Expires 21 September 2024 [Page 39]

Internet-Draft Syslog Management March 2024

 [RFC8089] Kerwin, M., "The "file" URI Scheme", RFC 8089,
 DOI 10.17487/RFC8089, February 2017,
 <https://www.rfc-editor.org/info/rfc8089>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8343] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
 <https://www.rfc-editor.org/info/rfc8343>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8525] Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
 and R. Wilton, "YANG Library", RFC 8525,
 DOI 10.17487/RFC8525, March 2019,
 <https://www.rfc-editor.org/info/rfc8525>.

 [Std-1003.1-2008]
 Group, I. A. T. O., ""Chapter 9: Regular Expressions". The
 Open Group Base Specifications Issue 6, IEEE Std
 1003.1-2008, 2016 Edition.", September 2016,
 <http://pubs.opengroup.org/onlinepubs/9699919799/>.

11.2. Informative References

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

Appendix A. Implementer Guidelines

Clarke, et al. Expires 21 September 2024 [Page 40]

Internet-Draft Syslog Management March 2024

A.1. Extending Facilities

 Many vendors extend the list of facilities available for logging in
 their implementation. Additional facilities may not work with the
 syslog protocol as defined in [RFC5424] and hence such facilities
 apply for local syslog-like logging functionality.

 The following is an example that shows how additional facilities
 could be added to the list of available facilities (in this example
 two facilities are added):

Clarke, et al. Expires 21 September 2024 [Page 41]

Internet-Draft Syslog Management March 2024

 [note: ’\’ line wrapping for formatting only]

 module example-vendor-syslog-types {
 namespace "http://example.com/ns/vendor-syslog-types";
 prefix vendor-syslogtypes;

 import ietf-syslog {
 prefix syslog;
 }

 organization
 "Example, Inc.";
 contact
 "Example, Inc.
 Customer Service

 E-mail: syslog-yang@example.com";
 description
 "This module contains a collection of vendor-specific YANG type
 definitions for SYSLOG.";

 revision 2024-03-19 {
 description
 "Version 1.0";
 reference
 "Vendor SYSLOG Types: SYSLOG YANG Model";
 }

 identity vendor_specific_type_1 {
 base syslog:syslog-facility;
 description
 "Adding vendor specific type 1 to syslog-facility";
 }

 identity vendor_specific_type_2 {
 base syslog:syslog-facility;
 description
 "Adding vendor specific type 2 to syslog-facility";
 }
 }

A.2. Syslog Terminal Output

 Terminal output with requirements more complex than the console
 subtree currently provides, are expected to be supported via vendor
 extensions rather than handled via the file subtree.

Clarke, et al. Expires 21 September 2024 [Page 42]

Internet-Draft Syslog Management March 2024

A.3. Syslog File Naming Convention

 The syslog/file/log-file/file-rotation container contains
 configuration parameters for syslog file rotation. This section
 describes how these fields might be used by an implementer to name
 syslog files in a rotation process. This information is offered as
 an informative guide only.

 When an active syslog file with a name specified by log-file/name,
 reaches log-file/max-file-size and/or syslog events arrive after the
 period specified by log-file/rollover, the logging system can close
 the file, can compress it, and can name the archive file <log-file/
 name>.0.gz. The logging system can then open a new active syslog
 file <log-file/name>.

 When the new syslog file reaches either of the size limits referenced
 above, <log-file/name>.0.gz can be renamed <log-file/name>.1.gz and
 the new syslog file can be closed, compressed and renamed <log-file/
 name>.0.gz. Each time that a new syslog file is closed, each of the
 prior syslog archive files named <log-file/name>.<n>.gz can be
 renamed to <log-file/name>.<n + 1>.gz.

 Removal of archive log files could occur when either or both:

 - log-file/number-of-files specified - the logging system can create
 up to log-file/number-of-files syslog archive files after which, the
 contents of the oldest archived file could be overwritten.

 - log-file/retention specified - the logging system can remove those
 syslog archive files whose file expiration time (file creation time
 plus the specified log-file/retention time) is prior to the current
 time.

Authors’ Addresses

 Joe Clarke (editor)
 Cisco
 United States of America
 Email: jclarke@cisco.com

 Mahesh Jethanandani (editor)
 Kloud Services
 United States of America
 Email: mjethanandani@gmail.com

Clarke, et al. Expires 21 September 2024 [Page 43]

Internet-Draft Syslog Management March 2024

 Clyde Wildes (editor)
 Cisco Systems Inc.
 170 West Tasman Drive
 San Jose, CA 95134
 United States of America
 Phone: +1 415 819-6111
 Email: clyde@clydewildes.com

 Kiran Koushik (editor)
 Verizon Wireless
 500 W Dove Rd.
 Southlake, TX 76092
 United States of America
 Phone: +1 512 650-0210
 Email: kirankoushik.agraharasreenivasa@verizonwireless.com

Clarke, et al. Expires 21 September 2024 [Page 44]

Network Working Group R. Wilton, Ed.
Internet-Draft Cisco Systems, Inc.
Updates: 6020,7950,8407,8525 (if R. Rahman, Ed.
 approved)
Intended status: Standards Track B. Lengyel, Ed.
Expires: January 11, 2023 Ericsson
 J. Clarke
 Cisco Systems, Inc.
 J. Sterne
 Nokia
 July 10, 2022

 Updated YANG Module Revision Handling
 draft-ietf-netmod-yang-module-versioning-06

Abstract

 This document specifies a new YANG module update procedure that can
 document when non-backwards-compatible changes have occurred during
 the evolution of a YANG module. It extends the YANG import statement
 with an earliest revision filter to better represent inter-module
 dependencies. It provides guidelines for managing the lifecycle of
 YANG modules and individual schema nodes. It provides a mechanism,
 via the revision-label YANG extension, to specify a revision
 identifier for YANG modules and submodules. This document updates
 RFC 7950, RFC 6020, RFC 8407 and RFC 8525.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 11, 2023.

Wilton, et al. Expires January 11, 2023 [Page 1]

Internet-Draft Updated YANG Module Revision Handling July 2022

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Updates to YANG RFCs 4
 2. Terminology and Conventions 4
 3. Refinements to YANG revision handling 5
 3.1. Updating a YANG module with a new revision 6
 3.1.1. Backwards-compatible rules 6
 3.1.2. Non-backwards-compatible changes 7
 3.2. non-backwards-compatible revision extension statement . . 7
 3.3. Removing revisions from the revision history 7
 3.4. Revision label . 9
 3.4.1. File names . 10
 3.4.2. Revision label scheme extension statement 10
 3.5. Examples for updating the YANG module revision history . 11
 4. Import by derived revision 13
 4.1. Module import examples 14
 5. Updates to ietf-yang-library 16
 5.1. Resolving ambiguous module imports 16
 5.2. YANG library versioning augmentations 17
 5.2.1. Advertising revision-label 17
 5.2.2. Reporting how deprecated and obsolete nodes are
 handled . 17
 6. Versioning of YANG instance data 18
 7. Guidelines for using the YANG module update rules 18
 7.1. Guidelines for YANG module authors 18
 7.1.1. Making non-backwards-compatible changes to a YANG
 module . 19
 7.2. Versioning Considerations for Clients 21
 8. Module Versioning Extension YANG Modules 21
 9. Contributors . 30
 10. Security Considerations 31
 11. IANA Considerations . 31

Wilton, et al. Expires January 11, 2023 [Page 2]

Internet-Draft Updated YANG Module Revision Handling July 2022

 11.1. YANG Module Registrations 31
 11.2. Guidance for versioning in IANA maintained YANG modules 32
 12. References . 33
 12.1. Normative References 33
 12.2. Informative References 34
 Appendix A. Examples of changes that are NBC 36
 Appendix B. Examples of applying the NBC change guidelines . . . 36
 B.1. Removing a data node 36
 B.2. Changing the type of a leaf node 37
 B.3. Reducing the range of a leaf node 38
 B.4. Changing the key of a list 38
 B.5. Renaming a node . 39
 Authors’ Addresses . 40

1. Introduction

 This document defines the foundational pieces of a solution to the
 YANG module lifecycle problems described in
 [I-D.ietf-netmod-yang-versioning-reqs]. Complementary documents
 provide other parts of the solution, with the overall relationship of
 the solution drafts described in [I-D.ietf-netmod-yang-solutions].

 Specifically, this document recognises a need (within standards
 organizations, vendors, and the industry) to sometimes allow YANG
 modules to evolve with non-backwards-compatible changes, which could
 cause breakage to clients and importing YANG modules. Accepting that
 non-backwards-compatible changes do sometimes occur, it is important
 to have mechanisms to report where these changes occur, and to manage
 their effect on clients and the broader YANG ecosystem.

 The document comprises five parts:

 Refinements to the YANG 1.1 module revision update procedure,
 supported by new extension statements to indicate when a revision
 contains non-backwards-compatible changes, and an optional
 revision label.

 A YANG extension statement allowing YANG module imports to specify
 an earliest module revision that may satisfy the import
 dependency.

 Updates and augmentations to ietf-yang-library to include the
 revision label in the module and submodule descriptions, to report
 how "deprecated" and "obsolete" nodes are handled by a server, and
 to clarify how module imports are resolved when multiple revisions
 could otherwise be chosen.

 Considerations of how versioning applies to YANG instance data.

Wilton, et al. Expires January 11, 2023 [Page 3]

Internet-Draft Updated YANG Module Revision Handling July 2022

 Guidelines for how the YANG module update rules defined in this
 document should be used, along with examples.

 Note to RFC Editor (To be removed by RFC Editor)

 Open issues are tracked at <https://github.com/netmod-wg/yang-ver-dt/
 issues>.

1.1. Updates to YANG RFCs

 This document updates [RFC7950] section 11 and [RFC6020] section 10.
 Section 3 describes modifications to YANG revision handling and
 update rules, and Section 4 describes a YANG extension statement to
 do import by derived revision.

 This document updates [RFC7950] section 5.2 and [RFC6020] section
 5.2. Section 3.4.1 describes the use of a revision label in the name
 of a file containing a YANG module or submodule.

 This document updates [RFC7950] section 5.6.5 and [RFC8525].
 Section 5.1 defines how a client of a YANG library datastore schema
 resolves ambiguous imports for modules which are not "import-only".

 This document updates [RFC8407] section 4.7. Section 7 provides
 guidelines on managing the lifecycle of YANG modules that may contain
 non-backwards-compatible changes and a branched revision history.

 This document updates [RFC8525] with augmentations to include
 revision labels in the YANG library data and two boolean leafs to
 indicate whether status deprecated and status obsolete schema nodes
 are implemented by the server.

2. Terminology and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 In addition, this document uses the following terminology:

 o YANG module revision: An instance of a YANG module, uniquely
 identified with a revision date, with no implied ordering or
 backwards compatibility between different revisions of the same
 module.

Wilton, et al. Expires January 11, 2023 [Page 4]

Internet-Draft Updated YANG Module Revision Handling July 2022

 o Backwards-compatible (BC) change: A backwards-compatible change
 between two YANG module revisions, as defined in Section 3.1.1

 o Non-backwards-compatible (NBC) change: A non-backwards-compatible
 change between two YANG module revisions, as defined in
 Section 3.1.2

3. Refinements to YANG revision handling

 [RFC7950] and [RFC6020] assume, but do not explicitly state, that the
 revision history for a YANG module or submodule is strictly linear,
 i.e., it is prohibited to have two independent revisions of a YANG
 module or submodule that are both directly derived from the same
 parent revision.

 This document clarifies [RFC7950] and [RFC6020] to explicitly allow
 non-linear development of YANG module and submodule revisions, so
 that they MAY have multiple revisions that directly derive from the
 same parent revision. As per [RFC7950] and [RFC6020], YANG module
 and submodule revisions continue to be uniquely identified by their
 revision date, and hence all revisions of a given module or submodule
 MUST have unique revision dates.

 A corollary to the above is that the relationship between two module
 or submodule revisions cannot be determined by comparing the module
 or submodule revision date alone, and the revision history, or
 revision label, must also be taken into consideration.

 A module’s name and revision date identifies a specific immutable
 definition of that module within its revision history. Hence, if a
 module includes submodules then to ensure that the module’s content
 is uniquely defined, the module’s "include" statements SHOULD use
 "revision-date" substatements to specify the exact revision date of
 each included submodule. When a module does not include its
 submodules by revision-date, the revision of submodules used cannot
 be derived from the including module. Mechanisms such as YANG
 packages [I-D.ietf-netmod-yang-packages], and YANG library [RFC8525],
 MAY be used to specify the exact submodule revisions used when the
 submodule revision date is not constrained by the "include"
 statement.

 [RFC7950] section 11 and [RFC6020] section 10 require that all
 updates to a YANG module are BC to the previous revision of the
 module. This document introduces a method to indicate that an NBC
 change has occurred between module revisions: this is done by using a
 new "non-backwards-compatible" YANG extension statement in the module
 revision history.

Wilton, et al. Expires January 11, 2023 [Page 5]

Internet-Draft Updated YANG Module Revision Handling July 2022

 Two revisions of a module or submodule MAY have identical content
 except for the revision history. This could occur, for example, if a
 module or submodule has a branched history and identical changes are
 applied in multiple branches.

3.1. Updating a YANG module with a new revision

 This section updates [RFC7950] section 11 and [RFC6020] section 10 to
 refine the rules for permissible changes when a new YANG module
 revision is created.

 Where pragmatic, updates to YANG modules SHOULD be backwards-
 compatible, following the definition in Section 3.1.1.

 A new module revision MAY contain NBC changes, e.g., the semantics of
 an existing data-node definition MAY be changed in an NBC manner
 without requiring a new data-node definition with a new identifier.
 A YANG extension, defined in Section 3.2, is used to signal the
 potential for incompatibility to existing module users and readers.

 As per [RFC7950] and [RFC6020], all published revisions of a module
 are given a new unique revision date. This applies even for module
 revisions containing (in the module or included submodules) only
 changes to any whitespace, formatting, comments or line endings
 (e.g., DOS vs UNIX).

3.1.1. Backwards-compatible rules

 A change between two module revisions is defined as being "backwards-
 compatible" if the change conforms to the module update rules
 specified in [RFC7950] section 11 and [RFC6020] section 10, updated
 by the following rules:

 o A "status" "deprecated" statement MAY be added, or changed from
 "current" to "deprecated", but adding or changing "status" to
 "obsolete" is not a backwards-compatible change.

 o YANG schema nodes with a "status" "obsolete" substatement MAY be
 removed from published modules, and are classified as backwards-
 compatible changes. In some circumstances it may be helpful to
 retain the obsolete definitions since their identifiers may still
 be referenced by other modules and to ensure that their
 identifiers are not reused with a different meaning.

 o In statements that have any data definition statements as
 substatements, those data definition substatements MAY be
 reordered, as long as they do not change the ordering of any
 "input" or "output" data definition substatements of "rpc" or

Wilton, et al. Expires January 11, 2023 [Page 6]

Internet-Draft Updated YANG Module Revision Handling July 2022

 "action" statements. If new data definition statements are added,
 they can be added anywhere in the sequence of existing
 substatements.

 o A statement that is defined using the YANG "extension" statement
 MAY be added, removed, or changed, if it does not change the
 semantics of the module. Extension statement definitions SHOULD
 specify whether adding, removing, or changing statements defined
 by that extension are backwards-compatible or non-backwards-
 compatible.

 o Any changes (including whitespace or formatting changes) that do
 not change the semantic meaning of the module are backwards
 compatible.

3.1.2. Non-backwards-compatible changes

 Any changes to YANG modules that are not defined by Section 3.1.1 as
 being backwards-compatible are classified as "non-backwards-
 compatible" changes.

3.2. non-backwards-compatible revision extension statement

 The "rev:non-backwards-compatible" extension statement is used to
 indicate YANG module revisions that contain NBC changes.

 If a revision of a YANG module contains changes, relative to the
 preceding revision in the revision history, that do not conform to
 the module update rules defined in Section 3.1.1, then a "rev:non-
 backwards-compatible" extension statement MUST be added as a
 substatement to the "revision" statement.

3.3. Removing revisions from the revision history

 Authors may wish to remove revision statements from a module or
 submodule. Removal of revision information may be desirable for a
 number of reasons including reducing the size of a large revision
 history, or removing a revision that should no longer be used or
 imported. Removing revision statements is allowed, but can cause
 issues and SHOULD NOT be done without careful analysis of the
 potential impact to users of the module or submodule. Doing so can
 lead to import breakages when import by revision-or-derived is used.
 Moreover, truncating history may cause loss of visibility of when
 non-backwards-compatible changes were introduced.

 An author MAY remove a contiguous sequence of entries from the end
 (i.e., oldest entries) of the revision history. This is acceptable

Wilton, et al. Expires January 11, 2023 [Page 7]

Internet-Draft Updated YANG Module Revision Handling July 2022

 even if the first remaining (oldest) revision entry in the revision
 history contains a rev:non-backwards-compatible substatement.

 An author MAY remove a contiguous sequence of entries in the revision
 history as long as the presence or absence of any existing rev:non-
 backwards-compatible substatements on all remaining entries still
 accurately reflect the compatibility relationship to their preceding
 entries remaining in the revision history.

 The author MUST NOT remove the first (i.e., newest) revision entry in
 the revision history.

 Example revision history:

 revision 2020-11-11 {
 rev:revision-label 4.0.0;
 rev:non-backwards-compatible;
 }

 revision 2020-08-09 {
 rev:revision-label 3.0.0;
 rev:non-backwards-compatible;
 }

 revision 2020-06-07 {
 rev:revision-label 2.1.0;
 }

 revision 2020-02-10 {
 rev:revision-label 2.0.0;
 rev:non-backwards-compatible;
 }

 revision 2019-10-21 {
 rev:revision-label 1.1.3;
 }

 revision 2019-03-04 {
 rev:revision-label 1.1.2;
 }

 revision 2019-01-02 {
 rev:revision-label 1.1.1;
 }

 In the revision history example above, removing the revision history
 entry for 2020-02-10 would also remove the rev:non-backwards-

Wilton, et al. Expires January 11, 2023 [Page 8]

Internet-Draft Updated YANG Module Revision Handling July 2022

 compatible annotation and hence the resulting revision history would
 incorrectly indicate that revision 2020-06-07 is backwards-compatible
 with revisions 2019-01-02 through 2019-10-21 when it is not, and so
 this change cannot be made. Conversely, removing one or more
 revisions out of 2019-03-04, 2019-10-21 and 2020-08-09 from the
 revision history would still retain a consistent revision history,
 and is acceptable, subject to an awareness of the concerns raised in
 the first paragraph of this section.

3.4. Revision label

 Each revision entry in a module or submodule MAY have a revision
 label associated with it, providing an alternative alias to identify
 a particular revision of a module or submodule. The revision label
 could be used to provide an additional versioning identifier
 associated with the revision.

 A revision label scheme is a set of rules describing how a particular
 type of revision-label operates for versioning YANG modules and
 submodules. For example, YANG Semver [I-D.ietf-netmod-yang-semver]
 defines a revision label scheme based on Semver 2.0.0 [semver].
 Other documents may define other YANG revision label schemes.

 Submodules MAY use a revision label scheme. When they use a revision
 label scheme, submodules MAY use a revision label scheme that is
 different from the one used in the including module.

 The revision label space of submodules is separate from the revision
 label space of the including module. A change in one submodule MUST
 result in a new revision label of that submodule and the including
 module, but the actual values of the revision labels in the module
 and submodule could be completely different. A change in one
 submodule does not result in a new revision label in another
 submodule. A change in a module revision label does not necessarily
 mean a change to the revision label in all included submodules.

 If a revision has an associated revision label, then it may be used
 instead of the revision date in a "rev:revision-or-derived" extension
 statement argument.

 A specific revision-label identifies a specific revision of the
 module. If two YANG modules contain the same module name and the
 same revision-label (and hence also the same revision-date) in their
 latest revision statement, then the file contents of the two modules,
 including the revision history, MUST be identical.

Wilton, et al. Expires January 11, 2023 [Page 9]

Internet-Draft Updated YANG Module Revision Handling July 2022

3.4.1. File names

 This section updates [RFC7950] section 5.2 and [RFC6020] section 5.2.

 If a revision has an associated revision label, then the revision-
 label MAY be used instead of the revision date in the filename of a
 YANG file, where it takes the form:

 module-or-submodule-name [[’@’ revision-date]|[’#’ revision-label]]
 (’.yang’ / ’.yin’)

 E.g., acme-router-module@2018-01-25.yang
 E.g., acme-router-module#2.0.3.yang

 YANG module (or submodule) files MAY be identified using either
 revision-date or revision-label. Typically, only one file name
 SHOULD exist for the same module (or submodule) revision. Two file
 names, one with the revision date and another with the revision
 label, MAY exist for the same module (or submodule) revision, e.g.,
 when migrating from one scheme to the other.

3.4.2. Revision label scheme extension statement

 The optional "rev:revision-label-scheme" extension statement is used
 to indicate which revision-label scheme a module or submodule uses.
 There MUST NOT be more than one revision label scheme in a module or
 submodule. The mandatory argument to this extension statement:

 o specifies the revision-label scheme used by the module or
 submodule

 o is defined in the document which specifies the revision-label
 scheme

 o MUST be an identity derived from "revision-label-scheme-base".

 The revision-label scheme used by a module or submodule SHOULD NOT
 change during the lifetime of the module or submodule. If the
 revision-label scheme used by a module or submodule is changed to a
 new scheme, then all revision-label statements that do not conform to
 the new scheme MUST be replaced or removed.

Wilton, et al. Expires January 11, 2023 [Page 10]

Internet-Draft Updated YANG Module Revision Handling July 2022

3.5. Examples for updating the YANG module revision history

 The following diagram, explanation, and module history illustrates
 how the branched revision history, "non-backwards-compatible"
 extension statement, and "revision-label" extension statement could
 be used:

 Example YANG module with branched revision history.

 Module revision date Revision label
 2019-01-01 <- 1.0.0
 |
 2019-02-01 <- 2.0.0
 | \
 2019-03-01 \ <- 3.0.0
 | \
 | 2019-04-01 <- 2.1.0
 | |
 | 2019-05-01 <- 2.2.0
 |
 2019-06-01 <- 3.1.0

 The tree diagram above illustrates how an example module’s revision
 history might evolve, over time. For example, the tree might
 represent the following changes, listed in chronological order from
 the oldest revision to the newest revision:

Wilton, et al. Expires January 11, 2023 [Page 11]

Internet-Draft Updated YANG Module Revision Handling July 2022

 Example module, revision 2019-06-01:

 module example-module {

 namespace "urn:example:module";
 prefix "prefix-name";
 rev:revision-label-scheme "yangver:yang-semver";

 import ietf-yang-revisions { prefix "rev"; }
 import ietf-yang-semver { prefix "yangver"; }

 description
 "to be completed";

 revision 2019-06-01 {
 rev:revision-label 3.1.0;
 description "Add new functionality.";
 }

 revision 2019-03-01 {
 rev:revision-label 3.0.0;
 rev:non-backwards-compatible;
 description
 "Add new functionality. Remove some deprecated nodes.";
 }

 revision 2019-02-01 {
 rev:revision-label 2.0.0;
 rev:non-backwards-compatible;
 description "Apply bugfix to pattern statement";
 }

 revision 2019-01-01 {
 rev:revision-label 1.0.0;
 description "Initial revision";
 }

 //YANG module definition starts here
 }

Wilton, et al. Expires January 11, 2023 [Page 12]

Internet-Draft Updated YANG Module Revision Handling July 2022

 Example module, revision 2019-05-01:

 module example-module {

 namespace "urn:example:module";
 prefix "prefix-name";
 rev:revision-label-scheme "yangver:yang-semver";

 import ietf-yang-revisions { prefix "rev"; }
 import ietf-yang-semver { prefix "yangver"; }

 description
 "to be completed";

 revision 2019-05-01 {
 rev:revision-label 2.2.0;
 description "Backwards-compatible bugfix to enhancement.";
 }

 revision 2019-04-01 {
 rev:revision-label 2.1.0;
 description "Apply enhancement to older release train.";
 }

 revision 2019-02-01 {
 rev:revision-label 2.0.0;
 rev:non-backwards-compatible;
 description "Apply bugfix to pattern statement";
 }

 revision 2019-01-01 {
 rev:revision-label 1.0.0;
 description "Initial revision";
 }

 //YANG module definition starts here
 }

4. Import by derived revision

 [RFC7950] and [RFC6020] allow YANG module "import" statements to
 optionally require the imported module to have a particular revision
 date. In practice, importing a module with an exact revision date is
 often too restrictive because it requires the importing module to be
 updated whenever any change to the imported module occurs. The
 alternative choice of using an import statement without any revision
 date statement is also not ideal because the importing module may not
 work with all possible revisions of the imported module.

Wilton, et al. Expires January 11, 2023 [Page 13]

Internet-Draft Updated YANG Module Revision Handling July 2022

 Instead, it is desirable for an importing module to specify a
 "minimum required revision" of a module that it is compatible with,
 based on the assumption that later revisions derived from that
 "minimum required revision" are also likely to be compatible. Many
 possible changes to a YANG module do not break importing modules,
 even if the changes themselves are not strictly backwards-compatible.
 E.g., fixing an incorrect pattern statement or description for a leaf
 would not break an import, changing the name of a leaf could break an
 import but frequently would not, but removing a container would break
 imports if that container is augmented by another module.

 The ietf-revisions module defines the "revision-or-derived" extension
 statement, a substatement to the YANG "import" statement, to allow
 for a "minimum required revision" to be specified during import:

 The argument to the "revision-or-derived" extension statement is a
 revision date or a revision label.

 A particular revision of an imported module satisfies an import’s
 "revision-or-derived" extension statement if the imported module’s
 revision history contains a revision statement with a matching
 revision date or revision label.

 An "import" statement MUST NOT contain both a "revision-or-
 derived" extension statement and a "revision-date" statement.

 The "revision-or-derived" extension statement MAY be specified
 multiple times, allowing the import to use any module revision
 that satisfies at least one of the "revision-or-derived" extension
 statements.

 The "revision-or-derived" extension statement does not guarantee
 that all module revisions that satisfy an import statement are
 necessarily compatible; it only gives an indication that the
 revisions are more likely to be compatible. Hence, NBC changes to
 an imported module may also require new revisions of any importing
 modules, updated to accommodation those changes, along with
 updated import "revision-or-derived" extension statements to
 depend on the updated imported module revision.

 Adding, modifying or removing a "revision-or-derived" extension
 statement is considered to be a BC change.

4.1. Module import examples

 Consider the example module "example-module" from Section 3.5 that is
 hypothetically available in the following revision/label pairings:
 2019-01-01/1.0.0, 2019-02-01/2.0.0, 2019-03-01/3.0.0,

Wilton, et al. Expires January 11, 2023 [Page 14]

Internet-Draft Updated YANG Module Revision Handling July 2022

 2019-04-01/2.1.0, 2019-05-01/2.2.0 and 2019-06-01/3.1.0. The
 relationship between the revisions is as before:

 Module revision date Revision label
 2019-01-01 <- 1.0.0
 |
 2019-02-01 <- 2.0.0
 | \
 2019-03-01 \ <- 3.0.0
 | \
 | 2019-04-01 <- 2.1.0
 | |
 | 2019-05-01 <- 2.2.0
 |
 2019-06-01 <- 3.1.0

4.1.1. Example 1

 This example selects module revisions that match, or are derived from
 the revision 2019-02-01. E.g., this dependency might be used if
 there was a new container added in revision 2019-02-01 that is
 augmented by the importing module. It includes revisions/labels:
 2019-02-01/2.0.0, 2019-03-01/3.0.0, 2019-04-01/2.1.0,
 2019-05-01/2.2.0 and 2019-06-01/3.1.0.

 import example-module {
 rev:revision-or-derived 2019-02-01;
 }

 Alternatively, the first example could have used the revision label
 "2.0.0" instead, which selects the same set of revisions/labels.

 import example-module {
 rev:revision-or-derived 2.0.0;
 }

4.1.2. Example 2

 This example selects module revisions that are derived from
 2019-04-01 by using the revision label 2.1.0. It includes revisions/
 labels: 2019-04-01/2.1.0 and 2019-05-01/2.2.0. Even though
 2019-06-01/3.1.0 has a higher revision label number than
 2019-04-01/2.1.0 it is not a derived revision, and hence it is not a
 valid revision for import.

 import example-module {
 rev:revision-or-derived 2.1.0;
 }

Wilton, et al. Expires January 11, 2023 [Page 15]

Internet-Draft Updated YANG Module Revision Handling July 2022

4.1.3. Example 3

 This example selects revisions derived from either 2019-04-01 or
 2019-06-01. It includes revisions/labels: 2019-04-01/2.1.0,
 2019-05-01/2.2.0, and 2019-06-01/3.1.0.

 import example-module {
 rev:revision-or-derived 2019-04-01;
 rev:revision-or-derived 2019-06-01;
 }

5. Updates to ietf-yang-library

 This document updates YANG 1.1 [RFC7950] and YANG library [RFC8525]
 to clarify how ambiguous module imports are resolved. It also
 defines the YANG module, ietf-yang-library-revisions, that augments
 YANG library [RFC8525] with revision labels and two leafs to indicate
 how a server implements deprecated and obsolete schema nodes.

5.1. Resolving ambiguous module imports

 A YANG datastore schema, defined in [RFC8525], can specify multiple
 revisions of a YANG module in the schema using the "import-only"
 list, with the requirement from [RFC7950] section 5.6.5 that only a
 single revision of a YANG module may be implemented.

 If a YANG module import statement does not specify a specific
 revision within the datastore schema then it could be ambiguous as to
 which module revision the import statement should resolve to. Hence,
 a datastore schema constructed by a client using the information
 contained in YANG library may not exactly match the datastore schema
 actually used by the server.

 The following two rules remove the ambiguity:

 If a module import statement could resolve to more than one module
 revision defined in the datastore schema, and one of those revisions
 is implemented (i.e., not an "import-only" module), then the import
 statement MUST resolve to the revision of the module that is defined
 as being implemented by the datastore schema.

 If a module import statement could resolve to more than one module
 revision defined in the datastore schema, and none of those revisions
 are implemented, then the import MUST resolve to the module revision
 with the latest revision date.

Wilton, et al. Expires January 11, 2023 [Page 16]

Internet-Draft Updated YANG Module Revision Handling July 2022

5.2. YANG library versioning augmentations

 The "ietf-yang-library-revisions" YANG module has the following
 structure (using the notation defined in [RFC8340]):

 module: ietf-yang-library-revisions
 augment /yanglib:yang-library/yanglib:module-set/yanglib:module:
 +--ro revision-label? rev:revision-label
 augment /yanglib:yang-library/yanglib:module-set/yanglib:module
 /yanglib:submodule:
 +--ro revision-label? rev:revision-label
 augment /yanglib:yang-library/yanglib:module-set
 /yanglib:import-only-module/yanglib:submodule:
 +--ro revision-label? rev:revision-label
 augment /yanglib:yang-library/yanglib:schema:
 +--ro deprecated-nodes-implemented? boolean
 +--ro obsolete-nodes-absent? boolean

5.2.1. Advertising revision-label

 The ietf-yang-library-revisions YANG module augments the "module" and
 "submodule" lists in ietf-yang-library with "revision-label" leafs to
 optionally declare the revision label associated with each module and
 submodule.

5.2.2. Reporting how deprecated and obsolete nodes are handled

 The ietf-yang-library-revisions YANG module augments YANG library
 with two boolean leafs to allow a server to report how it implements
 status "deprecated" and status "obsolete" schema nodes. The leafs
 are:

 deprecated-nodes-implemented: If set to "true", this leaf indicates
 that all schema nodes with a status "deprecated" are implemented
 equivalently as if they had status "current"; otherwise deviations
 MUST be used to explicitly remove "deprecated" nodes from the
 schema. If this leaf is set to "false" or absent, then the
 behavior is unspecified.

 obsolete-nodes-absent: If set to "true", this leaf indicates that
 the server does not implement any status "obsolete" schema nodes.
 If this leaf is set to "false" or absent, then the behaviour is
 unspecified.

 Servers SHOULD set both the "deprecated-nodes-implemented" and
 "obsolete-nodes-absent" leafs to "true".

Wilton, et al. Expires January 11, 2023 [Page 17]

Internet-Draft Updated YANG Module Revision Handling July 2022

 If a server does not set the "deprecated-nodes-implemented" leaf to
 "true", then clients MUST NOT rely solely on the "rev:non-backwards-
 compatible" statements to determine whether two module revisions are
 backwards-compatible, and MUST also consider whether the status of
 any nodes has changed to "deprecated" and whether those nodes are
 implemented by the server.

6. Versioning of YANG instance data

 Instance data sets [I-D.ietf-netmod-yang-instance-file-format] do not
 directly make use of the updated revision handling rules described in
 this document, as compatibility for instance data is undefined.

 However, instance data specifies the content-schema of the data-set.
 This schema SHOULD make use of versioning using revision dates and/or
 revision labels for the individual YANG modules that comprise the
 schema or potentially for the entire schema itself (e.g.,
 [I-D.ietf-netmod-yang-packages]).

 In this way, the versioning of a content-schema associated with an
 instance data set may help a client to determine whether the instance
 data could also be used in conjunction with other revisions of the
 YANG schema, or other revisions of the modules that define the
 schema.

7. Guidelines for using the YANG module update rules

 The following text updates section 4.7 of [RFC8407] to revise the
 guidelines for updating YANG modules.

7.1. Guidelines for YANG module authors

 All IETF YANG modules MUST include revision-label statements for all
 newly published YANG modules, and all newly published revisions of
 existing YANG modules. The revision-label MUST take the form of a
 YANG semantic version number [I-D.ietf-netmod-yang-semver].

 NBC changes to YANG modules may cause problems to clients, who are
 consumers of YANG models, and hence YANG module authors SHOULD
 minimize NBC changes and keep changes BC whenever possible.

 When NBC changes are introduced, consideration should be given to the
 impact on clients and YANG module authors SHOULD try to mitigate that
 impact.

 A "rev:non-backwards-compatible" statement MUST be added if there are
 NBC changes relative to the previous revision.

Wilton, et al. Expires January 11, 2023 [Page 18]

Internet-Draft Updated YANG Module Revision Handling July 2022

 Removing old revision statements from a module’s revision history
 could break import by revision, and hence it is RECOMMENDED to retain
 them. If all dependencies have been updated to not import specific
 revisions of a module, then the corresponding revision statements can
 be removed from that module. An alternative solution, if the
 revision section is too long, would be to remove, or curtail, the
 older description statements associated with the previous revisions.

 The "rev:revision-or-derived" extension SHOULD be used in YANG module
 imports to indicate revision dependencies between modules in
 preference to the "revision-date" statement, which causes overly
 strict import dependencies and SHOULD NOT be used.

 A module that includes submodules SHOULD use the "revision-date"
 statement to include specific submodule revisions. The revision of
 the including module MUST be updated when any included submodule has
 changed.

 In some cases a module or submodule revision that is not strictly NBC
 by the definition in Section 3.1.2 of this specification may include
 the "non-backwards-compatible" statement. Here is an example when
 adding the statement may be desirable:

 o A "config false" leaf had its value space expanded (for example, a
 range was increased, or additional enum values were added) and the
 author or server implementor feels there is a significant
 compatibility impact for clients and users of the module or
 submodule

7.1.1. Making non-backwards-compatible changes to a YANG module

 There are various valid situations where a YANG module has to be
 modified in an NBC way. Here are the different ways in which this
 can be done:

 o NBC changes can be sometimes be done incrementally using the
 "deprecated" status to provide clients time to adapt to NBC
 changes.

 o NBC changes are done at once, i.e. without using "status"
 statements. Depending on the change, this may have a big impact
 on clients.

 o If the server can support multiple revisions of the YANG module or
 of YANG packages (as specified in
 [I-D.ietf-netmod-yang-packages]), and allows the client to select
 the revision (as per [I-D.ietf-netmod-yang-ver-selection]), then
 NBC changes MAY be done without using "status" statements.

Wilton, et al. Expires January 11, 2023 [Page 19]

Internet-Draft Updated YANG Module Revision Handling July 2022

 Clients would be required to select the revision which they
 support and the NBC change would have no impact on them.

 Here are some guidelines on how non-backwards-compatible changes can
 be made incrementally, with the assumption that deprecated nodes are
 implemented by the server, and obsolete nodes are not:

 1. The changes should be made gradually, e.g., a data node’s status
 SHOULD NOT be changed directly from "current" to "obsolete" (see
 Section 4.7 of [RFC8407]), instead the status SHOULD first be
 marked "deprecated". At some point in the future, when support
 is removed for the data node, there are two options. The first,
 and preferred, option is to keep the data node definition in the
 model and change the status to "obsolete". The second option is
 to simply remove the data node from the model, but this has the
 risk of breaking modules which import the modified module, and
 the removed identifier may be accidently reused in a future
 revision.

 2. For deprecated data nodes the "description" statement SHOULD also
 indicate until when support for the node is guaranteed (if
 known). If there is a replacement data node, rpc, action or
 notification for the deprecated node, this SHOULD be stated in
 the "description". The reason for deprecating the node can also
 be included in the "description" if it is deemed to be of
 potential interest to the user.

 3. For obsolete data nodes, it is RECOMMENDED to keep the above
 information, from when the node had status "deprecated", which is
 still relevant.

 4. When obsoleting or deprecating data nodes, the "deprecated" or
 "obsolete" status SHOULD be applied at the highest possible level
 in the data tree. For clarity, the "status" statement SHOULD
 also be applied to all descendent data nodes, but the additional
 status related information does not need to be repeated if it
 does not introduce any additional information.

 5. NBC changes which can break imports SHOULD be avoided because of
 the impact on the importing module. The importing modules could
 get broken, e.g., if an augmented node in the importing module
 has been removed from the imported module. Alternatively, the
 schema of the importing modules could undergo an NBC change due
 to the NBC change in the imported module, e.g., if a node in a
 grouping has been removed. As described in Appendix B.1, instead
 of removing a node, that node SHOULD first be deprecated and then
 obsoleted.

Wilton, et al. Expires January 11, 2023 [Page 20]

Internet-Draft Updated YANG Module Revision Handling July 2022

 See Appendix B for examples on how NBC changes can be made.

7.2. Versioning Considerations for Clients

 Guidelines for clients of modules using the new module revision
 update procedure:

 o Clients SHOULD be liberal when processing data received from a
 server. For example, the server may have increased the range of
 an operational node causing the client to receive a value which is
 outside the range of the YANG model revision it was coded against.

 o Clients SHOULD monitor changes to published YANG modules through
 their revision history, and use appropriate tooling to understand
 the specific changes between module revision. In particular,
 clients SHOULD NOT migrate to NBC revisions of a module without
 understanding any potential impact of the specific NBC changes.

 o Clients SHOULD plan to make changes to match published status
 changes. When a node’s status changes from "current" to
 "deprecated", clients SHOULD plan to stop using that node in a
 timely fashion. When a node’s status changes to "obsolete",
 clients MUST stop using that node.

8. Module Versioning Extension YANG Modules

 YANG module with extension statements for annotating NBC changes,
 revision label, revision label scheme, and importing by revision.

<CODE BEGINS> file "ietf-yang-revisions@2021-11-04.yang"
module ietf-yang-revisions {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-revisions";
 prefix rev;

 // RFC Ed.: We need the bis version to get the new type revision-identifier
 // If 6991-bis is not yet an RFC we need to copy the definition here
 import ietf-yang-types {
 prefix yang;
 reference
 "XXXX [ietf-netmod-rfc6991-bis]: Common YANG Data Types";
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

Wilton, et al. Expires January 11, 2023 [Page 21]

Internet-Draft Updated YANG Module Revision Handling July 2022

 Author: Joe Clarke
 <mailto:jclarke@cisco.com>

 Author: Reshad Rahman
 <mailto:reshad@yahoo.com>

 Author: Robert Wilton
 <mailto:rwilton@cisco.com>

 Author: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>

 Author: Jason Sterne
 <mailto:jason.sterne@nokia.com>";
 description
 "This YANG 1.1 module contains definitions and extensions to
 support updated YANG revision handling.

 Copyright (c) 2021 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX (inc above) with actual RFC number and
 // remove this note.

 revision 2021-11-04 {
 rev:revision-label 1.0.0-draft-ietf-netmod-yang-module-versioning-05;
 description
 "Initial version.";
 reference
 "XXXX: Updated YANG Module Revision Handling";

Wilton, et al. Expires January 11, 2023 [Page 22]

Internet-Draft Updated YANG Module Revision Handling July 2022

 }

 typedef revision-label {
 type string {
 length "1..255";
 pattern ’[a-zA-Z0-9,\-_.+]+’;
 pattern ’\d{4}-\d{2}-\d{2}’ {
 modifier invert-match;
 }
 }
 description
 "A label associated with a YANG revision.

 Alphanumeric characters, comma, hyphen, underscore, period
 and plus are the only accepted characters. MUST NOT match
 revision-date.";
 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 3.3, Revision label";
 }

 typedef revision-date-or-label {
 type union {
 type yang:revision-identifier;
 type revision-label;
 }
 description
 "Represents either a YANG revision date or a revision label";
 }

 extension non-backwards-compatible {
 description
 "This statement is used to indicate YANG module revisions that
 contain non-backwards-compatible changes.

 The statement MUST only be a substatement of the ’revision’
 statement. Zero or one ’non-backwards-compatible’ statements
 per parent statement is allowed. No substatements for this
 extension have been standardized.

 If a revision of a YANG module contains changes, relative to
 the preceding revision in the revision history, that do not
 conform to the backwards compatible module update rules defined
 in RFC-XXX, then the ’non-backwards-compatible’ statement MUST
 be added as a substatement to the revision statement.

 Conversely, if a revision does not contain a
 ’non-backwards-compatible’ statement then all changes,

Wilton, et al. Expires January 11, 2023 [Page 23]

Internet-Draft Updated YANG Module Revision Handling July 2022

 relative to the preceding revision in the revision history,
 MUST be backwards-compatible.

 A new module revision that only contains changes that are
 backwards compatible SHOULD NOT include the
 ’non-backwards-compatible’ statement. An example of when
 an author might add the ’non-backwards-compatible’ statement
 is if they believe a change could negatively impact clients
 even though the backwards compatibility rules defined in
 RFC-XXXX classify it as a backwards-compatible change.

 Add, removing, or changing a ’non-backwards-compatible’
 statement is a backwards-compatible version change.";

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 3.2, non-backwards-compatible revision extension statement";
 }

 extension revision-label {
 argument revision-label;
 description
 "The revision label can be used to provide an additional
 versioning identifier associated with a module or submodule
 revision. One such scheme that
 could be used is [XXXX: ietf-netmod-yang-semver].

 The format of the revision-label argument MUST conform to the
 pattern defined for the revision-label typedef in this module.

 The statement MUST only be a substatement of the revision
 statement. Zero or one revision-label statements per parent
 statement are allowed. No substatements for this extension
 have been standardized.

 Revision labels MUST be unique amongst all revisions of a
 module or submodule.

 Adding a revision label is a backwards-compatible version
 change. Changing or removing an existing revision label in
 the revision history is a non-backwards-compatible version
 change, because it could impact any references to that
 revision label.";

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 3.3, Revision label";
 }

Wilton, et al. Expires January 11, 2023 [Page 24]

Internet-Draft Updated YANG Module Revision Handling July 2022

 extension revision-label-scheme {
 argument revision-label-scheme-base;
 description
 "The revision label scheme specifies which revision-label scheme
 the module or submodule uses.

 The mandatory revision-label-scheme-base argument MUST be an
 identity derived from revision-label-scheme-base.

 This extension is only valid as a top-level statement, i.e.,
 given as as a substatement to ’module’ or ’submodule’. No
 substatements for this extension have been standardized.

 This extension MUST be used if there is a revision-label
 statement in the module or submodule.

 Adding a revision label scheme is a backwards-compatible version
 change. Changing a revision label scheme is a
 non-backwards-compatible version change, unless the new revision
 label scheme is backwards-compatible with the replaced revision
 label scheme. Removing a revision label scheme is a
 non-backwards-compatible version change.";

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 3.3.1, Revision label scheme extension statement";
 }

 extension revision-or-derived {
 argument revision-date-or-label;
 description
 "Restricts the revision of the module that may be imported to
 one that matches or is derived from the specified
 revision-date or revision-label.

 The argument value MUST conform to the
 ’revision-date-or-label’ defined type.

 The statement MUST only be a substatement of the import
 statement. Zero, one or more ’revision-or-derived’ statements
 per parent statement are allowed. No substatements for this
 extension have been standardized.

 If specified multiple times, then any module revision that
 satisfies at least one of the ’revision-or-derived’ statements
 is an acceptable revision for import.

 An ’import’ statement MUST NOT contain both a

Wilton, et al. Expires January 11, 2023 [Page 25]

Internet-Draft Updated YANG Module Revision Handling July 2022

 ’revision-or-derived’ extension statement and a
 ’revision-date’ statement.

 A particular revision of an imported module satisfies an
 import’s ’revision-or-derived’ extension statement if the
 imported module’s revision history contains a revision
 statement with a matching revision date or revision label.

 The ’revision-or-derived’ extension statement does not
 guarantee that all module revisions that satisfy an import
 statement are necessarily compatible, it only gives an
 indication that the revisions are more likely to be
 compatible.

 Adding, removing or updating a ’revision-or-derived’
 statement to an import is a backwards-compatible change.
 ";

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 4, Import by derived revision";
 }

 identity revision-label-scheme-base {
 description
 "Base identity from which all revision label schemes are
 derived.";

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 3.3.1, Revision label scheme extension statement";

 }
}
<CODE ENDS>

 YANG module with augmentations to YANG Library to revision labels

<CODE BEGINS> file "ietf-yang-library-revisions@2021-11-04.yang"
module ietf-yang-library-revisions {
 yang-version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-yang-library-revisions";
 prefix yl-rev;

 import ietf-yang-revisions {
 prefix rev;
 reference

Wilton, et al. Expires January 11, 2023 [Page 26]

Internet-Draft Updated YANG Module Revision Handling July 2022

 "XXXX: Updated YANG Module Revision Handling";
 }

 import ietf-yang-library {
 prefix yanglib;
 reference "RFC 8525: YANG Library";
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Joe Clarke
 <mailto:jclarke@cisco.com>

 Author: Reshad Rahman
 <mailto:reshad@yahoo.com>

 Author: Robert Wilton
 <mailto:rwilton@cisco.com>

 Author: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>

 Author: Jason Sterne
 <mailto:jason.sterne@nokia.com>";
 description
 "This module contains augmentations to YANG Library to add module
 level revision label and to provide an indication of how
 deprecated and obsolete nodes are handled by the server.

 Copyright (c) 2021 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,

Wilton, et al. Expires January 11, 2023 [Page 27]

Internet-Draft Updated YANG Module Revision Handling July 2022

 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX (including in the imports above) with
 // actual RFC number and remove this note.
 // RFC Ed.: please replace revision-label version with 1.0.0 and
 // remove this note.
 revision 2021-11-04 {
 rev:revision-label 1.0.0-draft-ietf-netmod-yang-module-versioning-05;
 description
 "Initial revision";
 reference
 "XXXX: Updated YANG Module Revision Handling";
 }

 // library 1.0 modules-state is not augmented with revision-label

 augment "/yanglib:yang-library/yanglib:module-set/yanglib:module" {
 description
 "Add a revision label to module information";
 leaf revision-label {
 type rev:revision-label;
 description
 "The revision label associated with this module revision.
 The label MUST match the rev:revision-label value in the specific
 revision of the module loaded in this module-set.";

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.2.1, Advertising revision-label";
 }
 }

 augment "/yanglib:yang-library/yanglib:module-set/yanglib:module/"
 + "yanglib:submodule" {
 description
 "Add a revision label to submodule information";
 leaf revision-label {
 type rev:revision-label;
 description
 "The revision label associated with this submodule revision.
 The label MUST match the rev:revision-label value in the specific
 revision of the submodule included by the module loaded in
 this module-set.";

Wilton, et al. Expires January 11, 2023 [Page 28]

Internet-Draft Updated YANG Module Revision Handling July 2022

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.2.1, Advertising revision-label";
 }
 }

 augment "/yanglib:yang-library/yanglib:module-set/"
 + "yanglib:import-only-module" {
 description
 "Add a revision label to module information";
 leaf revision-label {
 type rev:revision-label;
 description
 "The revision label associated with this module revision.
 The label MUST match the rev:revision-label value in the specific
 revision of the module included in this module-set.";

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.2.1, Advertising revision-label";
 }
 }

 augment "/yanglib:yang-library/yanglib:module-set/"
 + "yanglib:import-only-module/yanglib:submodule" {
 description
 "Add a revision label to submodule information";
 leaf revision-label {
 type rev:revision-label;
 description
 "The revision label associated with this submodule revision.
 The label MUST match the rev:label value in the specific
 revision of the submodule included by the
 import-only-module loaded in this module-set.";

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.2.1, Advertising revision-label";
 }
 }

 augment "/yanglib:yang-library/yanglib:schema" {
 description
 "Augmentations to the ietf-yang-library module to indicate how
 deprecated and obsoleted nodes are handled for each datastore
 schema supported by the server.";

 leaf deprecated-nodes-implemented {

Wilton, et al. Expires January 11, 2023 [Page 29]

Internet-Draft Updated YANG Module Revision Handling July 2022

 type boolean;
 description
 "If set to true, this leaf indicates that all schema nodes with
 a status ’deprecated’ are implemented
 equivalently as if they had status ’current’; otherwise
 deviations MUST be used to explicitly remove deprecated
 nodes from the schema. If this leaf is absent or set to false,
 then the behavior is unspecified.";

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.2.2, Reporting how deprecated and obsolete nodes
 are handled";
 }

 leaf obsolete-nodes-absent {
 type boolean;
 description
 "If set to true, this leaf indicates that the server does not
 implement any status ’obsolete’ schema nodes. If this leaf is
 absent or set to false, then the behaviour is unspecified.";

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.2.2, Reporting how deprecated and obsolete nodes
 are handled";
 }
 }
}
<CODE ENDS>

9. Contributors

 This document grew out of the YANG module versioning design team that
 started after IETF 101. The following individuals are (or have been)
 members of the design team and have worked on the YANG versioning
 project:

 o Balazs Lengyel

 o Benoit Claise

 o Bo Wu

 o Ebben Aries

 o Jan Lindblad

Wilton, et al. Expires January 11, 2023 [Page 30]

Internet-Draft Updated YANG Module Revision Handling July 2022

 o Jason Sterne

 o Joe Clarke

 o Juergen Schoenwaelder

 o Mahesh Jethanandani

 o Michael (Wangzitao)

 o Qin Wu

 o Reshad Rahman

 o Rob Wilton

 The initial revision of this document was refactored and built upon
 [I-D.clacla-netmod-yang-model-update]. We would like to thank Kevin
 D’Souza and Benoit Claise for their initial work in this problem
 space.

 Discussons on the use of Semver for YANG versioning has been held
 with authors of the OpenConfig YANG models. We would like to thank
 both Anees Shaikh and Rob Shakir for their input into this problem
 space.

 We would also like to thank Lou Berger, Andy Bierman, Martin
 Bjorklund, Italo Busi, Tom Hill, Scott Mansfield, Kent Watsen for
 their contributions and review comments.

10. Security Considerations

 The document does not define any new protocol or data model. There
 are no security considerations beyond those specified in [RFC7950]
 and [RFC6020].

11. IANA Considerations

11.1. YANG Module Registrations

 This document requests IANA to registers a URI in the "IETF XML
 Registry" [RFC3688]. Following the format in RFC 3688, the following
 registrations are requested.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-revisions
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

Wilton, et al. Expires January 11, 2023 [Page 31]

Internet-Draft Updated YANG Module Revision Handling July 2022

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-library-revisions
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

 The following YANG module is requested to be registred in the "IANA
 Module Names" [RFC6020]. Following the format in RFC 6020, the
 following registrations are requested:

 The ietf-yang-revisions module:

 Name: ietf-yang-revisions

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-revisions

 Prefix: rev

 Reference: [RFCXXXX]

 The ietf-yang-library-revisions module:

 Name: ietf-yang-library-revisions

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-library-
 revisions

 Prefix: yl-rev

 Reference: [RFCXXXX]

11.2. Guidance for versioning in IANA maintained YANG modules

 Note for IANA (to be removed by the RFC editor): Please check that
 the registries and IANA YANG modules are referenced in the
 appropriate way.

 IANA is responsible for maintaining and versioning YANG modules that
 are derived from other IANA registries. For example, "iana-if-
 type.yang" [IfTypeYang] is derived from the "Interface Types (ifType)
 IANA registry" [IfTypesReg], and "iana-routing-types.yang"
 [RoutingTypesYang] is derived from the "Address Family Numbers"
 [AddrFamilyReg] and "Subsequent Address Family Identifiers (SAFI)
 Parameters" [SAFIReg] IANA registries.

 Normally, updates to the registries cause any derived YANG modules to
 be updated in a backwards-compatible way, but there are some cases
 where the registry updates can cause non-backward-compatible updates
 to the derived YANG module. An example of such an update is the
 2020-12-31 revision of iana-routing-types.yang

Wilton, et al. Expires January 11, 2023 [Page 32]

Internet-Draft Updated YANG Module Revision Handling July 2022

 [RoutingTypesDecRevision], where the enum name for two SAFI values
 was changed.

 In all cases, IANA MUST follow the versioning guidance specified in
 Section 3.1, and MUST include a "rev:non-backwards-compatible"
 substatement to the latest revision statement whenever an IANA
 maintained module is updated in a non-backwards-compatible way, as
 described in Section 3.2.

 Note: For published IANA maintained YANG modules that contain non-
 backwards-compatible changes between revisions, a new revision should
 be published with the "rev:non-backwards-compatible" substatement
 retrospectively added to any revisions containing non-backwards-
 compatible changes.

 Non-normative examples of updates to enumeration types in IANA
 maintained modules that would be classified as non-backwards-
 compatible changes are: Changing the status of an enumeration typedef
 to obsolete, changing the status of an enum entry to obsolete,
 removing an enum entry, changing the identifier of an enum entry, or
 changing the described meaning of an enum entry.

 Non-normative examples of updates to enumeration types in IANA
 maintained modules that would be classified as backwards-compatible
 changes are: Adding a new enum entry to the end of the enumeration,
 changing the status or an enum entry to deprecated, or improving the
 description of an enumeration that does not change its defined
 meaning.

 Non-normative examples of updates to identity types in IANA
 maintained modules that would be classified as non-backwards-
 compatible changes are: Changing the status of an identity to
 obsolete, removing an identity, renaming an identity, or changing the
 described meaning of an identity.

 Non-normative examples of updates to identity types in IANA
 maintained modules that would be classified as backwards-compatible
 changes are: Adding a new identity, changing the status or an
 identity to deprecated, or improving the description of an identity
 that does not change its defined meaning.

12. References

12.1. Normative References

 [I-D.ietf-netmod-rfc6991-bis]
 Schoenwaelder, J., "Common YANG Data Types", draft-ietf-
 netmod-rfc6991-bis-13 (work in progress), March 2022.

Wilton, et al. Expires January 11, 2023 [Page 33]

Internet-Draft Updated YANG Module Revision Handling July 2022

 [I-D.ietf-netmod-yang-semver]
 Clarke, J., Wilton, R., Rahman, R., Lengyel, B., Sterne,
 J., and B. Claise, "YANG Semantic Versioning", draft-ietf-
 netmod-yang-semver-06 (work in progress), November 2021.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of
 Documents Containing YANG Data Models", BCP 216, RFC 8407,
 DOI 10.17487/RFC8407, October 2018,
 <https://www.rfc-editor.org/info/rfc8407>.

 [RFC8525] Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
 and R. Wilton, "YANG Library", RFC 8525,
 DOI 10.17487/RFC8525, March 2019,
 <https://www.rfc-editor.org/info/rfc8525>.

12.2. Informative References

 [AddrFamilyReg]
 "Address Family Numbers IANA Registry",
 <https://www.iana.org/assignments/address-family-numbers/
 address-family-numbers.xhtml>.

 [I-D.clacla-netmod-yang-model-update]
 Claise, B., Clarke, J., Lengyel, B., and K. D’Souza, "New
 YANG Module Update Procedure", draft-clacla-netmod-yang-
 model-update-06 (work in progress), July 2018.

Wilton, et al. Expires January 11, 2023 [Page 34]

Internet-Draft Updated YANG Module Revision Handling July 2022

 [I-D.ietf-netmod-yang-instance-file-format]
 Lengyel, B. and B. Claise, "A File Format for YANG
 Instance Data", draft-ietf-netmod-yang-instance-file-
 format-21 (work in progress), October 2021.

 [I-D.ietf-netmod-yang-packages]
 Wilton, R., Rahman, R., Clarke, J., Sterne, J., and B. Wu,
 "YANG Packages", draft-ietf-netmod-yang-packages-03 (work
 in progress), March 2022.

 [I-D.ietf-netmod-yang-solutions]
 Wilton, R., "YANG Versioning Solution Overview", draft-
 ietf-netmod-yang-solutions-01 (work in progress), November
 2020.

 [I-D.ietf-netmod-yang-ver-selection]
 Wilton, R., Rahman, R., Clarke, J., Sterne, J., and B. Wu,
 "YANG Schema Selection", draft-ietf-netmod-yang-ver-
 selection-00 (work in progress), March 2020.

 [I-D.ietf-netmod-yang-versioning-reqs]
 Clarke, J., "YANG Module Versioning Requirements", draft-
 ietf-netmod-yang-versioning-reqs-06 (work in progress),
 January 2022.

 [IfTypesReg]
 "Interface Types (ifType) IANA Registry",
 <https://www.iana.org/assignments/smi-numbers/smi-
 numbers.xhtml#smi-numbers-5>.

 [IfTypeYang]
 "iana-if-type YANG Module",
 <https://www.iana.org/assignments/iana-if-type/iana-if-
 type.xhtml>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RoutingTypesDecRevision]
 "2020-12-31 revision of iana-routing-types.yang",
 <https://www.iana.org/assignments/yang-parameters/iana-
 routing-types@2020-12-31.yang>.

 [RoutingTypesYang]
 "iana-routing-types YANG Module",
 <https://www.iana.org/assignments/iana-routing-types/iana-
 routing-types.xhtml>.

Wilton, et al. Expires January 11, 2023 [Page 35]

Internet-Draft Updated YANG Module Revision Handling July 2022

 [SAFIReg] "Subsequent Address Family Identifiers (SAFI) Parameters
 IANA Registry", <https://www.iana.org/assignments/safi-
 namespace/safi-namespace.xhtml>.

 [semver] "Semantic Versioning 2.0.0", <https://www.semver.org>.

Appendix A. Examples of changes that are NBC

 Examples of NBC changes include:

 o Deleting a data node, or changing it to status obsolete.

 o Changing the name, type, or units of a data node.

 o Modifying the description in a way that changes the semantic
 meaning of the data node.

 o Any changes that change or reduce the allowed value set of the
 data node, either through changes in the type definition, or the
 addition or changes to "must" statements, or changes in the
 description.

 o Adding or modifying "when" statements that reduce when the data
 node is available in the schema.

 o Making the statement conditional on if-feature.

Appendix B. Examples of applying the NBC change guidelines

 The following sections give steps that could be taken for making NBC
 changes to a YANG module or submodule using the incremental approach
 described in section Section 7.1.1.

 The examples are all for "config true" nodes.

 Alternatively, the NBC changes MAY be done non-incrementally and
 without using "status" statements if the server can support multiple
 revisions of the YANG module or of YANG packages. Clients would be
 required to select the revision which they support and the NBC change
 would have no impact on them.

B.1. Removing a data node

 Removing a leaf or container from the data tree, e.g., because
 support for the corresponding feature is being removed:

Wilton, et al. Expires January 11, 2023 [Page 36]

Internet-Draft Updated YANG Module Revision Handling July 2022

 1. The schema node’s status is changed to "deprecated" and the node
 is supported for some period of time (e.g. one year). This is a
 BC change.

 2. When the schema node is not supported anymore, its status is
 changed to "obsolete" and the "description" updated. This is an
 NBC change.

B.2. Changing the type of a leaf node

 Changing the type of a leaf node. e.g., a "vpn-id" node of type
 integer being changed to a string:

 1. The status of schema node "vpn-id" is changed to "deprecated" and
 the node is supported for some period of time (e.g. one year).
 This is a BC change. The description is updated to indicate that
 "vpn-name" is replacing this node.

 2. A new schema node, e.g., "vpn-name", of type string is added to
 the same location as the existing node "vpn-id". This new node
 has status "current" and its description explains that it is
 replacing node "vpn-id".

 3. During the period of time when both schema nodes are supported,
 the interactions between the two nodes is outside the scope of
 this document and will vary on a case by case basis. Here are
 some options:

 1. A server may prevent the new node from being set if the old
 node is already set (and vice-versa). A "choice"
 construction could be used, or the new node may have a "when"
 statement to achieve this. The old node must not have a
 "when" statement since this would be an NBC change, but the
 server could reject the old node from being set if the new
 node is already set.

 2. If the new node is set and a client does a get or get-config
 operation on the old node, the server could map the value.
 For example, if the new node "vpn-name" has value "123" then
 the server could return integer value 123 for the old node
 "vpn-id". However, if the value can not be mapped then the
 configuration would be incomplete. The behavior in this case
 is outside the scope of this document.

 4. When the schema node "vpn-id" is not supported anymore, its
 status is changed to "obsolete" and the "description" is updated.
 This is an NBC change.

Wilton, et al. Expires January 11, 2023 [Page 37]

Internet-Draft Updated YANG Module Revision Handling July 2022

B.3. Reducing the range of a leaf node

 Reducing the range of values of a leaf-node, e.g., consider a "vpn-
 id" schema node of type uint32 being changed from range 1..5000 to
 range 1..2000:

 1. If all values which are being removed were never supported, e.g.,
 if a vpn-id of 2001 or higher was never accepted, this is a BC
 change for the functionality (no functionality change). Even if
 it is an NBC change for the YANG model, there should be no impact
 for clients using that YANG model.

 2. If one or more values being removed was previously supported,
 e.g., if a vpn-id of 3333 was accepted previously, this is an NBC
 change for the YANG model. Clients using the old YANG model will
 be impacted, so a change of this nature should be done carefully,
 e.g., by using the steps described in Appendix B.2

B.4. Changing the key of a list

 Changing the key of a list has a big impact to the client. For
 example, consider a "sessions" list which has a key "interface" and
 there is a need to change the key to "dest-address". Such a change
 can be done in steps:

 1. The status of list "sessions" is changed to "deprecated" and the
 list is supported for some period of time (e.g. one year). This
 is a BC change. The description is updated to indicate the new
 list that is replacing this list.

 2. A new list is created in the same location with the same
 descendant schema nodes but with "dest-address" as key. Finding
 an appropriate name for the new list can be difficult. In this
 case the new list is called "sessions-address", has status
 "current" and its description should explain that it is replacing
 list "session".

 3. During the period of time when both lists are supported, the
 interactions between the two lists is outside the scope of this
 document and will vary on a case by case basis. Here are some
 options:

 1. A server could prevent entries in the new list from being
 created if the old list already has entries (and vice-versa).

 2. If the new list has entries created and a client does a get
 or get-config operation on the old list, the server could map
 the entries. However, if the new list has entries which

Wilton, et al. Expires January 11, 2023 [Page 38]

Internet-Draft Updated YANG Module Revision Handling July 2022

 would lead to duplicate keys in the old list, the mapping can
 not be done.

 4. When list "sessions" is not available anymore, its status is
 changed to "obsolete" and the "description" is updated. This is
 an NBC change.

 If the server can support NBC revisions of the YANG module
 simultaneously using version selection
 [I-D.ietf-netmod-yang-ver-selection], then the changes can be done
 immediately:

 1. The new revision of the YANG module has the list "sessions"
 modified to have "dest-address" as key, this is an NBC change.

 2. Clients which require the previous functionality select the older
 module revision

B.5. Renaming a node

 A leaf or container schema node may be renamed, either due to a
 spelling error in the previous name or because of a better name. For
 example a node "ip-adress" could be renamed to "ip-address":

 1. The status of the existing node "ip-adress" is changed to
 "deprecated" and is supported for some period of time (e.g. one
 year). This is a BC change. The description is updated to
 indicate the node that is replacing this node.

 2. The new schema node "ip-address" is added to the same location as
 the existing node "ip-adress". This new node has status
 "current" and its description should explain that it is replacing
 node "ip-adress".

 3. During the period of time when both nodes are available, the
 interactions between the two nodes is outside the scope of this
 document and will vary on a case by case basis. Here are some
 options:

 1. A server may prevent the new node from being set if the old
 node is already set (and vice-versa). A "choice"
 construction could be used, or the new node may have a "when"
 statement to achieve this. The old node must not have a
 "when" statement since this would be an NBC change, but the
 server could reject the old node from being set if the new
 node is already set.

Wilton, et al. Expires January 11, 2023 [Page 39]

Internet-Draft Updated YANG Module Revision Handling July 2022

 2. If the new node is set and a client does a get or get-config
 operation on the old node, the server could use the value of
 the new node. For example, if the new node "ip-address" has
 value X then the server may return value X for the old node
 "ip-adress".

 4. When node "ip-adress" is not available anymore, its status is
 changed to "obsolete" and the "description" is updated. This is
 an NBC change.

Authors’ Addresses

 Robert Wilton (editor)
 Cisco Systems, Inc.

 Email: rwilton@cisco.com

 Reshad Rahman (editor)

 Email: reshad@yahoo.com

 Balazs Lengyel (editor)
 Ericsson

 Email: balazs.lengyel@ericsson.com

 Joe Clarke
 Cisco Systems, Inc.

 Email: jclarke@cisco.com

 Jason Sterne
 Nokia

 Email: jason.sterne@nokia.com

Wilton, et al. Expires January 11, 2023 [Page 40]

Network Working Group R. Wilton, Ed.
Internet-Draft Cisco Systems, Inc.
Updates: 6020, 7950, 8407, 8525 (if approved) R. Rahman, Ed.
Intended status: Standards Track Equinix
Expires: 2 September 2024 B. Lengyel, Ed.
 Ericsson
 J. Clarke
 Cisco Systems, Inc.
 J. Sterne
 Nokia
 1 March 2024

 Updated YANG Module Revision Handling
 draft-ietf-netmod-yang-module-versioning-11

Abstract

 This document refines the RFC 7950 module update rules. It specifies
 a new YANG module update procedure that can document when non-
 backwards-compatible changes have occurred during the evolution of a
 YANG module. It extends the YANG import statement with a minimum
 revision suggestion to help document inter-module dependencies. It
 provides guidelines for managing the lifecycle of YANG modules and
 individual schema nodes. This document updates RFC 7950, RFC 6020,
 RFC 8407 and RFC 8525.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 2 September 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Wilton, et al. Expires 2 September 2024 [Page 1]

Internet-Draft Updated YANG Module Revision Handling March 2024

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Updates to YANG RFCs 4
 2. Terminology and Conventions 4
 3. Refinements to YANG revision handling 5
 3.1. Updating a YANG module with a new revision 6
 3.1.1. Backwards-compatible rules 7
 3.1.2. Non-backwards-compatible changes 8
 3.2. non-backwards-compatible extension statement 8
 3.3. Removing revisions from the revision history 8
 3.4. Examples for updating the YANG module revision history . 9
 4. Guidance for revision selection on imports 12
 4.1. Recommending a minimum revision for module imports . . . 13
 4.1.1. Module import examples 14
 5. New ietf-yang-status-conformance YANG module 15
 5.1. Reporting how deprecated and obsolete nodes are
 handled . 15
 6. Guidelines for using the YANG module update rules 16
 6.1. Guidelines for YANG module authors 16
 6.1.1. Making non-backwards-compatible changes to a YANG
 module . 17
 6.2. Versioning Considerations for Clients 18
 7. Module Versioning Extension YANG Modules 18
 8. Security considerations 24
 8.1. Security considerations for module revisions 24
 8.2. Security considerations for the modules defined in this
 document . 25
 9. IANA Considerations . 25
 9.1. YANG Module Registrations 25
 9.2. Guidance for versioning in IANA maintained YANG
 modules . 26
 10. References . 27
 10.1. Normative References 27
 10.2. Informative References 28
 Appendix A. Examples of changes that are NBC 30
 Appendix B. Examples of applying the NBC change guidelines . . . 31
 B.1. Removing a data node 31
 B.2. Changing the type of a leaf node 31

Wilton, et al. Expires 2 September 2024 [Page 2]

Internet-Draft Updated YANG Module Revision Handling March 2024

 B.3. Reducing the range of a leaf node 32
 B.4. Changing the key of a list 32
 B.5. Renaming a node . 33
 Contributors . 33
 Acknowledgments . 34
 Authors’ Addresses . 34

1. Introduction

 The current YANG [RFC7950] module update rules require that updates
 of YANG modules preserve strict backwards compatibility. This causes
 problems as described in [I-D.ietf-netmod-yang-versioning-reqs].
 This document recognizes the need to sometimes allow YANG modules to
 evolve with non-backwards-compatible changes, which can cause
 breakage to clients and when importing YANG modules. Accepting that
 non-backwards-compatible changes do sometimes occur -- e.g., for
 bugfixes -- it is important to have mechanisms to report when these
 changes occur, and to manage their effect on clients and the broader
 YANG ecosystem.

 Several other documents build on this document with additional
 capabilities. [I-D.ietf-netmod-yang-schema-comparison] specifies an
 algorithm that can be used to compare two revisions of a YANG schema
 and provide granular information to allow module users to determine
 if they are impacted by changes between the revisions. The
 [I-D.ietf-netmod-yang-semver] document defines a YANG extension that
 tags a YANG artifact with a version identifier based on semantic
 versioning. YANG packages [I-D.ietf-netmod-yang-packages] provides a
 mechanism to group sets of related YANG modules together in order to
 manage schema and conformance of YANG modules as a cohesive set
 instead of individually. Finally,
 [I-D.ietf-netmod-yang-ver-selection] provides a schema selection
 mechanism that allows a client to choose which schemas to use when
 interacting with a server from the available schema that are
 supported and advertised by the server. These other documents are
 mentioned here as informative references. Support of the other
 documents is not required in an implementation in order to take
 advantage of the mechanisms and functionality offered by this module
 versioning document.

 The document comprises four parts:

 * Refinements to the YANG 1.1 module revision update procedure,
 supported by new extension statements to indicate when a revision
 contains non-backwards-compatible changes.

Wilton, et al. Expires 2 September 2024 [Page 3]

Internet-Draft Updated YANG Module Revision Handling March 2024

 * Updated guidance for revision selection on imports and a YANG
 extension statement allowing YANG module imports to document an
 earliest module revision that may satisfy the import dependency.

 * Updates and augmentations to ietf-yang-library to report how
 "deprecated" and "obsolete" nodes are handled by a server.

 * Guidelines for how the YANG module update rules defined in this
 document should be used, along with examples.

 Note to RFC Editor (To be removed by RFC Editor)

 Open issues are tracked at https://github.com/netmod-wg/yang-ver-dt/
 issues.

1.1. Updates to YANG RFCs

 This document updates [RFC7950] section 11 and [RFC6020] section 10.
 Section 3 describes modifications to YANG revision handling and
 update rules, and Section 4.1 describes a YANG extension statement to
 describe potential YANG import revision dependencies.

 This document updates [RFC8407] section 4.7. Section 6 provides
 guidelines on managing the lifecycle of YANG modules that may contain
 non-backwards-compatible changes and a branched revision history.

 This document updates [RFC8525] with augmentations to include two
 boolean leafs to indicate whether status deprecated and status
 obsolete schema nodes are implemented by the server.

2. Terminology and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document makes use of the following terminology introduced in
 the YANG 1.1 Data Modeling Language [RFC7950]:

 * schema node

 In addition, this document uses the following terminology:

Wilton, et al. Expires 2 September 2024 [Page 4]

Internet-Draft Updated YANG Module Revision Handling March 2024

 * YANG module revision: An instance of a YANG module, uniquely
 identified with a revision date, with no implied ordering or
 backwards compatibility between different revisions of the same
 module.

 * Backwards-compatible (BC) change: A backwards-compatible change
 between two YANG module revisions, as defined in Section 3.1.1

 * Non-backwards-compatible (NBC) change: A non-backwards-compatible
 change between two YANG module revisions, as defined in
 Section 3.1.2

3. Refinements to YANG revision handling

 [RFC7950] and [RFC6020] assume, but do not explicitly state, that the
 revision history for a YANG module or submodule is strictly linear,
 i.e., it is prohibited to have two independent revisions of a YANG
 module or submodule that are both directly derived from the same
 parent revision.

 This document clarifies [RFC7950] and [RFC6020] to explicitly allow
 non-linear development of YANG module and submodule revisions, so
 that they MAY have multiple revisions that directly derive from the
 same parent revision. As per [RFC7950] and [RFC6020], YANG module
 and submodule revisions continue to be uniquely identified by their
 revision date, and hence all revisions of a given module or submodule
 MUST have unique revision dates.

 However, using revision dates alone to identify revisions of a YANG
 module versioned with a branched revision history is likely to be
 confusing because the relationship between module revisions is no
 longer guaranteed to be chronologically ordered. Instead, for
 modules that may use a branched revision history, it is RECOMMENDED
 to use a version identifier, such as the one described in
 [I-D.ietf-netmod-yang-semver], that better describes the semantic
 relationship between the revisions.

 For a given YANG module revision, revision B is defined as being
 derived from revision A, if revision A is listed in the revision
 history of revision B. Although this document allows for a branched
 revision history, a given YANG module revision history does not
 contain all revisions in all possible branches, it only lists those
 from which is was derived, i.e., the module revision’s history
 describes a single path of derived revisions back to the root of the
 module’s revision history.

Wilton, et al. Expires 2 September 2024 [Page 5]

Internet-Draft Updated YANG Module Revision Handling March 2024

 A corollary to the text above is that the ancestry (derived
 relationship) between two module or submodule revisions cannot be
 determined by comparing the module or submodule revision date or
 version identifier alone - the revision history must be consulted.

 A module’s name and revision date identifies a specific immutable
 definition of that module within its revision history. Hence, if a
 module includes submodules then to ensure that the module’s content
 is uniquely defined, the module’s "include" statements SHOULD use
 "revision-date" substatements to specify the exact revision date of
 each included submodule. When a module does not include its
 submodules by revision-date, the revision of submodules used cannot
 be derived from the including module. Mechanisms such as YANG
 packages [I-D.ietf-netmod-yang-packages], and YANG library [RFC8525],
 could be used to specify the exact submodule revisions used when the
 submodule revision date is not constrained by the "include"
 statement.

 [RFC7950] section 11 and [RFC6020] section 10 require that all
 updates to a YANG module are backwards-compatible (BC) to the
 previous revision of the module. This document introduces a method
 to indicate that an non-backwards-compatible (NBC) change has
 occurred between module revisions: this is done by using a new "non-
 backwards-compatible" YANG extension statement in the module revision
 history.

 Two revisions of a module or submodule MAY have identical content
 except for the revision history. This could occur, for example, if a
 module or submodule has a branched history and identical changes are
 applied in multiple branches.

3.1. Updating a YANG module with a new revision

 This section updates [RFC7950] section 11 and [RFC6020] section 10 to
 refine the rules for permissible changes when a new YANG module
 revision is created.

 New module revisions SHOULD NOT contain NBC changes because they
 often create problems for clients, however they can be helpful in
 some scenarios, and hence are discouraged, but allowed. For example:

 * Bugfixes, particularly where the likely client impact is low or
 the module is changed to reflect current server behavior.

 * To mark nodes as obsolete (or remove them), after a suitable
 deprecation period.

Wilton, et al. Expires 2 September 2024 [Page 6]

Internet-Draft Updated YANG Module Revision Handling March 2024

 * To refine new and unstable modules (or new and unstable nodes
 within existing, stable modules).

 * Restructuring a module to add new functionality where the cost of
 adding the functionality in a BC manner is disproportionate to the
 expected benefits of greater client backwards compatibility.

 A YANG extension, defined in Section 3.2, is used to signal the
 potential for incompatibility to existing module users and readers.

 As per [RFC7950] and [RFC6020], all published revisions of a module
 are given a new unique revision date.

3.1.1. Backwards-compatible rules

 A change between two module revisions is defined as being "backwards-
 compatible" if the change conforms to the module update rules
 specified in [RFC7950] section 11 and [RFC6020] section 10, updated
 by the following rules:

 * A "status" "deprecated" statement MAY be added, or changed from
 "current" to "deprecated", but adding or changing "status" to
 "obsolete" is a non-backwards-compatible change.

 * YANG schema nodes with a "status" "obsolete" substatement MAY be
 removed from published modules, and the removal is classified as a
 backwards-compatible change. In some circumstances it may be
 helpful to retain the obsolete definitions since their identifiers
 may still be referenced by other modules and to ensure that their
 identifiers are not reused with a different meaning.

 * A statement that is defined using the YANG "extension" statement
 MAY be added, removed, or changed, if it does not change the
 semantics of the module. Extension statement definitions SHOULD
 specify whether adding, removing, or changing statements defined
 by that extension are backwards-compatible or non-backwards-
 compatible.

 * Any change made to the "revision-date" or "recommended-min-date"
 substatements of an "import" statement, including adding new
 "revision-date" or "recommended-min-date" substatements, changing
 the argument of any "revision-date" or "recommended-min-date"
 substatetements, or removing any "revision-date" or "recommended-
 min-date" substatements, is classified as backwards-compatible.

 * Any changes (including whitespace or formatting changes) that do
 not change the semantic meaning of the module are backwards-
 compatible.

Wilton, et al. Expires 2 September 2024 [Page 7]

Internet-Draft Updated YANG Module Revision Handling March 2024

3.1.2. Non-backwards-compatible changes

 Any changes to YANG modules that are not defined by Section 3.1.1 as
 being backwards-compatible are classified as "non-backwards-
 compatible" changes.

3.2. non-backwards-compatible extension statement

 The "rev:non-backwards-compatible" extension statement is used to
 indicate YANG module revisions that contain NBC changes.

 If a revision of a YANG module contains changes, relative to the
 preceding revision in the revision history, that do not conform to
 the module update rules defined in Section 3.1.1, then a "rev:non-
 backwards-compatible" extension statement MUST be added as a
 substatement to the "revision" statement.

 Adding, modifying or removing a "rev:non-backwards-compatible"
 extension statement is considered to be a BC change.

3.3. Removing revisions from the revision history

 Authors may wish to remove revision statements from a module or
 submodule. Removal of revision information may be desirable for a
 number of reasons including reducing the size of a large revision
 history, or removing a revision that should no longer be used or
 imported. Removing revision statements is allowed, but can cause
 issues and SHOULD NOT be done without careful analysis of the
 potential impact to users of the module or submodule since it may
 cause loss of visibility of when non-backwards-compatible changes
 were introduced.

 An author MAY remove a contiguous sequence of entries from the end
 (i.e., oldest entries) of the revision history. This is acceptable
 even if the first remaining (oldest) revision entry in the revision
 history contains a rev:non-backwards-compatible substatement.

 An author MAY remove a contiguous sequence of entries in the revision
 history as long as the presence or absence of any existing rev:non-
 backwards-compatible substatements on all remaining entries still
 accurately reflect the compatibility relationship to their preceding
 entries remaining in the revision history.

 The author MUST NOT remove the first (i.e., newest) revision entry in
 the revision history.

 Example revision history:

Wilton, et al. Expires 2 September 2024 [Page 8]

Internet-Draft Updated YANG Module Revision Handling March 2024

 revision 2020-11-11 {
 rev:non-backwards-compatible;
 }

 revision 2020-08-09 {
 rev:non-backwards-compatible;
 }

 revision 2020-06-07 {
 }

 revision 2020-02-10 {
 rev:non-backwards-compatible;
 }

 revision 2019-10-21 {
 }

 revision 2019-03-04 {
 }

 revision 2019-01-02 {
 }

 In the revision history example above (with revision descriptions
 omitted for clarity), removing the revision history entry for
 2020-02-10 would also remove the rev:non-backwards-compatible
 annotation and hence the resulting revision history would incorrectly
 indicate that revision 2020-06-07 is backwards-compatible with
 revisions 2019-01-02 through 2019-10-21 when it is not, and so this
 change cannot be made. Conversely, removing one or more revisions
 out of 2019-03-04, 2019-10-21 and 2020-08-09 from the revision
 history would still retain a consistent revision history, and is
 acceptable, subject to an awareness of the concerns raised in the
 first paragraph of this section.

3.4. Examples for updating the YANG module revision history

 The following diagram, explanation, and module history illustrates
 how a branched revision history for a YANG module could be
 represented chronologically. To aid clarity, it makes use of both
 the "non-backwards-compatible" extension statement, and the "version"
 extension statement defined in [I-D.ietf-netmod-yang-semver]:

 Example YANG module with branched revision history using version
 identifiers defined in [I-D.ietf-netmod-yang-semver].

Wilton, et al. Expires 2 September 2024 [Page 9]

Internet-Draft Updated YANG Module Revision Handling March 2024

 Module revision date Example version identifier
 2019-01-01 <- 1.0.0
 |
 2019-02-01 <- 2.0.0
 | \
 2019-03-01 \ <- 3.0.0
 | \
 | 2019-04-01 <- 2.1.0
 | |
 2019-05-01 | <- 3.1.0
 |
 2019-06-01 <- 2.2.0

 The tree diagram above illustrates how an example module’s revision
 history might evolve, over time. For example, the tree might
 represent the following changes, listed in chronological order from
 the oldest revision to the newest revision:

 Example module, revision 2019-05-01:

Wilton, et al. Expires 2 September 2024 [Page 10]

Internet-Draft Updated YANG Module Revision Handling March 2024

 module example-module {

 namespace "urn:example:module";
 prefix "prefix-name";

 import ietf-yang-revisions { prefix "rev"; }
 import ietf-yang-semver { prefix "ys"; }

 description
 "to be completed";

 revision 2019-05-01 {
 ys:version 3.1.0;
 description "Add new functionality.";
 }

 revision 2019-03-01 {
 ys:version 3.0.0;
 rev:non-backwards-compatible;
 description
 "Add new functionality. Remove some deprecated nodes.";
 }

 revision 2019-02-01 {
 ys:version 2.0.0;
 rev:non-backwards-compatible;
 description "Apply bugfix to pattern statement";
 }

 revision 2019-01-01 {
 ys:version 1.0.0;
 description "Initial revision";
 }

 //YANG module definition starts here
 }

 Example module, revision 2019-06-01:

Wilton, et al. Expires 2 September 2024 [Page 11]

Internet-Draft Updated YANG Module Revision Handling March 2024

 module example-module {

 namespace "urn:example:module";
 prefix "prefix-name";

 import ietf-yang-revisions { prefix "rev"; }
 import ietf-yang-semver { prefix "ys"; }

 description
 "to be completed";

 revision 2019-06-01 {
 ys:version 2.2.0;
 description "Backwards-compatible bugfix to enhancement.";
 }

 revision 2019-04-01 {
 ys:version 2.1.0;
 description "Apply enhancement to older release train.";
 }

 revision 2019-02-01 {
 ys:version 2.0.0;
 rev:non-backwards-compatible;
 description "Apply bugfix to pattern statement";
 }

 revision 2019-01-01 {
 ys:version 1.0.0;
 description "Initial revision";
 }

 //YANG module definition starts here
 }

4. Guidance for revision selection on imports

 [RFC7950] and [RFC6020] allow YANG module "import" statements to
 optionally require the imported module to have a specific revision
 date. In practice, importing a module with an exact revision date
 can be too restrictive because it requires the importing module to be
 updated whenever any change to the imported module occurs, and hence
 section Section 6.1 suggests that authors do not restrict YANG module
 imports to exact revision dates.

 Instead, for conformance purposes (section 5.6 of [RFC7950]), the
 recommended approach for defining the relationship between specific
 YANG module revisions is to specify the relationships outside of the

Wilton, et al. Expires 2 September 2024 [Page 12]

Internet-Draft Updated YANG Module Revision Handling March 2024

 YANG modules, e.g., via YANG library [RFC8525], YANG packages
 [I-D.ietf-netmod-yang-packages], a filesystem directory containing a
 set of consistent YANG module revisions, or a revision control system
 commit label.

4.1. Recommending a minimum revision for module imports

 Although the previous section indicates that the actual relationship
 constraints between different revisions of YANG modules should be
 specified outside of the modules, in some scenarios YANG modules are
 designed to be loosely coupled, and implementors may wish to select
 sets of YANG module revisions that are expected to work together.
 For these cases it can be helpful for a module author to provide
 guidance on a recommended minimum revision that is expected to
 satisfy an YANG import. E.g., the module author may know of a
 dependency on a type or grouping that has been introduced in a
 particular imported YANG module revision. Although there can be no
 guarantee that all derived future revisions from the particular
 imported module will necessarily also be compatible, older revisions
 of the particular imported module are very unlikely to ever be
 compatible.

 This module introduces, for modules with a linear revision history
 that are versioned using revision dates, a new YANG extension
 statement to provide guidance to module implementors on a recommended
 minimum module revision of an imported module that is anticipated to
 be compatible. This statement has been designed to be machine-
 readable so that tools can parse the minimum revision extension
 statement and generate warnings if appropriate, but this extension
 statement does not alter YANG module conformance of valid YANG module
 versions in any way, and specifically it does not alter the behavior
 of the YANG module import statement from that specified in [RFC7950].

 The ietf-revisions module defines the "recommended-min-date"
 extension statement, a substatement to the YANG "import" statement,
 to allow for a "minimum recommended date" to be documented:

 The argument to the "recommended-min-date" extension statement is
 a revision date.

 A particular revision of an imported module adheres to an import’s
 "recommended-min-date" extension statement if the imported
 module’s revision date is equal to or later than the revision date
 argument of the "recommended-min-date" extension statement in the
 importing module.

 Zero or one "recommended-min-date" extension statement is allowed
 for each parent "import" statement.

Wilton, et al. Expires 2 September 2024 [Page 13]

Internet-Draft Updated YANG Module Revision Handling March 2024

 Adding, modifying or removing a "recommended-min-date" extension
 statement is a BC change.

4.1.1. Module import examples

 Consider the example module "example-module" from Section 3.4 that is
 hypothetically available in the following revisions: 2019-01-01,
 2019-02-01, 2019-03-01, 2019-04-01, 2019-05-01 and 2019-06-01. The
 relationship between the revisions is as before:

 Module revision date
 2019-01-01
 |
 2019-02-01
 | \
 2019-03-01 \
 | \
 | 2019-04-01
 | |
 2019-05-01 |
 |
 2019-06-01

4.1.1.1. Example 1

 This example recommends module revisions for import whose revision
 date is or comes after 2019-02-01. E.g., this dependency might be
 used if there was a new container added in revision 2019-02-01 that
 is augmented by the importing module. It includes the following
 revisions: 2019-02-01, 2019-03-01, 2019-04-01, 2019-05-01 and
 2019-06-01.

 import example-module {
 rev:recommended-min-date 2019-02-01;
 }

4.1.1.2. Example 2

 This example recommends module revisions for import whose revision
 date is or comes after 2019-04-01. It includes the following
 revisions: 2019-04-01, 2019-05-01 and 2019-06-01, even though
 revision 2019-05-01 may not contain what is desired from 2019-04-01.
 This shows that "recommended-min-date" is not well suited for a
 branched revision history, and is most helpful when a module is
 restricted to a linear chronological development history.

Wilton, et al. Expires 2 September 2024 [Page 14]

Internet-Draft Updated YANG Module Revision Handling March 2024

 import example-module {
 rev:recommended-min-date 2019-04-01;
 }

5. New ietf-yang-status-conformance YANG module

 This document defines the YANG module, ietf-yang-status-conformance,
 that augments YANG library [RFC8525] with two leafs to indicate how a
 server implements deprecated and obsolete schema nodes.

 The "ietf-yang-status-conformance" YANG module has the following
 structure (using the notation defined in [RFC8340]):

 module: ietf-yang-status-conformance
 augment /yanglib:yang-library/yanglib:schema:
 +--ro deprecated-nodes-implemented? boolean
 +--ro obsolete-nodes-absent? boolean

5.1. Reporting how deprecated and obsolete nodes are handled

 The ietf-yang-status-conformance YANG module augments YANG library
 with two boolean leafs to allow a server to report how it implements
 status "deprecated" and status "obsolete" schema nodes. The leafs
 are:

 deprecated-nodes-implemented: If set to "true", this leaf indicates
 that all schema nodes with a status "deprecated" are implemented
 equivalently as if they had status "current"; otherwise deviations
 MUST be used by the server to explicitly remove "deprecated" nodes
 from the schema. If this leaf is set to "false" or absent, then
 the behavior is unspecified.

 obsolete-nodes-absent: If set to "true", this leaf indicates that
 the server does not implement any status "obsolete" schema nodes.
 If this leaf is set to "false" or absent, then the behaviour is
 unspecified.

 Servers SHOULD set both the "deprecated-nodes-implemented" and
 "obsolete-nodes-absent" leafs to "true", which allows clients to
 determine the exact schema used by the server.

Wilton, et al. Expires 2 September 2024 [Page 15]

Internet-Draft Updated YANG Module Revision Handling March 2024

 If a server does not set the "deprecated-nodes-implemented" leaf to
 "true", then clients MUST NOT rely solely on the "rev:non-backwards-
 compatible" statements to determine whether two module revisions are
 backwards-compatible, and MUST also consider whether the status of
 any nodes has changed to "deprecated" and whether those nodes are
 implemented by the server.

6. Guidelines for using the YANG module update rules

 The following text updates section 4.7 of [RFC8407] to revise the
 guidelines for updating YANG modules.

6.1. Guidelines for YANG module authors

 All IETF YANG modules MUST conform to this specification. In
 particular, sections: Section 3, Section 4, and the guidelines
 documented in this section.

 NBC changes to YANG modules may cause problems to clients, who are
 consumers of YANG models, and hence YANG module authors SHOULD
 minimize NBC changes and keep changes BC whenever possible.

 When NBC changes are introduced, consideration should be given to the
 impact on clients and YANG module authors SHOULD try to mitigate that
 impact.

 A "rev:non-backwards-compatible" statement MUST be added if there are
 NBC changes relative to the previous revision.

 Removing old revision statements from a module’s revision history can
 cause a loss of visibility of when non-backwards-compatible changes
 were made, and hence it is RECOMMENDED to retain them. An
 alternative solution, if the revision section is too long, would be
 to remove, or curtail, the older description statements associated
 with the previous revisions.

 In cases where a revision dependency is helpful for a module import,
 the "rev:recommended-min-date" extension SHOULD be used in preference
 to the "revision-date" statement, which causes overly strict import
 dependencies and SHOULD NOT be used.

 A module that includes submodules SHOULD use the "revision-date"
 statement to include specific submodule revisions. The revision of
 the including module MUST be updated when any included submodule has
 changed.

Wilton, et al. Expires 2 September 2024 [Page 16]

Internet-Draft Updated YANG Module Revision Handling March 2024

 In some cases a module or submodule revision that is not strictly NBC
 by the definition in Section 3.1.2 of this specification may include
 the "non-backwards-compatible" statement. Here is an example when
 adding the statement may be desirable:

 * A "config false" leaf had its value space expanded (for example, a
 range was increased, or additional enum values were added) and the
 author or server implementor feels there is a significant
 compatibility impact for clients and users of the module or
 submodule

6.1.1. Making non-backwards-compatible changes to a YANG module

 There are various valid situations where a YANG module has to be
 modified in an NBC way. Here are some guidelines on how non-
 backwards-compatible changes can be made incrementally, with the
 assumption that deprecated nodes are implemented by the server, and
 obsolete nodes are not:

 1. The changes should be made gradually, e.g., a data node’s status
 SHOULD NOT be changed directly from "current" to "obsolete" (see
 Section 4.7 of [RFC8407]), instead the status SHOULD first be
 marked "deprecated". At some point in the future, when support
 is removed for the data node, there are two options. The first,
 and preferred, option is to keep the data node definition in the
 model and change the status to obsolete. The second option is
 to simply remove the data node from the model, but this has the
 risk of breaking modules which import the modified module, and
 the removed identifier may be accidentally reused in a future
 revision.

 2. For deprecated data nodes the "description" statement SHOULD also
 indicate until when support for the node is guaranteed (if
 known). If there is a replacement data node, rpc, action or
 notification for the deprecated node, this SHOULD be stated in
 the "description". The reason for deprecating the node can also
 be included in the "description" if it is deemed to be of
 potential interest to the user.

 3. For obsolete data nodes, it is RECOMMENDED to keep the above
 information, from when the node had status "deprecated", which is
 still relevant.

Wilton, et al. Expires 2 September 2024 [Page 17]

Internet-Draft Updated YANG Module Revision Handling March 2024

 4. When obsoleting or deprecating data nodes, the "deprecated" or
 "obsolete" status SHOULD be applied at the highest possible level
 in the data tree. For clarity, the "status" statement SHOULD
 also be applied to all descendent data nodes, but the additional
 status related information does not need to be repeated if it
 does not introduce any additional information.

 5. NBC changes which can break imports SHOULD be avoided because of
 the impact on the importing module. The importing modules could
 get broken, e.g., if an augmented node in the importing module
 has been removed from the imported module. Alternatively, the
 schema of the importing modules could undergo an NBC change due
 to the NBC change in the imported module, e.g., if a node in a
 grouping has been removed. As described in Appendix B.1, instead
 of removing a node, that node SHOULD first be deprecated and then
 obsoleted.

 See Appendix B for examples on how NBC changes can be made.

6.2. Versioning Considerations for Clients

 Guidelines for clients of modules using the new module revision
 update procedure:

 * Clients SHOULD be liberal when processing data received from a
 server. For example, the server may have increased the range of
 an operational node causing the client to receive a value which is
 outside the range of the YANG model revision it was coded against.

 * Clients SHOULD monitor changes to published YANG modules through
 their revision history, and use appropriate tooling to understand
 the specific changes between module revision. In particular,
 clients SHOULD NOT migrate to NBC revisions of a module without
 understanding any potential impact of the specific NBC changes.

 * Clients SHOULD plan to make changes to match published status
 changes. When a node’s status changes from "current" to
 "deprecated", clients SHOULD plan to stop using that node in a
 timely fashion. When a node’s status changes to "obsolete",
 clients MUST stop using that node.

7. Module Versioning Extension YANG Modules

 YANG module with extension statements for annotating NBC changes and
 importing by revision.

Wilton, et al. Expires 2 September 2024 [Page 18]

Internet-Draft Updated YANG Module Revision Handling March 2024

 <CODE BEGINS> file "ietf-yang-revisions@2024-02-19.yang"
 module ietf-yang-revisions {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-revisions";
 prefix rev;

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Joe Clarke
 <mailto:jclarke@cisco.com>

 Author: Reshad Rahman
 <mailto:reshad@yahoo.com>

 Author: Robert Wilton
 <mailto:rwilton@cisco.com>

 Author: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>

 Author: Jason Sterne
 <mailto:jason.sterne@nokia.com>";
 description
 "This YANG 1.1 module contains definitions and extensions to
 support updated YANG revision handling.

 Copyright (c) 2024 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

Wilton, et al. Expires 2 September 2024 [Page 19]

Internet-Draft Updated YANG Module Revision Handling March 2024

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX (inc above) with actual RFC number and
 // remove this note.

 revision 2024-02-19 {
 description
 "Initial version.";
 reference
 "XXXX: Updated YANG Module Revision Handling";
 }

 typedef revision-date {
 type string {
 pattern ’[0-9]{4}-(1[0-2]|0[1-9])-(0[1-9]|[1-2][0-9]|3[0-1])’;
 }
 description
 "A date associated with a YANG revision.

 Matches dates formatted as YYYY-MM-DD.";
 reference
 "RFC 7950: The YANG 1.1 Data Modeling Language";
 }

 extension non-backwards-compatible {
 description
 "This statement is used to indicate YANG module revisions that
 contain non-backwards-compatible changes.

 The statement MUST only be a substatement of the ’revision’
 statement. Zero or one ’non-backwards-compatible’ statements
 per parent statement is allowed. No substatements for this
 extension have been standardized.

 If a revision of a YANG module contains changes, relative to
 the preceding revision in the revision history, that do not
 conform to the backwards-compatible module update rules
 defined in RFC-XXX, then the ’non-backwards-compatible’
 statement MUST be added as a substatement to the revision
 statement.

 Conversely, if a revision does not contain a
 ’non-backwards-compatible’ statement then all changes,
 relative to the preceding revision in the revision history,
 MUST be backwards-compatible.

 A new module revision that only contains changes that are
 backwards-compatible SHOULD NOT include the

Wilton, et al. Expires 2 September 2024 [Page 20]

Internet-Draft Updated YANG Module Revision Handling March 2024

 ’non-backwards-compatible’ statement. An example of when an
 author might add the ’non-backwards-compatible’ statement is
 if they believe a change could negatively impact clients even
 though the backwards compatibility rules defined in RFC-XXXX
 classify it as a backwards-compatible change.

 Add, removing, or changing a ’non-backwards-compatible’
 statement is a backwards-compatible version change.";
 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 3.2,
 non-backwards-compatible revision extension statement";
 }

 extension recommended-min-date {
 argument revision-date;
 description
 "Recommends the revision of the module that may be imported to
 one whose revision date matches or is after the specified
 revision-date.

 The argument value MUST conform to the ’revision-date’ defined
 type.

 The statement MUST only be a substatement of the import
 statement. Zero, one or more ’recommended-min-date’
 statements per parent statement are allowed. No substatements
 for this extension have been standardized.

 Zero or one ’recommended-min-date’ extension statement is
 allowed for each parent ’import’ statement.

 A particular revision of an imported module adheres to an
 import’s ’recommended-min-date’ extension statement if the
 imported module’s revision date is equal to or later than
 the revision date argument of the ’recommended-min-date’
 extension statement in the importing module.

 Adding, removing or updating a ’recommended-min-date’
 statement to an import is a backwards-compatible change.";
 reference
 "XXXX: Updated YANG Module Revision Handling; Section 4,
 Recommending a minimum revision for module imports";
 }
 }
 <CODE ENDS>

 YANG module for status conformance

Wilton, et al. Expires 2 September 2024 [Page 21]

Internet-Draft Updated YANG Module Revision Handling March 2024

 <CODE BEGINS> file "ietf-yang-status-conformance@2024-02-14.yang"
 module ietf-yang-status-conformance {
 yang-version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-yang-status-conformance";
 prefix ys-conf;

 import ietf-yang-library {
 prefix "yanglib";
 reference
 "RFC 8525: YANG Library";
 }
 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Joe Clarke
 <mailto:jclarke@cisco.com>

 Author: Reshad Rahman
 <mailto:reshad@yahoo.com>

 Author: Robert Wilton
 <mailto:rwilton@cisco.com>

 Author: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>

 Author: Jason Sterne
 <mailto:jason.sterne@nokia.com>";
 description
 "This module contains augmentations to YANG Library to provide an
 indication of how deprecated and obsolete nodes are handled by
 the server.

 Copyright (c) 2024 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Revised BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see

Wilton, et al. Expires 2 September 2024 [Page 22]

Internet-Draft Updated YANG Module Revision Handling March 2024

 the RFC itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX (including in the imports above) with
 // actual RFC number and remove this note.

 revision 2024-02-14 {
 description
 "Initial revision";
 reference
 "XXXX: Updated YANG Module Revision Handling";
 }

 augment "/yanglib:yang-library/yanglib:schema" {
 description
 "Augmentations to the ietf-yang-library module to indicate how
 deprecated and obsoleted nodes are handled by the server.";
 leaf deprecated-nodes-implemented {
 type boolean;
 description
 "If set to true, this leaf indicates that all schema nodes
 with a status ’deprecated’ are implemented equivalently as
 if they had status ’current’; otherwise deviations MUST be
 used to explicitly remove deprecated nodes from the schema.
 If this leaf is absent or set to false, then the behavior is
 unspecified.";
 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.1, Reporting how deprecated and obsolete nodes
 are handled";
 }
 leaf obsolete-nodes-absent {
 type boolean;
 description
 "If set to true, this leaf indicates that the server does not
 implement any status ’obsolete’ schema nodes. If this leaf
 is absent or set to false, then the behaviour is
 unspecified.";
 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.1, Reporting how deprecated and obsolete nodes

Wilton, et al. Expires 2 September 2024 [Page 23]

Internet-Draft Updated YANG Module Revision Handling March 2024

 are handled";
 }
 }
 }
 <CODE ENDS>

8. Security considerations

8.1. Security considerations for module revisions

 As discussed in the introduction of this document, YANG modules
 occasionally undergo changes that are not backwards compatible. This
 occurs in both standards and vendor YANG modules despite the
 prohibitions in RFC 7950. RFC 7950 also allows nodes to change to
 status ’obsolete’ which can change behavior and compatibility for a
 client.

 The fact that YANG modules change in a non-backwards-compatible
 manner may have security implications. Such changes should be
 carefully considered, including the scenarios described below. The
 rev:non-backwards-compatible extension statement introduced in this
 document provides an alert that the module or submodule may contain
 changes that impact users and need to be examined more closely for
 both compatibility and potential security implications. Flagging the
 change reduces the risk of introducing silent exploitable
 vulnerabilities.

 When a module undergoes a non-backwards-compatible change, a server
 may implement different semantics for a given leaf than a client
 using an older version of the module is expecting. If the particular
 leaf controls any security functions of the device, or is related to
 parts of the configuration or state that are sensitive from a
 security point of view, then the difference in behavior between the
 old and new revisions needs to be considered carefully. In
 particular, changes to the default of the leaf should be examined.

 Implementors and users should also consider impact to data node
 access control rules (e.g. The Network Configuration Access Control
 Model (NACM) [RFC8341]) in the face of non-backwards-compatible
 changes. Access rules may need to be adjusted when a new module
 revision is introduced that contains a non-backwards-compatible
 change.

 If the changes to a module or submodule have security implications,
 it is recommended to highlight those implications in the description
 of the revision statement.

Wilton, et al. Expires 2 September 2024 [Page 24]

Internet-Draft Updated YANG Module Revision Handling March 2024

8.2. Security considerations for the modules defined in this document

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC8446].

 The NETCONF access control model [RFC8341] provides the means to
 restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content.

 This document does not define any new protocol or data nodes that are
 writable.

 This document updates YANG Library [RFC8525] with augmentations to
 include two boolean leafs that indicate whether status deprecated and
 status obsolete schema nodes are implemented by the server. These
 read-only augmentations do not add any new security considerations
 beyond those already present in [RFC8525].

9. IANA Considerations

9.1. YANG Module Registrations

 This document requests IANA to registers a URI in the "IETF XML
 Registry" [RFC3688]. Following the format in RFC 3688, the following
 registrations are requested.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-revisions
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-status-conformance
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

 The following YANG module is requested to be registred in the "IANA
 Module Names" [RFC6020]. Following the format in RFC 6020, the
 following registrations are requested:

 The ietf-yang-revisions module:

 Name: ietf-yang-revisions

Wilton, et al. Expires 2 September 2024 [Page 25]

Internet-Draft Updated YANG Module Revision Handling March 2024

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-revisions

 Prefix: rev

 Reference: [RFCXXXX]

 The ietf-yang-status-conformance module:

 Name: ietf-yang-status-conformance

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-status-
 conformance

 Prefix: ys-conf

 Reference: [RFCXXXX]

9.2. Guidance for versioning in IANA maintained YANG modules

 Note for IANA (to be removed by the RFC editor): Please check that
 the registries and IANA YANG modules are referenced in the
 appropriate way.

 IANA is responsible for maintaining and versioning YANG modules that
 are derived from other IANA registries. For example,
 "iana-if-type.yang" [IfTypeYang] is derived from the "Interface Types
 (ifType) IANA registry" [IfTypesReg], and "iana-routing-types.yang"
 [RoutingTypesYang] is derived from the "Address Family Numbers"
 [AddrFamilyReg] and "Subsequent Address Family Identifiers (SAFI)
 Parameters" [SAFIReg] IANA registries.

 Normally, updates to the registries cause any derived YANG modules to
 be updated in a backwards-compatible way, but there are some cases
 where the registry updates can cause non-backward-compatible updates
 to the derived YANG module. An example of such an update is the
 2020-12-31 revision of iana-routing-types.yang
 [RoutingTypesDecRevision], where the enum name for two SAFI values
 was changed.

 In all cases, IANA MUST follow the versioning guidance specified in
 Section 3.1, and MUST include a "rev:non-backwards-compatible"
 substatement to the latest revision statement whenever an IANA
 maintained module is updated in a non-backwards-compatible way, as
 described in Section 3.2.

Wilton, et al. Expires 2 September 2024 [Page 26]

Internet-Draft Updated YANG Module Revision Handling March 2024

 Note: For published IANA maintained YANG modules that contain non-
 backwards-compatible changes between revisions, a new revision should
 be published with the "rev:non-backwards-compatible" substatement
 retrospectively added to any revisions containing non-backwards-
 compatible changes.

 Non-normative examples of updates to enumeration types in IANA
 maintained modules that would be classified as non-backwards-
 compatible changes are: Changing the status of an enumeration typedef
 to obsolete, changing the status of an enum entry to obsolete,
 removing an enum entry, changing the identifier of an enum entry, or
 changing the described meaning of an enum entry.

 Non-normative examples of updates to enumeration types in IANA
 maintained modules that would be classified as backwards-compatible
 changes are: Adding a new enum entry to the end of the enumeration,
 changing the status or an enum entry to deprecated, or improving the
 description of an enumeration that does not change its defined
 meaning.

 Non-normative examples of updates to identity types in IANA
 maintained modules that would be classified as non-backwards-
 compatible changes are: Changing the status of an identity to
 obsolete, removing an identity, renaming an identity, or changing the
 described meaning of an identity.

 Non-normative examples of updates to identity types in IANA
 maintained modules that would be classified as backwards-compatible
 changes are: Adding a new identity, changing the status or an
 identity to deprecated, or improving the description of an identity
 that does not change its defined meaning.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

Wilton, et al. Expires 2 September 2024 [Page 27]

Internet-Draft Updated YANG Module Revision Handling March 2024

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of
 Documents Containing YANG Data Models", BCP 216, RFC 8407,
 DOI 10.17487/RFC8407, October 2018,
 <https://www.rfc-editor.org/info/rfc8407>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8525] Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
 and R. Wilton, "YANG Library", RFC 8525,
 DOI 10.17487/RFC8525, March 2019,
 <https://www.rfc-editor.org/info/rfc8525>.

10.2. Informative References

Wilton, et al. Expires 2 September 2024 [Page 28]

Internet-Draft Updated YANG Module Revision Handling March 2024

 [AddrFamilyReg]
 "Address Family Numbers IANA Registry",
 <https://www.iana.org/assignments/address-family-numbers/
 address-family-numbers.xhtml>.

 [I-D.clacla-netmod-yang-model-update]
 Claise, B., Clarke, J., Lengyel, B., and K. D’Souza, "New
 YANG Module Update Procedure", Work in Progress, Internet-
 Draft, draft-clacla-netmod-yang-model-update-06, 2 July
 2018, <https://datatracker.ietf.org/doc/html/draft-clacla-
 netmod-yang-model-update-06>.

 [I-D.ietf-netmod-yang-packages]
 Wilton, R., Rahman, R., Clarke, J., Sterne, J., and B. Wu,
 "YANG Packages", Work in Progress, Internet-Draft, draft-
 ietf-netmod-yang-packages-03, 4 March 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
 yang-packages-03>.

 [I-D.ietf-netmod-yang-schema-comparison]
 Andersson, P. and R. Wilton, "YANG Schema Comparison",
 Work in Progress, Internet-Draft, draft-ietf-netmod-yang-
 schema-comparison-02, 14 March 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
 yang-schema-comparison-02>.

 [I-D.ietf-netmod-yang-semver]
 Clarke, J., Wilton, R., Rahman, R., Lengyel, B., Sterne,
 J., and B. Claise, "YANG Semantic Versioning", Work in
 Progress, Internet-Draft, draft-ietf-netmod-yang-semver-
 12, 2 October 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
 yang-semver-12>.

 [I-D.ietf-netmod-yang-ver-selection]
 Wilton, R., Rahman, R., Clarke, J., Sterne, J., and B. Wu,
 "YANG Schema Selection", Work in Progress, Internet-Draft,
 draft-ietf-netmod-yang-ver-selection-00, 17 March 2020,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
 yang-ver-selection-00>.

 [I-D.ietf-netmod-yang-versioning-reqs]
 Clarke, J., "YANG Module Versioning Requirements", Work in
 Progress, Internet-Draft, draft-ietf-netmod-yang-
 versioning-reqs-09, 14 January 2024,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
 yang-versioning-reqs-09>.

Wilton, et al. Expires 2 September 2024 [Page 29]

Internet-Draft Updated YANG Module Revision Handling March 2024

 [IfTypesReg]
 "Interface Types (ifType) IANA Registry",
 <https://www.iana.org/assignments/smi-numbers/smi-
 numbers.xhtml#smi-numbers-5>.

 [IfTypeYang]
 "iana-if-type YANG Module",
 <https://www.iana.org/assignments/iana-if-type/iana-if-
 type.xhtml>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RoutingTypesDecRevision]
 "2020-12-31 revision of iana-routing-types.yang",
 <https://www.iana.org/assignments/yang-parameters/iana-
 routing-types@2020-12-31.yang>.

 [RoutingTypesYang]
 "iana-routing-types YANG Module",
 <https://www.iana.org/assignments/iana-routing-types/iana-
 routing-types.xhtml>.

 [SAFIReg] "Subsequent Address Family Identifiers (SAFI) Parameters
 IANA Registry", <https://www.iana.org/assignments/safi-
 namespace/safi-namespace.xhtml>.

Appendix A. Examples of changes that are NBC

 Examples of NBC changes include:

 * Deleting a data node, or changing it to status obsolete.

 * Changing the name, type, or units of a data node.

 * Modifying the description in a way that changes the semantic
 meaning of the data node.

 * Any changes that remove any previously allowed values from the
 allowed value set of the data node, either through changes in the
 type definition, or the addition or changes to "must" statements,
 or changes in the description.

 * Adding or modifying "when" statements that reduce when the data
 node is available in the schema.

 * Making the statement conditional on if-feature.

Wilton, et al. Expires 2 September 2024 [Page 30]

Internet-Draft Updated YANG Module Revision Handling March 2024

Appendix B. Examples of applying the NBC change guidelines

 The following sections give steps that could be taken for making NBC
 changes to a YANG module or submodule using the incremental approach
 described in section Section 6.1.1.

 The examples are all for "config true" nodes.

B.1. Removing a data node

 Removing a leaf or container from the data tree, e.g., because
 support for the corresponding feature is being removed:

 1. The schema node’s status is changed to "deprecated" and the node
 is supported for some period of time (e.g. one year). This is a
 BC change.

 2. When the schema node is not supported anymore, its status is
 changed to "obsolete" and the "description" updated. This is an
 NBC change.

B.2. Changing the type of a leaf node

 Changing the type of a leaf node. e.g., a "vpn-id" node of type
 integer being changed to a string:

 1. The status of schema node "vpn-id" is changed to "deprecated" and
 the node is supported for some period of time (e.g. one year).
 This is a BC change. The description is updated to indicate that
 vpn-name is replacing this node.

 2. A new schema node, e.g., "vpn-name", of type string is added to
 the same location as the existing node "vpn-id". This new node
 has status "current" and its description explains that it is
 replacing node "vpn-id".

 3. During the period of time when both schema nodes are supported,
 the interactions between the two nodes is outside the scope of
 this document and will vary on a case by case basis. One
 possible option is to have the server prevent the new node from
 being set if the old node is already set (and vice-versa). The
 new node could have a "when" statement added to it to achieve
 this. The old node, however, must not have a "when" statement
 added, or an existing "when" modified to be more restrictive,
 since this would be an NBC change. In any case, the server could
 reject the old node from being set if the new node is already
 set.

Wilton, et al. Expires 2 September 2024 [Page 31]

Internet-Draft Updated YANG Module Revision Handling March 2024

 4. When the schema node "vpn-id" is not supported anymore, its
 status is changed to "obsolete" and the "description" is updated.
 This is an NBC change.

B.3. Reducing the range of a leaf node

 Reducing the range of values of a leaf-node, e.g., consider a "vpn-
 id" schema node of type uint32 being changed from range 1..5000 to
 range 1..2000:

 1. If all values which are being removed were never supported, e.g.,
 if a vpn-id of 2001 or higher was never accepted, this is a BC
 change for the functionality (no functionality change). Even if
 it is an NBC change for the YANG model, there should be no impact
 for clients using that YANG model.

 2. If one or more values being removed was previously supported,
 e.g., if a vpn-id of 3333 was accepted previously, this is an NBC
 change for the YANG model. Clients using the old YANG model will
 be impacted, so a change of this nature should be done carefully,
 e.g., by using the steps described in Appendix B.2

B.4. Changing the key of a list

 Changing the key of a list has a big impact to the client. For
 example, consider a "sessions" list which has a key "interface" and
 there is a need to change the key to "dest-address". Such a change
 can be done in steps:

 1. The status of list "sessions" is changed to "deprecated" and the
 list is supported for some period of time (e.g. one year). This
 is a BC change. The description is updated to indicate the new
 list that is replacing this list.

 2. A new list is created in the same location with the same
 descendant schema nodes but with "dest-address" as key. Finding
 an appropriate name for the new list can be difficult. In this
 case the new list is called "sessions-address", has status
 "current" and its description should explain that it is replacing
 list "session".

 3. During the period of time when both lists are supported, the
 interactions between the two lists is outside the scope of this
 document and will vary on a case by case basis. One possible
 option is to have the server prevent entries in the new list from
 being created if the old list already has entries (and vice-
 versa).

Wilton, et al. Expires 2 September 2024 [Page 32]

Internet-Draft Updated YANG Module Revision Handling March 2024

 4. When list "sessions" is not available anymore, its status is
 changed to "obsolete" and the "description" is updated. This is
 an NBC change.

B.5. Renaming a node

 A leaf or container schema node may be renamed, either due to a
 spelling error in the previous name or because of a better name. For
 example a node "ip-adress" could be renamed to "ip-address":

 1. The status of the existing node "ip-adress" is changed to
 "deprecated" and is supported for some period of time (e.g. one
 year). This is a BC change. The description is updated to
 indicate the node that is replacing this node.

 2. The new schema node "ip-address" is added to the same location as
 the existing node "ip-adress". This new node has status
 "current" and its description should explain that it is replacing
 node "ip-adress".

 3. During the period of time when both nodes are available, the
 interactions between the two nodes is outside the scope of this
 document and will vary on a case by case basis. One possible
 option is to have the server prevent the new node from being set
 if the old node is already set (and vice-versa). The new node
 could have a "when" statement added to it to achieve this. The
 old node, however, must not have a "when" statement added, or an
 existing "when" modified to be more restrictive, since this would
 be an NBC change. In any case, the server could reject the old
 node from being set if the new node is already set.

 4. When node "ip-adress" is not available anymore, its status is
 changed to "obsolete" and the "description" is updated. This is
 an NBC change.

Contributors

 The following people made substantial contributions to this document:

 Bo Wu
 lana.wubo@huawei.com

 Jan Lindblad
 jlindbla@cisco.com

Wilton, et al. Expires 2 September 2024 [Page 33]

Internet-Draft Updated YANG Module Revision Handling March 2024

Acknowledgments

 This document grew out of the YANG module versioning design team that
 started after IETF 101. The authors, contributors and the following
 individuals are (or have been) members of the design team and have
 worked on the YANG versioning project:

 Benoit Claise
 benoit.claise@huawei.com

 Ebben Aries
 exa@juniper.net

 Juergen Schoenwaelder
 j.shoenwaelder@jacobs-university.de

 Mahesh Jethanandani
 mjethanandani@gmail.com

 Michael (Wangzitao)
 wangzitao@huawei.com

 Per Andersson
 perander@cisco.com

 Qin Wu
 bill.wu@huawei.com

 The initial revision of this document was refactored and built upon
 [I-D.clacla-netmod-yang-model-update]. We would like to thank Kevin
 D’Souza and Benoit Claise for their initial work in this problem
 space.

 Discussions on the use of Semver for YANG versioning has been held
 with authors of the OpenConfig YANG models. We would like to thank
 both Anees Shaikh and Rob Shakir for their input into this problem
 space.

 We would also like to thank Lou Berger, Andy Bierman, Martin
 Bjorklund, Italo Busi, Tom Hill, Scott Mansfield, and Kent Watsen for
 their contributions and review comments.

Authors’ Addresses

 Robert Wilton (editor)
 Cisco Systems, Inc.

Wilton, et al. Expires 2 September 2024 [Page 34]

Internet-Draft Updated YANG Module Revision Handling March 2024

 Email: rwilton@cisco.com

 Reshad Rahman (editor)
 Equinix
 Email: reshad@yahoo.com

 Balazs Lengyel (editor)
 Ericsson
 Email: balazs.lengyel@ericsson.com

 Joe Clarke
 Cisco Systems, Inc.
 Email: jclarke@cisco.com

 Jason Sterne
 Nokia
 Email: jason.sterne@nokia.com

Wilton, et al. Expires 2 September 2024 [Page 35]

Network Working Group J. Clarke, Ed.
Internet-Draft R. Wilton, Ed.
Updates: 8407 (if approved) Cisco Systems, Inc.
Intended status: Standards Track R. Rahman
Expires: 11 January 2023
 B. Lengyel
 Ericsson
 J. Sterne
 Nokia
 B. Claise
 Huawei
 10 July 2022

 YANG Semantic Versioning
 draft-ietf-netmod-yang-semver-07

Abstract

 This document specifies a scheme and guidelines for applying an
 extended set of semantic versioning rules to revisions of YANG
 artifacts (e.g., modules and packages). Additionally, this document
 defines an RFCAAAA-compliant revision-label-scheme for this YANG
 semantic versioning scheme.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 11 January 2023.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Clarke, et al. Expires 11 January 2023 [Page 1]

Internet-Draft YANG Semver July 2022

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology and Conventions 3
 3. YANG Semantic Versioning 3
 3.1. YANG Semver Pattern 4
 3.2. Semantic Versioning Scheme for YANG Artifacts 4
 3.2.1. YANG Semver with submodules 7
 3.2.2. Examples for YANG semantic versions 7
 3.3. YANG Semantic Version Update Rules 9
 3.4. Examples of the YANG Semver Label 11
 3.4.1. Example Module Using YANG Semver 11
 3.4.2. Example of Package Using YANG Semver 13
 4. Import Module by Semantic Version 13
 5. Guidelines for Using Semver During Module Development 14
 5.1. Pre-release Version Precedence 15
 5.2. YANG Semver in IETF Modules 16
 6. YANG Module . 16
 7. Contributors . 19
 8. Security Considerations 19
 9. IANA Considerations . 19
 9.1. YANG Module Registrations 19
 9.2. Guidance for YANG Semver in IANA maintained YANG modules
 and submodules . 20
 10. References . 20
 10.1. Normative References 20
 10.2. Informative References 21
 Appendix A. Example IETF Module Development 22
 Authors’ Addresses . 23

1. Introduction

 [I-D.ietf-netmod-yang-module-versioning] puts forth a number of
 concepts relating to modified rules for updating YANG modules and
 submodules, a means to signal when a new revision of a module or
 submodule has non-backwards-compatible (NBC) changes compared to its
 previous revision, and a scheme that uses the revision history as a
 lineage for determining from where a specific revision of a YANG
 module or submodule is derived. Additionally, section 3.4 of

Clarke, et al. Expires 11 January 2023 [Page 2]

Internet-Draft YANG Semver July 2022

 [I-D.ietf-netmod-yang-module-versioning] defines a revision-label
 which can be used as an alias to provide additional context or as a
 meaningful label to refer to a specific revision.

 This document defines a revision-label scheme that uses extended
 semantic versioning rules [SemVer] for YANG artifacts (i.e., YANG
 modules, YANG submodules, and YANG packages
 [I-D.ietf-netmod-yang-packages]) as well as the revision label
 definition for using this scheme. The goal being to add a human
 readable revision label that provides compatibility information for
 the YANG artifact without needing to compare or parse its body. The
 label and rules defined herein represent the RECOMMENDED revision
 label scheme for IETF YANG artifacts.

 Note that a specific revision of the SemVer 2.0.0 specification is
 referenced here (from June 19, 2020) to provide an immutable version.
 This is because the 2.0.0 version of the specification has changed
 over time without any change to the semantic version itself. In some
 cases the text has changed in non-backwards-compatible ways.

2. Terminology and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Additionally, this document uses the following terminology:

 * YANG artifact: YANG modules, YANG submodules, and YANG packages
 [I-D.ietf-netmod-yang-packages] are examples of YANG artifacts for
 the purposes of this document.

 * YANG Semver: A revision-label identifier that is consistent with
 the extended set of semantic versioning rules, based on [SemVer] ,
 defined within this document.

3. YANG Semantic Versioning

 This section defines YANG Semantic Versioning, explains how it is
 used with YANG artifacts, and describes the rules associated with
 changing an artifact’s semantic version when its contents are
 updated.

Clarke, et al. Expires 11 January 2023 [Page 3]

Internet-Draft YANG Semver July 2022

3.1. YANG Semver Pattern

 YANG artifacts that employ semantic versioning as defined in this
 document MUST use a version string (e.g., in revision-label or as a
 package version) that corresponds to the following pattern:
 ’X.Y.Z_COMPAT’. Where:

 * X, Y and Z are mandatory non-negative integers that are each less
 than or equal to 2147483647 (i.e., the maximum signed 32-bit
 integer value) and MUST NOT contain leading zeroes,

 * The ’.’ is a literal period (ASCII character 0x2e),

 * The ’_’ is an optional single literal underscore (ASCII character
 0x5f) and MUST only be present if the following COMPAT element is
 included,

 * COMPAT, if specified, MUST be either the literal string
 "compatible" or the literal string "non_compatible".

 Additionally, [SemVer] defines two specific types of metadata that
 may be appended to a semantic version string. Pre-release metadata
 MAY be appended to a semver string after a trailing ’-’ character.
 Build metadata MAY be appended after a trailing ’+’ character. If
 both pre-release and build metadata are present, then build metadata
 MUST follow pre-release metadata. While build metadata MUST be
 ignored when comparing YANG semantic versions, pre-release metadata
 MUST be used during module and submodule development as specified in
 Section 5 . Both pre-release and build metadata are allowed in order
 to support all the [SemVer] rules. Thus, a version lineage that
 follows strict [SemVer] rules is allowed for a YANG artifact.

 To signal the use of this versioning scheme, modules and submodules
 MUST set the revision-label-scheme extension, as defined in
 [I-D.ietf-netmod-yang-module-versioning] , to the identity "yang-
 semver". That identity value is defined in the ietf-yang-semver
 module below.

 Additionally, this ietf-yang-semver module defines a typedef that
 formally specifies the syntax of the YANG Semver.

3.2. Semantic Versioning Scheme for YANG Artifacts

 This document defines the YANG semantic versioning scheme that is
 used for YANG artifacts that employ the YANG Semver label. The
 versioning scheme has the following properties:

Clarke, et al. Expires 11 January 2023 [Page 4]

Internet-Draft YANG Semver July 2022

 * The YANG semantic versioning scheme is extended from version 2.0.0
 of the semantic versioning scheme defined at semver.org [SemVer]
 to cover the additional requirements for the management of YANG
 artifact lifecyles that cannot be addressed using the semver.org
 2.0.0 versioning scheme alone.

 * Unlike the [SemVer] versioning scheme, the YANG semantic
 versioning scheme supports updates to older versions of YANG
 artifacts, to allow for bug fixes and enhancements to artifact
 versions that are not the latest. However, it does not provide
 for the unlimited branching and updating of older revisions which
 are documented by the general rules in
 [I-D.ietf-netmod-yang-module-versioning] .

 * YANG artifacts that follow the [SemVer] versioning scheme are
 fully compatible with implementations that understand the YANG
 semantic versioning scheme defined in this document.

 * If updates are always restricted to the latest revision of the
 artifact only, then the version numbers used by the YANG semantic
 versioning scheme are exactly the same as those defined by the
 [SemVer] versioning scheme.

 Every YANG module and submodule versioned using the YANG semantic
 versioning scheme specifies the module’s or submodule’s semantic
 version as the argument to the ’rev:revision-label’ statement.

 Because the rules put forth in
 [I-D.ietf-netmod-yang-module-versioning] are designed to work well
 with existing versions of YANG and allow for artifact authors to
 migrate to this scheme, it is not expected that all revisions of a
 given YANG artifact will have a semantic version label. For example,
 the first revision of a module or submodule may have been produced
 before this scheme was available.

 YANG packages that make use of this YANG Semver will reflect that in
 the package metadata.

 As stated above, the YANG semantic version is expressed as a string
 of the form: ’X.Y.Z_COMPAT’.

 * ’X’ is the MAJOR version. Changes in the MAJOR version number
 indicate changes that are non-backwards-compatible to versions
 with a lower MAJOR version number.

Clarke, et al. Expires 11 January 2023 [Page 5]

Internet-Draft YANG Semver July 2022

 * ’Y’ is the MINOR version. Changes in the MINOR version number
 indicate changes that are backwards-compatible to versions with
 the same MAJOR version number, but a lower MINOR version number
 and no PATCH "_compatible" or "_non_compatible" modifier.

 * ’Z_COMPAT’ is the PATCH version and modifier. Changes in the
 PATCH version number can indicate editorial, backwards-compatible,
 or non-backwards-compatible changes relative to versions with the
 same MAJOR and MINOR version numbers, but lower PATCH version
 number, depending on what form modifier ’_COMPAT’ takes:

 - If the modifier string is absent, the change represents an
 editorial change. An editorial change is defined to be a
 change in the YANG artifact’s content that does not affect the
 semantic meaning or functionality provided by the artifact in
 any way. Some examples include correcting a spelling mistake
 in the description of a leaf within a YANG module or submodule,
 non-significant whitespace changes (e.g., realigning
 description statements or changing indendation), or changes to
 YANG comments. Note: restructuring how a module uses, or does
 not use, submodules is treated as an editorial level change on
 the condition that there is no change in the module’s semantic
 behavior due to the restructuring.

 - If, however, the modifier string is present, the meaning is
 described below:

 - "_compatible" - the change represents a backwards-compatible
 change

 - "_non_compatible" - the change represents a non-backwards-
 compatible change

 The ’_COMPAT’ modifier string is "sticky". Once a revision of a
 module has a modifier in the revision label, then all descendants of
 that revision with the same X.Y version digits will also have a
 modifier. The modifier can change from "_compatible" to
 "_non_compatible" in a descendant revision, but the modifier MUST NOT
 change from "_non_compatible" to "_compatible" and MUST NOT be
 removed. The persistence of the "_non_compatible" modifier ensures
 that comparisions of revision labels do not give the false impression
 of compatibility between two potentially non-compatible revisions.
 If "_non_compatible" was removed, for example between revisions
 "3.3.2_non_compatible" and "3.3.3" (where "3.3.3" was simply an
 editorial change), then comparing revision labels of "3.3.3" back to
 an ancestor "3.0.0" would look like they are backwards compatible
 when they are not (since "3.3.2_non_compatible" was in the chain of
 ancestors and introduced a non-backwards-compatible change).

Clarke, et al. Expires 11 January 2023 [Page 6]

Internet-Draft YANG Semver July 2022

 The YANG artifact name and YANG semantic version uniquely identify a
 revision of said artifact. There MUST NOT be multiple instances of a
 YANG artifact definition with the same name and YANG semantic version
 but different content (and in the case of modules and submodules,
 different revision dates).

 There MUST NOT be multiple versions of a YANG artifact that have the
 same MAJOR, MINOR and PATCH version numbers, but different patch
 modifier strings. E.g., artifact version "1.2.3_non_compatible" MUST
 NOT be defined if artifact version "1.2.3" has already been defined.

3.2.1. YANG Semver with submodules

 YANG Semver MAY be used to version submodules. Submodule version are
 separate of any version on the including module, but if a submodule
 has changed, then the version of the including module MUST also be
 updated.

 The rules for determining the version change of a submodule are the
 same as those defined in Section 3.1 and Section 3.2 as applied to
 YANG modules, except they only apply to the part of the module schema
 defined within the submodule’s file.

 One interesting case is moving definitions from one submodule to
 another in a way that does not change the resultant schema of the
 including module. In this case:

 1. The including module has editorial changes

 2. The submodule with the schema definition removed has non-
 backwards-compatible changes

 3. The submodule with the schema definitions added has backwards-
 compatible changes

 Note that the meaning of a submodule may change drastically despite
 having no changes in content or revision due to changes in other
 submodules belonging to the same module (e.g. groupings and typedefs
 declared in one submodule and used in another).

3.2.2. Examples for YANG semantic versions

 The following diagram and explanation illustrate how YANG semantic
 versions work.

 YANG Semantic versions for an example module:

Clarke, et al. Expires 11 January 2023 [Page 7]

Internet-Draft YANG Semver July 2022

 0.1.0
 |
 0.2.0
 |
 1.0.0
 |
 1.1.0 -> 1.1.1_compatible -> 1.1.2_non_compatible
 |
 1.2.0 -> 1.2.1_non_compatible -> 1.2.2_non_compatible
 | \
 2.0.0 \
 | \--> 1.3.0 -> 1.3.1_non_compatible
 3.0.0 |
 | 1.4.0
 3.1.0

 The tree diagram above illustrates how the version history might
 evolve for an example module. The tree diagram only shows the
 parent/child ancestry relationships between the revisions. It does
 not describe the chronology of the revisions (i.e. when in time each
 revision was published relative to the other revisions).

 The following description lists an example of what the chronological
 order of the revisions could look like, from oldest revision to
 newest:

 0.1.0 - first pre-release module version

 0.2.0 - second pre-release module version (with NBC changes)

 1.0.0 - first release (may have NBC changes from 0.2.0)

 1.1.0 - added new functionality, leaf "foo" (BC)

 1.2.0 - added new functionality, leaf "baz" (BC)

 2.0.0 - change existing model for performance reasons, e.g. re-key
 list (NBC)

 1.3.0 - improve existing functionality, added leaf "foo-64" (BC)

 1.1.1_compatible - backport "foo-64" leaf to 1.1.x to avoid
 implementing "baz" from 1.2.0. This revision was created after
 1.2.0 otherwise it may have been released as 1.2.0. (BC)

 3.0.0 - NBC bugfix, rename "baz" to "bar"; also add new BC leaf
 "wibble"; (NBC)

Clarke, et al. Expires 11 January 2023 [Page 8]

Internet-Draft YANG Semver July 2022

 1.3.1_non_compatible - backport NBC fix, rename "baz" to "bar"
 (NBC)

 1.2.1_non_compatible - backport NBC fix, rename "baz" to "bar"
 (NBC)

 1.1.2_non_compatible - NBC point bug fix, not required in 2.0.0
 due to model changes (NBC)

 1.4.0 - introduce new leaf "ghoti" (BC)

 3.1.0 - introduce new leaf "wobble" (BC)

 1.2.2_non_compatible - backport "wibble". This is a BC change but
 "non_compatible" modifier is sticky. (BC)

 The partial ancestry relationships based on the semantic versioning
 numbers are as follows:

 1.0.0 < 1.1.0 < 1.2.0 < 2.0.0 < 3.0.0 < 3.1.0

 1.0.0 < 1.1.0 < 1.1.1_compatible < 1.1.2_non_compatible

 1.0.0 < 1.1.0 < 1.2.0 < 1.2.1_non_compatible <
 1.2.2_non_compatible

 1.0.0 < 1.1.0 < 1.2.0 < 1.3.0 < 1.3.1_non_compatible

 1.0.0 < 1.1.0 < 1.2.0 < 1.3.0 < 1.4.0

 There is no ordering relationship between "1.1.1_non_compatible" and
 either "1.2.0" or "1.2.1_non_compatible", except that they share the
 common ancestor of "1.1.0".

 Looking at the version number alone does not indicate ancestry. The
 module definition in "2.0.0", for example, does not contain all the
 contents of "1.3.0". Version "2.0.0" is not derived from "1.3.0".

3.3. YANG Semantic Version Update Rules

 When a new revision of an artifact is produced, then the following
 rules define how the YANG semantic version for the new artifact
 revision is calculated, based on the changes between the two artifact
 revisions, and the YANG semantic version of the base artifact
 revision from which the changes are derived.

 The following four rules specify the RECOMMENDED, and REQUIRED
 minimum, update to a YANG semantic version:

Clarke, et al. Expires 11 January 2023 [Page 9]

Internet-Draft YANG Semver July 2022

 1. If an artifact is being updated in a non-backwards-compatible
 way, then the artifact version
 "X.Y.Z[_compatible|_non_compatible]" SHOULD be updated to
 "X+1.0.0" unless that version has already been used for this
 artifact but with different content, in which case the artifact
 version "X.Y.Z+1_non_compatible" SHOULD be used instead.

 2. If an artifact is being updated in a backwards-compatible way,
 then the next version number depends on the format of the current
 version number:

 i "X.Y.Z" - the artifact version SHOULD be updated to
 "X.Y+1.0", unless that version has already been used for
 this artifact but with different content, when the artifact
 version SHOULD be updated to "X.Y.Z+1_compatible" instead.

 ii "X.Y.Z_compatible" - the artifact version SHOULD be updated
 to "X.Y.Z+1_compatible".

 iii "X.Y.Z_non_compatible" - the artifact version SHOULD be
 updated to "X.Y.Z+1_non_compatible".

 3. If an artifact is being updated in an editorial way, then the
 next version number depends on the format of the current version
 number:

 i "X.Y.Z" - the artifact version SHOULD be updated to
 "X.Y.Z+1"

 ii "X.Y.Z_compatible" - the artifact version SHOULD be updated
 to "X.Y.Z+1_compatible".

 iii "X.Y.Z_non_compatible" - the artifact version SHOULD be
 updated to "X.Y.Z+1_non_compatible".

 4. YANG artifact semantic version numbers beginning with 0, i.e.,
 "0.X.Y", are regarded as pre-release definitions and need not
 follow the rules above. Either the MINOR or PATCH version
 numbers may be updated, regardless of whether the changes are
 non-backwards-compatible, backwards-compatible, or editorial.
 See Section 5 for more details on using this notation during
 module and submodule development.

 5. Additional pre-release rules for modules that have had at least
 one release are specified in Section 5 .

Clarke, et al. Expires 11 January 2023 [Page 10]

Internet-Draft YANG Semver July 2022

 Although artifacts SHOULD be updated according to the rules above,
 which specify the recommended (and minimum required) update to the
 version number, the following rules MAY be applied when choosing a
 new version number:

 1. An artifact author MAY update the version number with a more
 significant update than described by the rules above. For
 example, an artifact could be given a new MAJOR version number
 (i.e., X+1.0.0), even though no non-backwards-compatible changes
 have occurred, or an artifact could be given a new MINOR version
 number (i.e., X.Y+1.0) even if the changes were only editorial.

 2. An artifact author MAY skip version numbers. That is, an
 artifact’s revision history could be 1.0.0, 1.1.0, and 1.3.0
 where 1.2.0 is skipped. Note that skipping versions has an
 impact when importing modules by revision-or-derived. See
 Section 4 for more details on importing modules with revision-
 label version gaps.

 Although YANG Semver always indicates when a non-backwards-
 compatible, or backwards-compatible change may have occurred to a
 YANG artifact, it does not guarantee that such a change has occurred,
 or that consumers of that YANG artifact will be impacted by the
 change. Hence, tooling, e.g.,
 [I-D.ietf-netmod-yang-schema-comparison] , also plays an important
 role for comparing YANG artifacts and calculating the likely impact
 from changes.

 [I-D.ietf-netmod-yang-module-versioning] defines the "rev:non-
 backwards-compatible" extension statement to indicate where non-
 backwards-compatible changes have occurred in the module revision
 history. If a revision entry in a module’s revision history includes
 the "rev:non-backwards-compatible" statement then that MUST be
 reflected in any YANG semantic version associated with that revision.
 However, the reverse does not necessarily hold, i.e., if the MAJOR
 version has been incremented it does not necessarily mean that a
 "rev:non-backwards-compatible" statement would be present.

3.4. Examples of the YANG Semver Label

3.4.1. Example Module Using YANG Semver

 Below is a sample YANG module that uses the YANG Semver revision-
 label based on the rules defined in this document.

Clarke, et al. Expires 11 January 2023 [Page 11]

Internet-Draft YANG Semver July 2022

 module example-versioned-module {
 yang-version 1.1;
 namespace "urn:example:versioned:module";
 prefix "exvermod";
 rev:revision-label-scheme "ysver:yang-semver";

 import ietf-yang-revisions { prefix "rev"; }
 import ietf-yang-semver { prefix "ysver"; }

 description
 "to be completed";

 revision 2017-08-30 {
 description "Backport ’wibble’ leaf";
 rev:revision-label 1.2.2_non_compatible;
 }

 revision 2017-07-30 {
 description "Rename ’baz’ to ’bar’";
 rev:revision-label 1.2.1_non_compatible;
 rev:non-backwards-compatible;
 }

 revision 2017-04-20 {
 description "Add new functionality, leaf ’baz’";
 rev:revision-label 1.2.0;
 }

 revision 2017-04-03 {
 description "Add new functionality, leaf ’foo’";
 rev:revision-label 1.1.0;
 }

 revision 2017-02-07 {
 description "First release version.";
 rev:revision-label 1.0.0;
 }

 // Note: semver rules do not apply to 0.X.Y labels.
 // The following pre-release revision statements would not
 // appear in any final published version of a module. They
 // are removed when the final version is published.
 // During the pre-release phase of development, only a
 // single one of these revision statements would appear

 // revision 2017-01-30 {
 // description "NBC changes to initial revision";
 // rev:revision-label 0.2.0;

Clarke, et al. Expires 11 January 2023 [Page 12]

Internet-Draft YANG Semver July 2022

 // rev:non-backwards-compatible; // optional
 // // (theoretically no
 // // ’previous released version’)
 // }

 // revision 2017-01-26 {
 // description "Initial module version";
 // rev:revision-label 0.1.0;
 // }

 //YANG module definition starts here
 }

3.4.2. Example of Package Using YANG Semver

 Below is an example YANG package that uses the semver revision label
 based on the rules defined in this document.

 {
 "ietf-yang-instance-data:instance-data-set": {
 "name": "example-yang-pkg",
 "target-ptr": "TBD",
 "timestamp": "2018-09-06T17:00:00Z",
 "description": "Example IETF package definition",
 "content-data": {
 "ietf-yang-package:yang-package": {
 "name": "example-yang-pkg",
 "version": "1.3.1",
 ...
 }

4. Import Module by Semantic Version

 [I-D.ietf-netmod-yang-module-versioning] allows for imports to be
 done based on a module or a derived revision of a module. The
 rev:revision-or-derived statement can specify either a revision date
 or a revision label. The YANG Semver revision-label value can be
 used as the argument to rev:revision-or-derived . When used as such,
 any module that contains exactly the same YANG semantic version in
 its revision history may be used to satisfy the import requirement.
 For example:

 import example-module {
 rev:revision-or-derived 3.0.0;
 }

Clarke, et al. Expires 11 January 2023 [Page 13]

Internet-Draft YANG Semver July 2022

 Note: the import lookup does not stop when a non-backward-compatible
 change is encountered. That is, if module B imports a module A at or
 derived from version 2.0.0, resolving that import will pass through a
 revision of module A with version "2.1.0_non_compatible" in order to
 determine if the present instance of module A derives from "2.0.0".

 If an import by revision-or-derived cannot locate the specified
 revision-label in a given module’s revision history, that import will
 fail. This is noted in the case of version gaps. That is, if a
 module’s history includes "1.0.0", "1.1.0", and "1.3.0", an import
 from revision-or-derived at "1.2.0" will be unable to locate the
 specified revision entry and thus the import cannot be satisfied.

5. Guidelines for Using Semver During Module Development

 This section and the IETF-specific sub-section below provides YANG
 Semver-specific guidelines to consider when developing new YANG
 modules. As such this section updates [RFC8407] .

 Development of a brand new YANG module or submodule outside of the
 IETF that uses YANG Semver as its revision-label scheme SHOULD begin
 with a 0 for the MAJOR version component. This allows the module or
 submodule to disregard strict SemVer rules with respect to non-
 backwards-compatible changes during its initial development.
 However, module or submodule developers MAY choose to use the SemVer
 pre-release syntax instead with a 1 for the MAJOR version component.
 For example, an initial module or submodule revision-label might be
 either 0.0.1 or 1.0.0-alpha.1. If the authors choose to use the 0
 MAJOR version component scheme, they MAY switch to the pre-release
 scheme with a MAJOR version component of 1 when the module or
 submodule is nearing initial release (e.g., a module’s or submodule’s
 revision label may transition from 0.3.0 to 1.0.0-beta.1 to indicate
 it is more mature and ready for testing).

 When using pre-release notation, the format MUST include at least one
 alphabetic component and MUST end with a ’.’ or ’-’ and then one or
 more digits. These alphanumeric components will be used when
 deciding pre-release precedence. The following are examples of valid
 pre-release versions

 1.0.0-alpha.1

 1.0.0-alpha.3

 2.1.0-beta.42

 3.0.0-202007.rc.1

Clarke, et al. Expires 11 January 2023 [Page 14]

Internet-Draft YANG Semver July 2022

 When developing a new revision of an existing module or submodule
 using the YANG semver revision-label scheme, the intended target
 semantic version MUST be used along with pre-release notation. For
 example, if a released module or submodule which has a current
 revision-label of 1.0.0 is being modified with the intent to make
 non-backwards-compatible changes, the first development MAJOR version
 component must be 2 with some pre-release notation such as -alpha.1,
 making the version 2.0.0-alpha.1. That said, every publicly
 available release of a module or submodule MUST have a unique YANG
 semver revision-label (where a publicly available release is one that
 could be implemented by a vendor or consumed by an end user).
 Therefore, it may be prudent to include the year or year and month
 development began (e.g., 2.0.0-201907-alpha.1). As a module or
 submodule undergoes development, it is possible that the original
 intent changes. For example, a 1.0.0 version of a module or
 submodule that was destined to become 2.0.0 after a development cycle
 may have had a scope change such that the final version has no non-
 backwards-compatible changes and becomes 1.1.0 instead. This change
 is acceptable to make during the development phase so long as pre-
 release notation is present in both versions (e.g., 2.0.0-alpha.3
 becomes 1.1.0-alpha.4). However, on the next development cycle
 (after 1.1.0 is released), if again the new target release is 2.0.0,
 new pre-release components must be used such that every revision-
 label for a given module or submodule MUST be unique throughout its
 entire lifecycle (e.g., the first pre-release version might be
 2.0.0-202005-alpha.1 if keeping the same year and month notation
 mentioned above).

5.1. Pre-release Version Precedence

 As a module or submodule is developed, the scope of the work may
 change. That is, while a ratified module or submodule with revision-
 label 1.0.0 is initially intended to become 2.0.0 in its next
 ratified version, the scope of work may change such that the final
 version is 1.1.0. During the development cycle, the pre-release
 versions could move from 2.0.0-some-pre-release-tag to 1.1.0-some-
 pre-release-tag. This downwards changing of version numbers makes it
 difficult to evaluate semantic version rules between pre-release
 versions. However, taken independently, each pre-release version can
 be compared to the previously ratified version (e.g., 1.1.0-some-pre-
 release-tag and 2.0.0-some-pre-release-tag can each be compared to
 1.0.0). Module and submodule developers SHOULD maintain only one
 revision statement in a pre-released module or submodule that
 reflects the latest revision. IETF authors MAY choose to include an
 appendix in the associated draft to track overall changes to the
 module or submodule.

Clarke, et al. Expires 11 January 2023 [Page 15]

Internet-Draft YANG Semver July 2022

5.2. YANG Semver in IETF Modules

 All published IETF modules and submodules MUST use YANG semantic
 versions for their revision-labels.

 Development of a new module or submodule within the IETF SHOULD begin
 with the 0 MAJOR number scheme as described above. When revising an
 existing IETF module or submodule, the revision-label MUST use the
 target (i.e., intended) MAJOR and MINOR version components with a 0
 PATCH version component. If the intended ratified release will be
 non-backward-compatible with the current ratified release, the MINOR
 version component MUST be 0.

 All IETF modules and submodules in development MUST use the whole
 document name as a pre-release version string, including the current
 document revision. For example, if a module or submodule which is
 currently released at version 1.0.0 is being revised to include non-
 backwards-compatible changes in draft-user-netmod-foo, its
 development revision-labels MUST include 2.0.0-draft-user-netmod-foo
 followed by the document’s revision (e.g., 2.0.0-draft-user-netmod-
 foo-02). This will ensure each pre-release version is unique across
 the lifecycle of the module or submodule. Even when using the 0
 MAJOR version for initial module or submodule development (where
 MINOR and PATCH can change), appending the draft name as a pre-
 release component helps to ensure uniqueness when there are perhaps
 multiple, parallel efforts creating the same module or submodule.

 For IETF YANG modules and submodules that have already been
 published, revision-labels MUST be retroactively applied to all
 existing revisions when the next new revision is created, starting at
 version "1.0.0" for the initial published revision, and then
 incrementing according to the YANG Semver version rules specified in
 Section 3.3 . For example, if a module or submodule started out in
 the pre-NMDA ([RFC8342]) world, and then had NMDA support added
 without removing any legacy "state" branches -- and you are looking
 to add additional new features -- a sensible choice for the target
 YANG Semver would be 1.2.0 (since 1.0.0 would have been the initial,
 pre-NMDA release, and 1.1.0 would have been the NMDA revision).

 See Appendix A for a detailed example of IETF pre-release versions.

6. YANG Module

 This YANG module contains the typedef for the YANG semantic version
 and the identity to signal its use.

Clarke, et al. Expires 11 January 2023 [Page 16]

Internet-Draft YANG Semver July 2022

 <CODE BEGINS> file "ietf-yang-semver@2021-11-04.yang"
 module ietf-yang-semver {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-semver";
 prefix ysver;
 rev:revision-label-scheme "yang-semver";

 import ietf-yang-revisions {
 prefix rev;
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Joe Clarke
 <mailto:jclarke@cisco.com>
 Author: Robert Wilton
 <mailto:rwilton@cisco.com>
 Author: Reshad Rahman
 <mailto:reshad@yahoo.com>
 Author: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>
 Author: Jason Sterne
 <mailto:jason.sterne@nokia.com>
 Author: Benoit Claise
 <mailto:benoit.claise@huawei.com>";
 description
 "This module provides type and grouping definitions for YANG
 packages.

 Copyright (c) 2021 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.

Clarke, et al. Expires 11 January 2023 [Page 17]

Internet-Draft YANG Semver July 2022

 // RFC Ed.: replace XXXX with actual RFC number and remove this
 // note.
 // RFC Ed. update the rev:revision-label to "1.0.0".

 revision 2021-11-04 {
 rev:revision-label "1.0.0-draft-ietf-netmod-yang-semver-05";
 description
 "Initial revision";
 reference
 "RFC XXXX: YANG Semantic Versioning.";
 }

 /*
 * Identities
 */

 identity yang-semver {
 base rev:revision-label-scheme-base;
 description
 "The revision-label scheme corresponds to the YANG Semver scheme
 which is defined by the pattern in the ’version’ typedef below.
 The rules governing this revision-label scheme are defined in the
 reference for this identity.";
 reference
 "RFC XXXX: YANG Semantic Versioning.";
 }

 /*
 * Typedefs
 */

 typedef version {
 type rev:revision-label {
 pattern ’[0-9]+[.][0-9]+[.][0-9]+(_(non_)?compatible)?’
 + ’(-[A-Za-z0-9.-]+[.-][0-9]+)?([+][A-Za-z0-9.-]+)?’;
 }
 description
 "Represents a YANG semantic version. The rules governing the
 use of this revision label scheme are defined in the reference for
 this typedef.";
 reference
 "RFC XXXX: YANG Semantic Versioning.";
 }
 }
 <CODE ENDS>

Clarke, et al. Expires 11 January 2023 [Page 18]

Internet-Draft YANG Semver July 2022

7. Contributors

 This document grew out of the YANG module versioning design team that
 started after IETF 101. The design team consists of the following
 members whom have worked on the YANG versioning project: Balazs
 Lengyel, Benoit Claise, Bo Wu, Ebben Aries, Jan Lindblad, Jason
 Sterne, Joe Clarke, Juergen Schoenwaelder, Mahesh Jethanandani,
 Michael (Wangzitao), Qin Wu, Reshad Rahman, and Rob Wilton.

 The initial revision of this document was refactored and built upon
 [I-D.clacla-netmod-yang-model-update] . We would like the thank
 Kevin D’Souza for his initial work in this problem space.

 Discussions on the use of SemVer for YANG versioning has been held
 with authors of the OpenConfig YANG models based on their own
 [openconfigsemver] . We would like thank both Anees Shaikh and Rob
 Shakir for their input into this problem space.

8. Security Considerations

 The document does not define any new protocol or data model. There
 are no security impacts.

9. IANA Considerations

9.1. YANG Module Registrations

 This document requests IANA to register a URI in the "IETF XML
 Registry" [RFC3688] . Following the format in RFC 3688, the
 following registration is requested.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-semver

 Registrant Contact: The IESG.

 XML: N/A, the requested URI is an XML namespace.

 The following YANG module is requested to be registred in the "IANA
 Module Names" [RFC6020] . Following the format in RFC 6020, the
 following registrations are requested:

 The ietf-yang-semver module:

 Name: ietf-yang-semver

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-semver

 Prefix: ysver

Clarke, et al. Expires 11 January 2023 [Page 19]

Internet-Draft YANG Semver July 2022

 Reference: [RFCXXXX]

9.2. Guidance for YANG Semver in IANA maintained YANG modules and
 submodules

 Note for IANA (to be removed by the RFC editor): Please check that
 the registries and IANA YANG modules and submodules are referenced in
 the appropriate way.

 IANA is responsible for maintaining and versioning some YANG modules
 and submodules, e.g., iana-if-types.yang [IfTypeYang] and iana-
 routing-types.yang [RoutingTypesYang] .

 In addition to following the rules specified in the IANA
 Considerations section of [I-D.ietf-netmod-yang-module-versioning] ,
 IANA maintained YANG modules and submodules MUST also include a YANG
 Semver revision label for all new revisions, as defined in Section 3
 .

 The YANG Semver version associated with the new revision MUST follow
 the rules defined in Section 3.3 .

 Note: For IANA maintained YANG modules and submodules that have
 already been published, revision labels MUST be retroactively applied
 to all existing revisions when the next new revision is created,
 starting at version "1.0.0" for the initial published revision, and
 then incrementing according to the YANG Semver rules specified in
 Section 3.3 .

 Most changes to IANA maintained YANG modules and submodules are
 expected to be backwards-compatible changes and classified as MINOR
 version changes. The PATCH version may be incremented instead when
 only editorial changes are made, and the MAJOR version would be
 incremented if non-backwards-compatible changes are made.

 Given that IANA maintained YANG modules are versioned with a linear
 history, it is anticipated that it should not be necessary to use the
 "_compatible" or "_non_compatible" modifiers to the "Z_COMPAT"
 version element.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

Clarke, et al. Expires 11 January 2023 [Page 20]

Internet-Draft YANG Semver July 2022

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of
 Documents Containing YANG Data Models", BCP 216, RFC 8407,
 DOI 10.17487/RFC8407, October 2018,
 <https://www.rfc-editor.org/info/rfc8407>.

 [I-D.ietf-netmod-yang-module-versioning]
 Wilton, R., Rahman, R., Lengyel, B., Clarke, J., and J.
 Sterne, "Updated YANG Module Revision Handling", Work in
 Progress, Internet-Draft, draft-ietf-netmod-yang-module-
 versioning-06, 10 July 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
 yang-module-versioning-06>.

10.2. Informative References

 [I-D.clacla-netmod-yang-model-update]
 Claise, B., Clarke, J., Lengyel, B., and K. D’Souza, "New
 YANG Module Update Procedure", Work in Progress, Internet-
 Draft, draft-clacla-netmod-yang-model-update-06, 2 July
 2018, <https://datatracker.ietf.org/doc/html/draft-clacla-
 netmod-yang-model-update-06>.

 [I-D.ietf-netmod-yang-packages]
 Wilton, R., Rahman, R., Clarke, J., Sterne, J., and B. Wu,
 "YANG Packages", Work in Progress, Internet-Draft, draft-
 ietf-netmod-yang-packages-03, 4 March 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
 yang-packages-03>.

 [I-D.ietf-netmod-yang-schema-comparison]
 Wilton, R., "YANG Schema Comparison", Work in Progress,
 Internet-Draft, draft-ietf-netmod-yang-schema-comparison-
 01, 2 November 2020,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
 yang-schema-comparison-01>.

Clarke, et al. Expires 11 January 2023 [Page 21]

Internet-Draft YANG Semver July 2022

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [openconfigsemver]
 "Semantic Versioning for Openconfig Models",
 <http://www.openconfig.net/docs/semver/>.

 [SemVer] "Semantic Versioning 2.0.0 (text from June 19, 2020)",
 <https://github.com/semver/semver/
 blob/8b2e8eec394948632957639dfa99fc7ec6286911/semver.md>.

 [IfTypeYang]
 "iana-if-type YANG Module",
 <https://www.iana.org/assignments/iana-if-type/iana-if-
 type.xhtml>.

 [RoutingTypesYang]
 "iana-routing-types YANG Module",
 <https://www.iana.org/assignments/iana-routing-types/iana-
 routing-types.xhtml>.

Appendix A. Example IETF Module Development

 Assume a new YANG module is being developed in the netmod working
 group in the IETF. Initially, this module is being developed in an
 individual internet draft, draft-jdoe-netmod-example-module. The
 following represents the initial version tree (i.e., value of
 revision-label) of the module as it’s being initially developed.

 Version lineage for initial module development:

 0.0.1-draft-jdoe-netmod-example-module-00
 |
 0.1.0-draft-jdoe-netmod-example-module-01
 |
 0.2.0-draft-jdoe-netmod-example-module-02
 |
 0.2.1-draft-jdoe-netmod-example-module-03

 At this point, development stabilizes, and the workgroup adopts the
 draft. Thus now the draft becomes draft-ietf-netmod-example-module.
 The initial pre-release lineage continues as follows.

 Continued version lineage after adoption:

Clarke, et al. Expires 11 January 2023 [Page 22]

Internet-Draft YANG Semver July 2022

 1.0.0-draft-ietf-netmod-example-module-00
 |
 1.0.0-draft-ietf-netmod-example-module-01
 |
 1.0.0-draft-ietf-netmod-example-module-02

 At this point, the draft is ratified and becomes RFC12345 and the
 YANG module version becomes 1.0.0.

 A time later, the module needs to be revised to add additional
 capabilities. Development will be done in a backwards-compatible
 way. Two new individual drafts are proposed to go about adding the
 capabilities in different ways: draft-jdoe-netmod-exmod-enhancements
 and draft-jadoe-netmod-exmod-changes. These are initially developed
 in parallel with the following versions.

 Parallel development for next module revision:

 1.1.0-draft-jdoe-netmod-exmod-enhancements-00 || 1.1.0-draft-jadoe-netmod-e
xmod-changes-00
 | |
 1.1.0-draft-jdoe-netmod-exmod-enhancements-01 || 1.1.0-draft-jadoe-netmod-e
xmod-changes-01

 At this point, the WG decides to merge some aspects of both and adopt
 the work in jadoe’s draft as draft-ietf-netmod-exmod-changes. A
 single version lineage continues.

 1.1.0-draft-ietf-netmod-exmod-changes-00
 |
 1.1.0-draft-ietf-netmod-exmod-changes-01
 |
 1.1.0-draft-ietf-netmod-exmod-changes-02
 |
 1.1.0-draft-ietf-netmod-exmod-changes-03

 The draft is ratified, and the new module version becomes 1.1.0.

Authors’ Addresses

 Joe Clarke (editor)
 Cisco Systems, Inc.
 7200-12 Kit Creek Rd
 Research Triangle Park, North Carolina
 United States of America
 Phone: +1-919-392-2867
 Email: jclarke@cisco.com

Clarke, et al. Expires 11 January 2023 [Page 23]

Internet-Draft YANG Semver July 2022

 Robert Wilton (editor)
 Cisco Systems, Inc.
 Email: rwilton@cisco.com

 Reshad Rahman
 Email: reshad@yahoo.com

 Balazs Lengyel
 Ericsson
 1117 Budapest
 Magyar Tudosok Korutja
 Hungary
 Phone: +36-70-330-7909
 Email: balazs.lengyel@ericsson.com

 Jason Sterne
 Nokia
 Email: jason.sterne@nokia.com

 Benoit Claise
 Huawei
 Email: benoit.claise@huawei.com

Clarke, et al. Expires 11 January 2023 [Page 24]

Network Working Group J. Clarke, Ed.
Internet-Draft R. Wilton, Ed.
Updates: 8407, 8525, 7950 (if approved) Cisco Systems, Inc.
Intended status: Standards Track R. Rahman
Expires: 19 September 2024 Equinix
 B. Lengyel
 Ericsson
 J. Sterne
 Nokia
 B. Claise
 Huawei
 18 March 2024

 YANG Semantic Versioning
 draft-ietf-netmod-yang-semver-15

Abstract

 This document specifies a YANG extension along with guidelines for
 applying an extended set of semantic versioning rules to revisions of
 YANG artifacts (e.g., modules and packages). Additionally, this
 document defines a YANG extension for controlling module imports
 based on these modified semantic versioning rules. This document
 updates RFCs 7950, 8407, and 8525.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 19 September 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Clarke, et al. Expires 19 September 2024 [Page 1]

Internet-Draft YANG Semver March 2024

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 2. Examples of How Versioning Is Applied To YANG Module
 Revisions . 3
 3. Terminology and Conventions 4
 4. YANG Semantic Versioning 4
 4.1. Relationship Between SemVer and YANG Semver 5
 4.2. YANG Semantic Version Extension 5
 4.3. YANG Semver Pattern 5
 4.4. Semantic Versioning Scheme for YANG Artifacts 6
 4.4.1. Branching Limitations with YANG Semver 8
 4.4.2. YANG Semver with submodules 9
 4.4.3. Examples for YANG semantic versions 9
 4.5. YANG Semantic Version Update Rules 11
 4.6. Examples of the YANG Semver Label 13
 4.6.1. Example Module Using YANG Semver 13
 4.6.2. Example of Package Using YANG Semver 14
 5. Import Module by YANG Semantic Version 15
 5.1. The recommended-min-version Extension 15
 5.2. Import by YANG Semantic Version Rules 16
 6. Guidelines for Using Semver During Module Development 17
 6.1. Pre-release Version Precedence 18
 6.2. YANG Semver in IETF Modules 18
 6.2.1. Guidelines for IETF Module Development 19
 6.2.2. Guidelines for Published IETF Modules 19
 7. Updates to ietf-yang-library 19
 7.1. YANG library versioning augmentations 20
 7.1.1. Advertising version 20
 8. YANG Modules . 20
 9. Contributors . 26
 10. Acknowledgments . 27
 11. Security Considerations 27
 12. IANA Considerations . 28
 12.1. YANG Module Registrations 28
 12.2. Guidance for YANG Semver in IANA maintained YANG modules
 and submodules . 29
 13. References . 29
 13.1. Normative References 29

Clarke, et al. Expires 19 September 2024 [Page 2]

Internet-Draft YANG Semver March 2024

 13.2. Informative References 30
 Appendix A. Example IETF Module Development 32
 Authors’ Addresses . 33

1. Introduction

 [I-D.ietf-netmod-yang-module-versioning] puts forth a number of
 concepts relating to modified rules for updating YANG modules and
 submodules, a means to signal when a new revision of a module or
 submodule has non-backwards-compatible (NBC) changes compared to its
 previous revision, and a scheme that uses the revision history as a
 lineage for determining from where a specific revision of a YANG
 module or submodule is derived.

 This document defines a YANG extension that tags a YANG artifact
 (i.e., YANG modules, YANG submodules, and YANG packages
 [I-D.ietf-netmod-yang-packages]) with a version identifier that
 adheres to extended semantic versioning rules [SemVer]. The goal
 being to add a human readable version identifier that provides
 compatibility information for the YANG artifact without needing to
 compare or parse its body. The version identifier and rules defined
 herein represent the RECOMMENDED approach to apply versioning to IETF
 YANG artifacts. This document defines augmentations to ietf-yang-
 library to reflect the version of YANG modules within the module-set
 data.

 Note that a specific revision of the SemVer 2.0.0 specification is
 referenced here (from June 19, 2020) to provide an immutable version.
 This is because the 2.0.0 version of the specification has changed
 over time without any change to the semantic version itself. In some
 cases the text has changed in non-backwards-compatible ways.

2. Examples of How Versioning Is Applied To YANG Module Revisions

 The following diagram illustrates how the branched revision history
 and the YANG Semver version extension statement could be used:

 Example YANG module with branched revision history.

Clarke, et al. Expires 19 September 2024 [Page 3]

Internet-Draft YANG Semver March 2024

 Module revision date Example version identifier
 2019-01-01 <- 1.0.0
 |
 2019-02-01 <- 2.0.0
 | \
 2019-03-01 \ <- 3.0.0
 | \
 | 2019-04-01 <- 2.1.0
 | |
 2019-05-01 | <- 3.1.0
 |
 2019-06-01 <- 2.2.0

 Figure 1

 The tree diagram above illustrates how an example module’s revision
 history might evolve, over time.

3. Terminology and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Additionally, this document uses the following terminology:

 * YANG artifact: YANG modules, YANG submodules, and YANG packages
 [I-D.ietf-netmod-yang-packages] are examples of YANG artifacts for
 the purposes of this document.

 * SemVer: A version string that corresponds to the rules defined in
 [SemVer]. This specific camel-case notation is the one used by
 the SemVer 2.0.0 website and used within this document to
 distinguish between YANG Semver.

 * YANG Semver: A version identifier that is consistent with the
 extended set of semantic versioning rules, based on [SemVer],
 defined within this document.

4. YANG Semantic Versioning

 This section defines YANG Semantic Versioning, explains how it is
 used with YANG artifacts, and describes the rules associated with
 changing an artifact’s semantic version when its contents are
 updated.

Clarke, et al. Expires 19 September 2024 [Page 4]

Internet-Draft YANG Semver March 2024

4.1. Relationship Between SemVer and YANG Semver

 [SemVer] is completely compatible with YANG Semver in that a SemVer
 semantic version number is legal according to the YANG Semver rules
 (though the inverse is not necessarily true). YANG Semver is a
 superset of the SemVer rules, and allows for limited branching within
 YANG artifacts. If no branching occurs within a YANG artifact (i.e.,
 you do not use the compatibility modifiers described below), the YANG
 Semver version label will appear as a SemVer version number.

4.2. YANG Semantic Version Extension

 The ietf-yang-semver module defines a "version" extension -- a
 substatement to a module or submodule’s "revision" statement -- that
 takes a YANG semantic version as its argument and specified the
 version for the given module or submodule. The syntax for the YANG
 semantic version is defined in a typedef in the same module and
 described below.

4.3. YANG Semver Pattern

 YANG artifacts that employ semantic versioning as defined in this
 document MUST use a version identifier that corresponds to the
 following pattern: ’X.Y.Z_COMPAT’. Where:

 * X, Y and Z are mandatory non-negative integers that are each less
 than or equal to 2147483647 (i.e., the maximum signed 32-bit
 integer value) and MUST NOT contain leading zeroes,

 * The ’.’ is a literal period (ASCII character 0x2e),

 * The ’_’ is an optional single literal underscore (ASCII character
 0x5f) and MUST only be present if the following COMPAT element is
 included,

 * COMPAT, if specified, MUST be either the literal string
 "compatible" or the literal string "non_compatible".

Clarke, et al. Expires 19 September 2024 [Page 5]

Internet-Draft YANG Semver March 2024

 Additionally, [SemVer] defines two specific types of metadata that
 may be appended to a semantic version string. Pre-release metadata
 MAY be appended to a YANG Semver string after a trailing ’-’
 character. Build metadata MAY be appended after a trailing ’+’
 character. If both pre-release and build metadata are present, then
 build metadata MUST follow pre-release metadata. While build
 metadata MUST be ignored when comparing YANG semantic versions, pre-
 release metadata MUST be used during module and submodule development
 as specified in Section 6. Both pre-release and build metadata are
 allowed in order to support all the [SemVer] rules. Thus, a version
 lineage that follows strict [SemVer] rules is allowed for a YANG
 artifact.

 The ietf-yang-semver module included in this document defines an
 extension to apply a YANG Semver identifier to a YANG artifact as
 well as a typedef that formally specifies the syntax of the YANG
 Semver.

4.4. Semantic Versioning Scheme for YANG Artifacts

 This document defines the YANG semantic versioning scheme that is
 used for YANG artifacts. The versioning identifier has the following
 properties:

 * The YANG semantic versioning scheme is extended from version 2.0.0
 of the semantic versioning scheme defined at semver.org [SemVer]
 to cover the additional requirements for the management of YANG
 artifact lifecycles that cannot be addressed using the semver.org
 2.0.0 versioning scheme alone.

 * Unlike the [SemVer] versioning scheme, the YANG semantic
 versioning scheme supports updates to older versions of YANG
 artifacts, to allow for bug fixes and enhancements to artifact
 versions that are not the latest. However, it does not provide
 for the unlimited branching and updating of older revisions which
 are documented by the general rules in
 [I-D.ietf-netmod-yang-module-versioning].

 * YANG artifacts that use the [SemVer] versioning scheme are fully
 compatible with implementations that understand the YANG semantic
 versioning scheme defined in this document.

 * If updates are always restricted to the latest revision of the
 artifact only, then the version identifiers used by the YANG
 semantic versioning scheme are exactly the same as those defined
 by the [SemVer] versioning scheme.

Clarke, et al. Expires 19 September 2024 [Page 6]

Internet-Draft YANG Semver March 2024

 Every YANG module and submodule versioned using the YANG semantic
 versioning scheme specifies the module’s or submodule’s semantic
 version as the argument to the ’ys:version’ statement.

 Because the rules put forth in
 [I-D.ietf-netmod-yang-module-versioning] are designed to work well
 with existing versions of YANG and allow for artifact authors to
 migrate to this scheme, it is not expected that all revisions of a
 given YANG artifact will have a semantic version identifier. For
 example, the first revision of a module or submodule may have been
 produced before this scheme was available.

 YANG packages that make use of this YANG Semver will reflect that in
 the package metadata.

 As stated above, the YANG semantic version is expressed as a string
 of the form: ’X.Y.Z_COMPAT’.

 * ’X’ is the MAJOR version. Changes in the MAJOR version number
 indicate changes that are non-backwards-compatible to versions
 with a lower MAJOR version number.

 * ’Y’ is the MINOR version. Changes in the MINOR version number
 indicate changes that are backwards-compatible to versions with
 the same MAJOR version number, but a lower MINOR version number
 and no "_compatible" or "_non_compatible" modifier.

 * ’Z’ is the PATCH version. Changes in the PATCH version number can
 indicate an editorial change to the YANG artifact. In conjunction
 with the ’_COMPAT’ modifier (see below) changes to ’Z’ may
 indicate a more substantive module change. An editorial change is
 defined to be a change in the YANG artifact’s content that does
 not affect the semantic meaning or functionality provided by the
 artifact in any way. Some examples include correcting a spelling
 mistake in the description of a leaf within a YANG module or
 submodule, non-significant whitespace changes (e.g., realigning
 description statements or changing indentation), or changes to
 YANG comments. Note: restructuring how a module uses, or does not
 use, submodules is treated as an editorial level change on the
 condition that there is no change in the module’s semantic
 behavior due to the restructuring.

 * ’_COMPAT’ is an additional modifier, unique to YANG Semver (i.e.,
 not valid in [SemVer]), that indicates backwards-compatible, or
 non-backwards-compatible changes relative to versions with the
 same MAJOR and MINOR version numbers, but lower PATCH version
 number, depending on what form modifier ’_COMPAT’ takes:

Clarke, et al. Expires 19 September 2024 [Page 7]

Internet-Draft YANG Semver March 2024

 - If the modifier string is absent, the change represents an
 editorial change.

 - If, however, the modifier string is present, the meaning is
 described below:

 - "_compatible" - the change represents a backwards-compatible
 change

 - "_non_compatible" - the change represents a non-backwards-
 compatible change

 The ’_COMPAT’ modifier string is "sticky". Once a revision of a
 module has a modifier in the version identifier, then all subsequent
 modules in that branch (i.e., those with the same X.Y version digits)
 will also have a modifier. The modifier can change from
 "_compatible" to "_non_compatible" in a subsequent version, but the
 modifier MUST NOT change from "_non_compatible" to "_compatible" and
 MUST NOT be removed. The persistence of the "_non_compatible"
 modifier ensures that comparisons of versions do not give the false
 impression of compatibility between two potentially non-compatible
 versions. If "_non_compatible" was removed, for example between
 versions "3.3.2_non_compatible" and "3.3.3" (where "3.3.3" was simply
 an editorial change), then comparing versions "3.3.3" to "3.0.0"
 would look like they are backwards compatible when they are not
 (since "3.3.2_non_compatible" was on the same MAJOR.MINOR branch and
 introduced a non-backwards-compatible change).

 The YANG artifact name and YANG semantic version uniquely identify a
 revision of said artifact. There MUST NOT be multiple instances of a
 YANG artifact definition with the same name and YANG semantic version
 but different content (and in the case of modules and submodules,
 different revision dates).

 There MUST NOT be multiple versions of a YANG artifact that have the
 same MAJOR, MINOR and PATCH version numbers, but different patch
 modifier strings. E.g., artifact version "1.2.3_non_compatible" MUST
 NOT be defined if artifact version "1.2.3" has already been defined.

4.4.1. Branching Limitations with YANG Semver

 YANG artifacts that use the YANG Semver version scheme MUST ensure
 that two artifacts with the same MAJOR version number and no
 _compatible or _non_compatible modifiers are backwards compatible.
 Therefore, certain branching schemes cannot be used with YANG Semver.
 For example, the following branching approach using the following
 YANG Semver identifiers is not supported:

Clarke, et al. Expires 19 September 2024 [Page 8]

Internet-Draft YANG Semver March 2024

 3.5.0 -- 3.6.0 (add leaf foo)
 |
 |
 3.20.0 (added leaf bar)

 In this case, given only the YANG Semver identifiers 3.6.0 and
 3.20.0, one would assume that 3.20.0 is backwards compatible with
 3.6.0. But in the illegal example above, 3.20.0 is not backwards
 compatible with 3.6.0 since 3.20.0 does not contain the leaf foo.

 Note that this type of branching, where two versions on the same
 branch have different backwards compatible changes is allowed in
 [I-D.ietf-netmod-yang-module-versioning].

4.4.2. YANG Semver with submodules

 YANG Semver MAY be used to version submodules. Submodule version are
 separate of any version on the including module, but if a submodule
 has changed, then the version of the including module MUST also be
 updated.

 The rules for determining the version change of a submodule are the
 same as those defined in Section 4.3 and Section 4.4 as applied to
 YANG modules, except they only apply to the part of the module schema
 defined within the submodule’s file.

 One interesting case is moving definitions from one submodule to
 another in a way that does not change the resulting schema of the
 including module. In this case:

 1. The including module has editorial changes

 2. The submodule with the schema definition removed has non-
 backwards-compatible changes

 3. The submodule with the schema definitions added has backwards-
 compatible changes

 Note that the meaning of a submodule may change drastically despite
 having no changes in content or revision due to changes in other
 submodules belonging to the same module (e.g. groupings and typedefs
 declared in one submodule and used in another).

4.4.3. Examples for YANG semantic versions

 The following diagram and explanation illustrate how YANG semantic
 versions work.

Clarke, et al. Expires 19 September 2024 [Page 9]

Internet-Draft YANG Semver March 2024

 YANG Semantic versions for an example module:

 0.1.0
 |
 0.2.0
 |
 1.0.0
 |
 1.1.0 -> 1.1.1_compatible -> 1.1.2_non_compatible
 |
 1.2.0 -> 1.2.1_non_compatible -> 1.2.2_non_compatible
 | \
 2.0.0 \
 | \--> 1.3.0 -> 1.3.1_non_compatible
 3.0.0 |
 | 1.4.0
 3.1.0

 The tree diagram above illustrates how the version history might
 evolve for an example module. The tree diagram only shows the
 branching relationships between the versions. It does not describe
 the chronology of the versions (i.e. when in time each version was
 published relative to the other versions).

 The following description lists an example of what the chronological
 order of the versions could look like, from oldest version to newest:

 0.1.0 - first pre-release module version

 0.2.0 - second pre-release module version (with NBC changes)

 1.0.0 - first release (may have NBC changes from 0.2.0)

 1.1.0 - added new functionality, leaf "foo" (BC)

 1.2.0 - added new functionality, leaf "baz" (BC)

 2.0.0 - change existing model for performance reasons, e.g. re-key
 list (NBC)

 1.3.0 - improve existing functionality, added leaf "foo-64" (BC)

 1.1.1_compatible - backport "foo-64" leaf to 1.1.x to avoid
 implementing "baz" from 1.2.0. This revision was created after
 1.2.0 otherwise it may have been released as 1.2.0. (BC)

 3.0.0 - NBC bugfix, rename "baz" to "bar"; also add new BC leaf
 "wibble"; (NBC)

Clarke, et al. Expires 19 September 2024 [Page 10]

Internet-Draft YANG Semver March 2024

 1.3.1_non_compatible - backport NBC fix, rename "baz" to "bar"
 (NBC)

 1.2.1_non_compatible - backport NBC fix, rename "baz" to "bar"
 (NBC)

 1.1.2_non_compatible - NBC point bug fix, not required in 2.0.0
 due to model changes (NBC)

 1.4.0 - introduce new leaf "ghoti" (BC)

 3.1.0 - introduce new leaf "wobble" (BC)

 1.2.2_non_compatible - backport "wibble". This is a BC change but
 "non_compatible" modifier is sticky. (BC)

4.5. YANG Semantic Version Update Rules

 When a new version of an artifact is produced, then the following
 rules define how the YANG semantic version for the new artifact is
 calculated, based on the changes between the two artifact versions,
 and the YANG semantic version of the original artifact from which the
 changes are derived.

 The following four rules specify the RECOMMENDED, and REQUIRED
 minimum, update to a YANG semantic version:

 1. If an artifact is being updated in a non-backwards-compatible
 way, then the artifact version
 "X.Y.Z[_compatible|_non_compatible]" SHOULD be updated to
 "X+1.0.0" unless that version has already been used for this
 artifact but with different content, in which case the artifact
 version "X.Y.Z+1_non_compatible" SHOULD be used instead.

 2. If an artifact is being updated in a backwards-compatible way,
 then the next version number depends on the format of the current
 version number:

 i "X.Y.Z" - the artifact version SHOULD be updated to
 "X.Y+1.0", unless that version has already been used for
 this artifact but with different content, when the artifact
 version SHOULD be updated to "X.Y.Z+1_compatible" instead.

 ii "X.Y.Z_compatible" - the artifact version SHOULD be updated
 to "X.Y.Z+1_compatible".

 iii "X.Y.Z_non_compatible" - the artifact version SHOULD be
 updated to "X.Y.Z+1_non_compatible".

Clarke, et al. Expires 19 September 2024 [Page 11]

Internet-Draft YANG Semver March 2024

 3. If an artifact is being updated in an editorial way, then the
 next version identifier depends on the format of the current
 version identifier:

 i "X.Y.Z" - the artifact version SHOULD be updated to
 "X.Y.Z+1"

 ii "X.Y.Z_compatible" - the artifact version SHOULD be updated
 to "X.Y.Z+1_compatible".

 iii "X.Y.Z_non_compatible" - the artifact version SHOULD be
 updated to "X.Y.Z+1_non_compatible".

 4. YANG artifact semantic version identifiers beginning with 0,
 i.e., "0.X.Y", are regarded as pre-release definitions and need
 not follow the rules above. Either the MINOR or PATCH version
 numbers may be updated, regardless of whether the changes are
 non-backwards-compatible, backwards-compatible, or editorial.
 See Section 6 for more details on using this notation during
 module and submodule development.

 5. Additional pre-release rules for modules that have had at least
 one release are specified in Section 6.

 Although artifacts SHOULD be updated according to the rules above,
 which specify the recommended (and minimum required) update to the
 version identifier, the following rules MAY be applied when choosing
 a new version identifier:

 1. An artifact author MAY update the version identifier with a more
 significant update than described by the rules above. For
 example, an artifact could be given a new MAJOR version number
 (i.e., X+1.0.0), even though no non-backwards-compatible changes
 have occurred, or an artifact could be given a new MINOR version
 number (i.e., X.Y+1.0) even if the changes were only editorial.

 2. An artifact author MAY skip versions. That is, an artifact’s
 version history could be 1.0.0, 1.1.0, and 1.3.0 where 1.2.0 is
 skipped.

 Although YANG Semver always indicates when a non-backwards-
 compatible, or backwards-compatible change may have occurred to a
 YANG artifact, it does not guarantee that such a change has occurred,
 or that consumers of that YANG artifact will be impacted by the
 change. Hence, tooling, e.g.,
 [I-D.ietf-netmod-yang-schema-comparison], also plays an important
 role for comparing YANG artifacts and calculating the likely impact
 from changes.

Clarke, et al. Expires 19 September 2024 [Page 12]

Internet-Draft YANG Semver March 2024

 [I-D.ietf-netmod-yang-module-versioning] defines the "rev:non-
 backwards-compatible" extension statement to indicate where non-
 backwards-compatible changes have occurred in the module revision
 history. If a revision entry in a module’s revision history includes
 the "rev:non-backwards-compatible" statement then that MUST be
 reflected in any YANG semantic version associated with that revision.
 However, the reverse does not necessarily hold, i.e., if the MAJOR
 version has been incremented it does not necessarily mean that a
 "rev:non-backwards-compatible" statement would be present.

4.6. Examples of the YANG Semver Label

4.6.1. Example Module Using YANG Semver

 Below is a sample YANG module that uses YANG Semver based on the
 rules defined in this document.

 module example-versioned-module {
 yang-version 1.1;
 namespace "urn:example:versioned:module";
 prefix "exvermod";

 import ietf-yang-revisions { prefix "rev"; }
 import ietf-yang-semver { prefix "ys"; }

 description
 "to be completed";

 revision 2017-08-30 {
 description "Backport ’wibble’ leaf";
 ys:version 1.2.2_non_compatible;
 }

 revision 2017-07-30 {
 description "Rename ’baz’ to ’bar’";
 ys:version 1.2.1_non_compatible;
 rev:non-backwards-compatible;
 }

 revision 2017-04-20 {
 description "Add new functionality, leaf ’baz’";
 ys:version 1.2.0;
 }

 revision 2017-04-03 {
 description "Add new functionality, leaf ’foo’";
 ys:version 1.1.0;
 }

Clarke, et al. Expires 19 September 2024 [Page 13]

Internet-Draft YANG Semver March 2024

 revision 2017-02-07 {
 description "First release version.";
 ys:version 1.0.0;
 }

 // Note: YANG Semver rules do not apply to 0.X.Y labels.
 // The following pre-release revision statements would not
 // appear in any final published version of a module. They
 // are removed when the final version is published.
 // During the pre-release phase of development, only a
 // single one of these revision statements would appear

 // revision 2017-01-30 {
 // description "NBC changes to initial revision";
 // ys:version 0.2.0;
 // rev:non-backwards-compatible; // optional
 // // (theoretically no
 // // ’previous released version’)
 // }

 // revision 2017-01-26 {
 // description "Initial module version";
 // ys:version 0.1.0;
 // }

 //YANG module definition starts here
 }

4.6.2. Example of Package Using YANG Semver

 Below is an example YANG package that uses the YANG Semver version
 identifier based on the rules defined in this document. Note: ’\’
 line wrapping per [RFC8792].

Clarke, et al. Expires 19 September 2024 [Page 14]

Internet-Draft YANG Semver March 2024

 {
 "ietf-yang-instance-data:instance-data-set": {
 "name": "example-yang-pkg",
 "content-schema": {
 "module": "ietf-yang-packages@2022-03-04"
 },
 "timestamp": "2022-12-06T17:00:38Z",
 "description": ["Example of a Package \
 using YANG Semver"],
 "content-data": {
 "ietf-yang-packages:packages": {
 "package": [
 {
 "name": "example-yang-pkg",
 "version": "1.3.1",
 ...
 }
]
 }
 }
 }
 }

 Figure 2

5. Import Module by YANG Semantic Version

 [I-D.ietf-netmod-yang-module-versioning] allows for imports to be
 done based on the earliest supported date and later using the
 rev:recommended-min-date extension. This section defines a similar
 extension for controlling import by YANG semantic version, as well as
 the rules for how imports are resolved.

5.1. The recommended-min-version Extension

 The ietf-yang-semver module defines a "recommended-min-version"
 extension -- a substatement to the "import" statement -- that takes a
 YANG semantic version as its argument and specifies that the minimum
 version of the associated module being imported SHOULD be greater
 than or equal to the specified value. The specific conditions for
 determining if a module’s version is greater than or equal is defined
 in Section 5.2 below. Multiple recommended-min-version statements
 MAY be specified. If there are multiple recommended-min-version
 statements, they are treated as a logical OR. Removing recommended-
 min-version statements is considered a backwards compatible change.
 An example use is:

Clarke, et al. Expires 19 September 2024 [Page 15]

Internet-Draft YANG Semver March 2024

 import example-module {
 ys:recommended-min-version 3.0.0;
 }

5.2. Import by YANG Semantic Version Rules

 A module to be imported is considered as meeting the recommended
 minimum version criteria if it meets one of the following
 conditions::

 1. Has the exact MAJOR, MINOR, PATCH and "_compatible" or
 "_non_compatible" modifiers as in the recommend-min-version
 value.

 2. Has the same MAJOR and MINOR version numbers and a greater PATCH
 number. In this case, "_compatible" and "_non_compatible
 modifiers" are ignored.

 3. Has the same MAJOR version number and greater MINOR number. In
 this case the PATCH number and the "_compatible" and
 "_non_compatible" modifiers are ignored.

 4. Has a greater MAJOR version number. In this case MINOR and PATCH
 numbers and "_compatible" and "_non_compatible" modifiers are
 ignored.

 If the recommended-min-version is specified as 3.1.0, the following
 examples would be satisfy that recommend-min-version:

 3.1.0 (by condition 1 above)

 3.1.1 (by condition 2 above)

 3.2.0 (by condition 3 above)

 4.1.2 (by condition 4 above)

 3.1.1_compatible (by condition 2 above, noting that modifiers are
 ignored)

 3.1.2_non_compatible (by condition 2 above, noting that modifiers
 are ignored)

 If an import by recommended-min-version cannot locate a module with a
 version that is viable according to the conditions above, the YANG
 compiler SHOULD emit a warning, and then continue to resolve the
 import based on established [RFC7950] rules.

Clarke, et al. Expires 19 September 2024 [Page 16]

Internet-Draft YANG Semver March 2024

6. Guidelines for Using Semver During Module Development

 This section and the IETF-specific sub-section below provides YANG
 Semver-specific guidelines to consider when developing new YANG
 modules. As such this section updates [RFC8407].

 Development of a brand new YANG module or submodule outside of the
 IETF that uses the YANG Semver versioning scheme SHOULD begin with a
 0 for the MAJOR version component. This allows the module or
 submodule to disregard strict SemVer rules with respect to non-
 backwards-compatible changes during its initial development.
 However, module or submodule developers MAY choose to use the SemVer
 pre-release syntax instead with a 1 for the MAJOR version number.
 For example, an initial module or submodule version might be either
 0.0.1 or 1.0.0-alpha.1. If the authors choose to use the 0 MAJOR
 version number scheme, they MAY switch to the pre-release scheme with
 a MAJOR version number of 1 when the module or submodule is nearing
 initial release (e.g., a module’s or submodule’s version may
 transition from 0.3.0 to 1.0.0-beta.1 to indicate it is more mature
 and ready for testing).

 When using pre-release notation, the format MUST include at least one
 alphabetic component and MUST end with a ’.’ or ’-’ and then one or
 more digits. These alphanumeric components will be used when
 deciding pre-release precedence. The following are examples of valid
 pre-release versions:

 1.0.0-alpha.1

 1.0.0-alpha.3

 2.1.0-beta.42

 3.0.0-202007.rc.1

 When developing a new revision of an existing module or submodule
 using the YANG Semver versioning scheme, the intended target semantic
 version MUST be used along with pre-release notation. For example,
 if a released module or submodule which has a current version of
 1.0.0 is being modified with the intent to make non-backwards-
 compatible changes, the first development MAJOR version component
 must be 2 with some pre-release notation such as -alpha.1, making the
 version 2.0.0-alpha.1. That said, every publicly available release
 of a module or submodule MUST have a unique YANG Semver identifier
 (where a publicly available release is one that could be implemented
 by a vendor or consumed by an end user). Therefore, it may be
 prudent to include the year or year and month development began
 (e.g., 2.0.0-201907-alpha.1). As a module or submodule undergoes

Clarke, et al. Expires 19 September 2024 [Page 17]

Internet-Draft YANG Semver March 2024

 development, it is possible that the original intent changes. For
 example, a 1.0.0 version of a module or submodule that was destined
 to become 2.0.0 after a development cycle may have had a scope change
 such that the final version has no non-backwards-compatible changes
 and becomes 1.1.0 instead. This change is acceptable to make during
 the development phase so long as pre-release notation is present in
 both versions (e.g., 2.0.0-alpha.3 becomes 1.1.0-alpha.4). However,
 on the next development cycle (after 1.1.0 is released), if again the
 new target release is 2.0.0, new pre-release components must be used
 such that every version for a given module or submodule MUST be
 unique throughout its entire lifecycle (e.g., the first pre-release
 version might be 2.0.0-202005-alpha.1 if keeping the same year and
 month notation mentioned above).

6.1. Pre-release Version Precedence

 As a module or submodule is developed, the scope of the work may
 change. That is, while a released module or submodule with version
 1.0.0 is initially intended to become 2.0.0 in its next released
 version, the scope of work may change such that the final version is
 1.1.0. During the development cycle, the pre-release versions could
 move from 2.0.0-some-pre-release-tag to 1.1.0-some-pre-release-tag.
 This downwards changing of version identifiers makes it difficult to
 evaluate semantic version rules between pre-release versions.
 However, taken independently, each pre-release version can be
 compared to the previously ratified version (e.g., 1.1.0-some-pre-
 release-tag and 2.0.0-some-pre-release-tag can each be compared to
 1.0.0). Module and submodule developers SHOULD maintain only one
 revision statement in a pre-released module or submodule that
 reflects the latest revision. IETF authors MAY choose to include an
 appendix in the associated draft to track overall changes to the
 module or submodule.

6.2. YANG Semver in IETF Modules

 All published IETF modules and submodules MUST use YANG semantic
 versions in their revisions.

 Development of a new module or submodule within the IETF SHOULD begin
 with the 0 MAJOR number scheme as described above. When revising an
 existing IETF module or submodule, the version MUST use the target
 (i.e., intended) MAJOR and MINOR version components with a 0 PATCH
 version number. If the intended RFC release will be non-backwards-
 compatible with the current RFC release, the MINOR version number
 MUST be 0.

Clarke, et al. Expires 19 September 2024 [Page 18]

Internet-Draft YANG Semver March 2024

6.2.1. Guidelines for IETF Module Development

 All IETF modules and submodules in development MUST use the whole
 document name as a pre-release version identifier, including the
 current document revision. For example, if a module or submodule
 which is currently released at version 1.0.0 is being revised to
 include non-backwards-compatible changes in draft-user-netmod-foo,
 its development versions MUST include 2.0.0-draft-user-netmod-foo
 followed by the document’s revision (e.g., 2.0.0-draft-user-netmod-
 foo-02). This will ensure each pre-release version is unique across
 the lifecycle of the module or submodule. Even when using the 0
 MAJOR version for initial module or submodule development (where
 MINOR and PATCH can change), appending the draft name as a pre-
 release component helps to ensure uniqueness when there are perhaps
 multiple, parallel efforts creating the same module or submodule.

 Some draft revisions may not include an update to the YANG modules or
 submodules contained in the draft. In that case, those modules or
 submodules that are not updated do not not require a change to their
 versions. Updates to the YANG Semver version MUST only be done when
 the revision of the module changes.

 See Appendix A for a detailed example of IETF pre-release versions.

6.2.2. Guidelines for Published IETF Modules

 For IETF YANG modules and submodules that have already been
 published, versions MUST be retroactively applied to all existing
 revisions when the next new revision is created, starting at version
 "1.0.0" for the initial published revision, and then incrementing
 according to the YANG Semver version rules specified in Section 4.5.
 For example, if a module or submodule started out in the pre-NMDA
 ([RFC8342]) world, and then had NMDA support added without removing
 any legacy "state" branches -- and you are looking to add additional
 new features -- a sensible choice for the target YANG Semver would be
 1.2.0 (since 1.0.0 would have been the initial, pre-NMDA release, and
 1.1.0 would have been the NMDA revision).

7. Updates to ietf-yang-library

 This document updates YANG 1.1 [RFC7950] and YANG library [RFC8525]
 to clarify how ambiguous module imports are resolved. It also
 defines the YANG module, ietf-yang-library-semver, that augments YANG
 library [RFC8525] with a version leaf for modules and submodules.

Clarke, et al. Expires 19 September 2024 [Page 19]

Internet-Draft YANG Semver March 2024

7.1. YANG library versioning augmentations

 The "ietf-yang-library-semver" YANG module has the following
 structure (using the notation defined in [RFC8340]):

 module: ietf-yang-library-semver

 augment /yanglib:yang-library/yanglib:module-set/yanglib:module:
 +--ro version? ys:version
 augment /yanglib:yang-library/yanglib:module-set/yanglib:module
 /yanglib:submodule:
 +--ro version? ys:version
 augment /yanglib:yang-library/yanglib:module-set
 /yanglib:import-only-module:
 +--ro version? ys:version
 augment /yanglib:yang-library/yanglib:module-set
 /yanglib:import-only-module/yanglib:submodule:
 +--ro version? ys:version

 Figure 3

7.1.1. Advertising version

 The ietf-yang-library-semver YANG module augments the "module" and
 "submodule" lists in ietf-yang-library with "version" leafs to
 optionally declare the version identifier associated with each module
 and submodule.

8. YANG Modules

 This YANG module contains the typedef for the YANG semantic version
 and the identity to signal its use.

 <CODE BEGINS> file "ietf-yang-semver@2024-03-01.yang"
 module ietf-yang-semver {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-semver";
 prefix ys;

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Joe Clarke
 <mailto:jclarke@cisco.com>

Clarke, et al. Expires 19 September 2024 [Page 20]

Internet-Draft YANG Semver March 2024

 Author: Robert Wilton
 <mailto:rwilton@cisco.com>
 Author: Reshad Rahman
 <mailto:reshad@yahoo.com>
 Author: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>
 Author: Jason Sterne
 <mailto:jason.sterne@nokia.com>
 Author: Benoit Claise
 <mailto:benoit.claise@huawei.com>";
 description
 "This module provides type and grouping definitions for YANG
 packages.

 Copyright (c) 2024 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX with actual RFC number and remove this
 // note.
 // RFC Ed. update the ys:version to "1.0.0".

 revision 2024-03-01 {
 ys:version "1.0.0-draft-ietf-netmod-yang-semver-13";
 description
 "Initial revision";
 reference
 "RFC XXXX: YANG Semantic Versioning.";
 }

 /*

Clarke, et al. Expires 19 September 2024 [Page 21]

Internet-Draft YANG Semver March 2024

 * Extensions
 */

 extension version {
 argument yang-semantic-version;
 description
 "The version extension can be used to provide an additional
 identifier associated with a module or submodule
 revision.

 The format of the version extension argument MUST conform
 to the ’version’ typedef defined in this module.

 The statement MUST only be a substatement of the revision
 statement. Zero or one version statements per parent
 statement are allowed. No substatements for this extension
 have been standardized.

 Versions MUST be unique amongst all revisions of a
 module or submodule.

 Adding a version is a backwards-compatible
 change. Changing or removing an existing version in
 the revision history is a non-backwards-compatible
 change, because it could impact any references to that
 version.";
 reference
 "XXXX: YANG Semantic Versioning;
 Section 3.2, YANG Semantic Version Extension";
 }

 extension recommended-min-version {
 argument yang-semantic-version;
 description
 "Recommends the versions of the module that may be imported to
 one that is greater than or equal to the specified version.

 The format of the recommended-min-version extension argument
 MUST conform to the ’version’ typedef defined in this module.

 The statement MUST only be a substatement of the import
 statement. Zero, one or more ’recommended-min-version’
 statements per parent statement are allowed. No
 substatements for this extension have been
 standardized.

 If specified multiple times, then any module revision that
 satisfies at least one of the ’recommended-min-version’

Clarke, et al. Expires 19 September 2024 [Page 22]

Internet-Draft YANG Semver March 2024

 statements is an acceptable recommended version for
 import.

 A particular version of an imported module adheres to an
 import’s ’recommended-min-version’ extension statement if one
 of the following conditions are met:

 * Has the same MAJOR and MINOR version numbers and same or
 greater PATCH number.
 * Has the same MAJOR version number and greater MINOR number.
 In this case the PATCH number is ignored.
 * Has a greater MAJOR version number. In this case
 MINOR and PATCH numbers are ignored.

 Adding, removing or updating a ’recommended-min-version’
 statement to an import is a backwards-compatible change.";
 reference
 "XXXX: YANG Semantic Versioning; Section 4,
 Import Module by Semantic Version";
 }

 /*
 * Typedefs
 */

 typedef version {
 type string {
 pattern ’[0-9]+[.][0-9]+[.][0-9]+(_(non_)?compatible)?’
 + ’(-[A-Za-z0-9.-]+[.-][0-9]+)?([+][A-Za-z0-9.-]+)?’;
 }
 description
 "Represents a YANG semantic version. The rules governing the
 use of this version identifier are defined in the
 reference for this typedef.";
 reference
 "RFC XXXX: YANG Semantic Versioning.";
 }
 }
 <CODE ENDS>

 This YANG module contains the augmentations to the ietf-yang-library.

 <CODE BEGINS> file "ietf-yang-library-semver@2024-03-02.yang"
 module ietf-yang-library-semver {
 yang-version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-yang-library-semver";
 prefix yl-semver;

Clarke, et al. Expires 19 September 2024 [Page 23]

Internet-Draft YANG Semver March 2024

 import ietf-yang-semver {
 prefix ys;
 reference
 "XXXX: YANG Semantic Versioning";
 }
 import ietf-yang-library {
 prefix yanglib;
 reference
 "RFC 8525: YANG Library";
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Joe Clarke
 <mailto:jclarke@cisco.com>

 Author: Reshad Rahman
 <mailto:reshad@yahoo.com>

 Author: Robert Wilton
 <mailto:rwilton@cisco.com>

 Author: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>

 Author: Jason Sterne
 <mailto:jason.sterne@nokia.com>";
 description
 "This module contains augmentations to YANG Library to add module
 and submodule level version identifiers.

 Copyright (c) 2024 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.

Clarke, et al. Expires 19 September 2024 [Page 24]

Internet-Draft YANG Semver March 2024

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX (including in the imports above) with
 // actual RFC number and remove this note.
 // RFC Ed.: please replace ys:version with 1.0.0 and
 // remove this note.

 revision 2024-03-02 {
 ys:version "1.0.0-draft-ietf-netmod-yang-semver-14";
 description
 "Initial revision";
 reference
 "XXXX: YANG Semantic Versioning";
 }

 // library 1.0 modules-state is not augmented with version

 augment "/yanglib:yang-library/yanglib:module-set/yanglib:module" {
 description
 "Add a version to module information";
 leaf version {
 type ys:version;
 description
 "The version associated with this module revision.
 The value MUST match the version value in the
 specific revision of the module loaded in this module-set.";
 reference
 "XXXX: YANG Semantic Versioning;
 Section 7.1.1, Advertising version";
 }
 }

 augment
 "/yanglib:yang-library/yanglib:module-set/yanglib:module/"
 + "yanglib:submodule" {
 description
 "Add a version to submodule information";
 leaf version {
 type ys:version;
 description
 "The version associated with this submodule revision.
 The value MUST match the version value in the

Clarke, et al. Expires 19 September 2024 [Page 25]

Internet-Draft YANG Semver March 2024

 specific revision of the submodule included by the module
 loaded in this module-set.";
 reference
 "XXXX: YANG Semantic Versioning;
 Section 7.1.1, Advertising version";
 }
 }

 augment "/yanglib:yang-library/yanglib:module-set/"
 + "yanglib:import-only-module" {
 description
 "Add a version to module information";
 leaf version {
 type ys:version;
 description
 "The version associated with this module revision.
 The value MUST match the version value in the
 specific revision of the module included in this
 module-set.";
 reference
 "XXXX: YANG Semantic Versioning;
 Section 7.1.1, Advertising version";
 }
 }

 augment "/yanglib:yang-library/yanglib:module-set/"
 + "yanglib:import-only-module/yanglib:submodule" {
 description
 "Add a version to submodule information";
 leaf version {
 type ys:version;
 description
 "The version associated with this submodule revision.
 The value MUST match the version value in the specific
 revision of the submodule included by the import-only-module
 loaded in this module-set.";
 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 7.1.1, Advertising version";
 }
 }
 }
 <CODE ENDS>

9. Contributors

 The following people made substantial contributions to this document:

Clarke, et al. Expires 19 September 2024 [Page 26]

Internet-Draft YANG Semver March 2024

 Bo Wu
 lana.wubo@huawei.com

 Jan Lindblad
 jlindbla@cisco.com

 Figure 4

10. Acknowledgments

 This document grew out of the YANG module versioning design team that
 started after IETF 101. The team consists of the following members
 whom have worked on the YANG versioning project: Balazs Lengyel,
 Benoit Claise, Bo Wu, Ebben Aries, Jan Lindblad, Jason Sterne, Joe
 Clarke, Juergen Schoenwaelder, Mahesh Jethanandani, Michael
 (Wangzitao), Per Andersson, Qin Wu, Reshad Rahman, Tom Hill, and Rob
 Wilton.

 The initial revision of this document was refactored and built upon
 [I-D.clacla-netmod-yang-model-update]. We would like the thank Kevin
 D’Souza for his initial work in this problem space.

 Discussions on the use of SemVer for YANG versioning has been held
 with authors of the OpenConfig YANG models based on their own
 [openconfigsemver]. We would like thank both Anees Shaikh and Rob
 Shakir for their input into this problem space.

 We would also like to thank Joseph Donahue from the SemVer.org
 project for his input on SemVer use and overall document readability.

11. Security Considerations

 The YANG module specified in this document defines a schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC8446].

 The NETCONF access control model [RFC8341] provides the means to
 restrict access for particular NETCONF or RESTCONF users to a
 preconfigured subset of all available NETCONF or RESTCONF protocol
 operations and content.

Clarke, et al. Expires 19 September 2024 [Page 27]

Internet-Draft YANG Semver March 2024

 That said, the YANG module in this document does not define any
 writeable nodes. The extensions defined are only used to document
 YANG artifacts.

12. IANA Considerations

12.1. YANG Module Registrations

 This document requests IANA to register URIs in the "IETF XML
 Registry" [RFC3688]. Following the format in RFC 3688, the following
 registrations are requested.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-semver

 Registrant Contact: The IESG.

 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-library-semver

 Registrant Contact: The IESG.

 XML: N/A, the requested URI is an XML namespace.

 The following YANG modules are requested to be registered in the
 "IANA Module Names" [RFC6020]. Following the format in RFC 6020, the
 following registrations are requested:

 The ietf-yang-semver module:

 Name: ietf-yang-semver

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-semver

 Prefix: ys

 Reference: [RFCXXXX]

 The ietf-yang-library-semver module:

 Name: ietf-yang-library-semver

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-library-
 semver

 Prefix: yl-semver

 Reference: [RFCXXXX]

Clarke, et al. Expires 19 September 2024 [Page 28]

Internet-Draft YANG Semver March 2024

12.2. Guidance for YANG Semver in IANA maintained YANG modules and
 submodules

 Note for IANA (to be removed by the RFC editor): Please check that
 the registries and IANA YANG modules and submodules are referenced in
 the appropriate way.

 IANA is responsible for maintaining and versioning some YANG modules
 and submodules, e.g., iana-if-types.yang [IfTypeYang] and iana-
 routing-types.yang [RoutingTypesYang].

 In addition to following the rules specified in the IANA
 Considerations section of [I-D.ietf-netmod-yang-module-versioning],
 IANA maintained YANG modules and submodules MUST also include a YANG
 Semver version identifier for all new revisions, as defined in
 Section 4.

 The YANG Semver version associated with the new revision MUST follow
 the rules defined in Section 4.5.

 Note: For IANA maintained YANG modules and submodules that have
 already been published, versions MUST be retroactively applied to all
 existing revisions when the next new revision is created, starting at
 version "1.0.0" for the initial published revision, and then
 incrementing according to the YANG Semver rules specified in
 Section 4.5.

 Most changes to IANA maintained YANG modules and submodules are
 expected to be backwards-compatible changes and classified as MINOR
 version changes. The PATCH version may be incremented instead when
 only editorial changes are made, and the MAJOR version would be
 incremented if non-backwards-compatible changes are made.

 Given that IANA maintained YANG modules are versioned with a linear
 history, it is anticipated that it should not be necessary to use the
 "_compatible" or "_non_compatible" modifiers to the "Z_COMPAT"
 version element.

13. References

13.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

Clarke, et al. Expires 19 September 2024 [Page 29]

Internet-Draft YANG Semver March 2024

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of
 Documents Containing YANG Data Models", BCP 216, RFC 8407,
 DOI 10.17487/RFC8407, October 2018,
 <https://www.rfc-editor.org/info/rfc8407>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8525] Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
 and R. Wilton, "YANG Library", RFC 8525,
 DOI 10.17487/RFC8525, March 2019,
 <https://www.rfc-editor.org/info/rfc8525>.

 [I-D.ietf-netmod-yang-module-versioning]
 Wilton, R., Rahman, R., Lengyel, B., Clarke, J., and J.
 Sterne, "Updated YANG Module Revision Handling", Work in
 Progress, Internet-Draft, draft-ietf-netmod-yang-module-
 versioning-11, 1 March 2024,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
 yang-module-versioning-11>.

13.2. Informative References

 [I-D.clacla-netmod-yang-model-update]
 Claise, B., Clarke, J., Lengyel, B., and K. D’Souza, "New
 YANG Module Update Procedure", Work in Progress, Internet-
 Draft, draft-clacla-netmod-yang-model-update-06, 2 July
 2018, <https://datatracker.ietf.org/doc/html/draft-clacla-
 netmod-yang-model-update-06>.

Clarke, et al. Expires 19 September 2024 [Page 30]

Internet-Draft YANG Semver March 2024

 [I-D.ietf-netmod-yang-packages]
 Wilton, R., Rahman, R., Clarke, J., Sterne, J., and B. Wu,
 "YANG Packages", Work in Progress, Internet-Draft, draft-
 ietf-netmod-yang-packages-03, 4 March 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
 yang-packages-03>.

 [I-D.ietf-netmod-yang-schema-comparison]
 Andersson, P. and R. Wilton, "YANG Schema Comparison",
 Work in Progress, Internet-Draft, draft-ietf-netmod-yang-
 schema-comparison-02, 14 March 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
 yang-schema-comparison-02>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

Clarke, et al. Expires 19 September 2024 [Page 31]

Internet-Draft YANG Semver March 2024

 [RFC8792] Watsen, K., Auerswald, E., Farrel, A., and Q. Wu,
 "Handling Long Lines in Content of Internet-Drafts and
 RFCs", RFC 8792, DOI 10.17487/RFC8792, June 2020,
 <https://www.rfc-editor.org/info/rfc8792>.

 [openconfigsemver]
 "Semantic Versioning for Openconfig Models",
 <http://www.openconfig.net/docs/semver/>.

 [SemVer] "Semantic Versioning 2.0.0 (text from June 19, 2020)",
 <https://github.com/semver/semver/
 blob/8b2e8eec394948632957639dfa99fc7ec6286911/semver.md>.

 [IfTypeYang]
 "iana-if-type YANG Module",
 <https://www.iana.org/assignments/iana-if-type/iana-if-
 type.xhtml>.

 [RoutingTypesYang]
 "iana-routing-types YANG Module",
 <https://www.iana.org/assignments/iana-routing-types/iana-
 routing-types.xhtml>.

Appendix A. Example IETF Module Development

 Assume a new YANG module is being developed in the netmod working
 group in the IETF. Initially, this module is being developed in an
 individual internet draft, draft-jdoe-netmod-example-module. The
 following represents the initial version tree (i.e., value of
 ys:version) of the module as it’s being initially developed.

 Version lineage for initial module development:

 0.0.1-draft-jdoe-netmod-example-module-00
 |
 0.1.0-draft-jdoe-netmod-example-module-01
 |
 0.2.0-draft-jdoe-netmod-example-module-02
 |
 0.2.1-draft-jdoe-netmod-example-module-03

 At this point, development stabilizes, and the workgroup adopts the
 draft. Thus now the draft becomes draft-ietf-netmod-example-module.
 The initial pre-release lineage continues as follows.

 Continued version progression after adoption:

Clarke, et al. Expires 19 September 2024 [Page 32]

Internet-Draft YANG Semver March 2024

 1.0.0-draft-ietf-netmod-example-module-00
 |
 1.0.0-draft-ietf-netmod-example-module-01
 |
 1.0.0-draft-ietf-netmod-example-module-02

 At this point, the draft is standardized and becomes RFC12345 and the
 YANG module version becomes 1.0.0.

 A time later, the module needs to be revised to add additional
 capabilities. Development will be done in a backwards-compatible
 way. Two new individual drafts are proposed to go about adding the
 capabilities in different ways: draft-jdoe-netmod-exmod-enhancements
 and draft-asmith-netmod-exmod-changes. These are initially developed
 in parallel with the following versions.

 Parallel development for next module revision (track 1):

 1.1.0-draft-jdoe-netmod-exmod-enhancements-00
 |
 1.1.0-draft-jdoe-netmod-exmod-enhancements-01

 In parallel with (track 2):

 1.1.0-draft-asmith-netmod-exmod-changes-00
 |
 1.1.0-draft-asmith-netmod-exmod-changes-01

 At this point, the WG decides to merge some aspects of both and adopt
 the work in asmith’s draft as draft-ietf-netmod-exmod-changes. A
 single version progression continues.

 1.1.0-draft-ietf-netmod-exmod-changes-00
 |
 1.1.0-draft-ietf-netmod-exmod-changes-01
 |
 1.1.0-draft-ietf-netmod-exmod-changes-02
 |
 1.1.0-draft-ietf-netmod-exmod-changes-03

 The draft is standardized, and the new module version becomes 1.1.0.

Authors’ Addresses

Clarke, et al. Expires 19 September 2024 [Page 33]

Internet-Draft YANG Semver March 2024

 Joe Clarke (editor)
 Cisco Systems, Inc.
 7200-12 Kit Creek Rd
 Research Triangle Park, North Carolina
 United States of America
 Phone: +1-919-392-2867
 Email: jclarke@cisco.com

 Robert Wilton (editor)
 Cisco Systems, Inc.
 Email: rwilton@cisco.com

 Reshad Rahman
 Equinix
 Email: reshad@yahoo.com

 Balazs Lengyel
 Ericsson
 1117 Budapest
 Magyar Tudosok Korutja
 Hungary
 Phone: +36-70-330-7909
 Email: balazs.lengyel@ericsson.com

 Jason Sterne
 Nokia
 Email: jason.sterne@nokia.com

 Benoit Claise
 Huawei
 Email: benoit.claise@huawei.com

Clarke, et al. Expires 19 September 2024 [Page 34]

NETMOD Q. Ma

Internet-Draft Q. Wu

Intended status: Standards Track Huawei

Expires: 5 January 2023 B. Lengyel

 Ericsson

 H. Li

 HPE

 4 July 2022

 YANG Extension and Metadata Annotation for Immutable Flag

 draft-ma-netmod-immutable-flag-02

Abstract

 This document defines a YANG extension named "immutable" to indicate

 that specific "config true" data nodes are not allowed to be

 created/deleted/updated. To indicate that specific instances of a

 list/leaf-list node cannot be changed after initialization, a

 metadata annotation with the same name is also defined. Any data

 node or instance marked as immutable is read-only to the clients of

 YANG-driven management protocols, such as NETCONF, RESTCONF and other

 management operations (e.g., SNMP and CLI requests).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 5 January 2023.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the

 document authors. All rights reserved.

Ma, et al. Expires 5 January 2023 [Page 1]

Internet-Draft Immutable Flag July 2022

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2

 1.1. Terminology . 3

 2. Overview . 4

 3. "Immutable" YANG Extension 5

 4. "Immutable" Metadata Annotation 5

 5. YANG Module . 6

 6. IANA Considerations . 9

 6.1. The "IETF XML" Registry 9

 6.2. The "YANG Module Names" Registry 9

 7. Security Considerations 9

 8. References . 10

 8.1. Normative References 10

 8.2. Informative References 11

 Appendix A. Usage Examples 11

 A.1. Interface Example . 11

 A.1.1. Creating an Interface with a "type" Value 12

 A.1.2. Updating the Value of an Interface Type 13

 A.2. Immutable System Capabilities Modelled as "config

 true" . 14

 A.3. Immutable System-defined List Entries 15

 Appendix B. Changes between revisions 15

 Authors’ Addresses . 16

1. Introduction

 YANG [RFC7950] is a data modeling language used to model both state

 and configuration data, based on the "config" statement. However

 there exists data that should not be modifiable by the client, but

 still needs to be declared as "config true" to:

 * allow configuration of data nodes under immutable lists or

 containers;

 * ensure the existence of specific list entries that are provided

 and needed by the system, while additional list entries can be

 created, modified or deleted;

Ma, et al. Expires 5 January 2023 [Page 2]

Internet-Draft Immutable Flag July 2022

 * place "when", "must" and "leafref" constraints between

 configuration and immutable schema nodes.

 E.g., the interface name and type values created by the system due to

 the hardware currently present in the device cannot be modified by

 clients, while configurations such as MTU created by the system are

 free to be modified by the client. Further examples and use-cases

 are described in Appendix A.

 Allowing some configuration to be modifiable while other parts are

 not is inconsistent and introduces ambiguity to clients.

 To address this issue, this document defines a YANG extension and a

 metadata annotation [RFC7952] named "immutable" to indicate the

 immutability characteristic of a particular schema node or

 instantiated data node. If a schema node is marked as immutable,

 data nodes based on the schema MUST NOT be added, removed or updated

 by management protocols, such as NETCONF, RESTCONF or other

 management operations (e.g., SNMP and CLI requests). If an

 instantiated data node is marked as immutable the server MUST reject

 changes to it by YANG-driven management protocols, such as NETCONF,

 RESTCONF and other management operations (e.g., SNMP and CLI

 requests). Marking instance data nodes as immutable (as opposed to

 marking schema-nodes) is important when only some instances of a list

 or leaf-list shall be marked as read-only.

 Theoretically, any "config true" data node is allowed to be created,

 updated and deleted. This work makes write access restrictions other

 than general YANG and NACM rules visible, which doesn’t mean

 attaching such restrictions is encouraged.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in BCP

 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

 The following terms are defined in [RFC6241] and [RFC8341] and are

 not redefined here:

 * configuration data

 * access operation

 * write access

Ma, et al. Expires 5 January 2023 [Page 3]

Internet-Draft Immutable Flag July 2022

 The following terms are defined in this document:

 immutable: A property indicating that a schema node or data instance

 is not allowed to be created/deleted/updated.

2. Overview

 The "immutable" concept only puts write access restrictions to read-

 write datastores. When a specific data node or instance is marked as

 "immutable", NACM cannot override this to allow create/delete/update

 access.

 A particular data node or instance MUST have the same immutability in

 all read-write datastores. The immutable annotation information

 should be visible even in read-only datastores (e.g., <system>,

 <intended>, <operational>), however this only serves as information

 about the data node itself, but has no effect on the handling of the

 read-only datastore. The immutability property of a particular data

 node or instance MUST be protocol-independent and user-independent.

 If a particular container/list/leaf-list node is marked as

 "immutable" without exceptions for "delete" in the schema, the server

 SHOULD NOT annotate its instances, as that provides no additional

 information. If a particular leaf/anydata/anyxml node is marked as

 "immutable" without exceptions for "delete" or "update" in the

 schema, the server SHOULD NOT annotate its instances, as that

 provides no additional information.

 Servers MUST reject any attempt to the "create", "delete" and

 "update" access operations on an immutable data node or instance

 marked by the metadata annotation or YANG extension (except according

 to the exceptions argument). The error reporting is performed

 immediately at an <edit-config> operation time, regardless what the

 target configuration datastore is. For an example of an "invalid-

 value" error response, see Appendix A.1.2.

 However the following operations SHOULD be allowed:

 * Use a create, update, delete/remove operation on an immutable

 node/instance if the effective change is null. E.g. If a leaf

 has a current value of "5" it should be allowed to replace it with

 a value of "5".

 * Create an immutable data node/instance with a same value initially

 set by the system if it doesn’t exist in the datastore. E.g.,

 explicitly configure a system-generated interface name and type in

 <running>;

Ma, et al. Expires 5 January 2023 [Page 4]

Internet-Draft Immutable Flag July 2022

 Note that even if a particular data node is immutable without the

 exception for "delete", it still can be deleted with its parent node,

 e.g., /if:interfaces/if:interface/if:type leaf is immutable, but the

 deletion to the /if:interfaces/if:interface list entry is allowed; if

 a particular data node is immutable without the exception for

 "create", it means the client can never create the instance of it,

 regardless the handling of its parent node.

 TODO: Is immutable inherited down the containment hierarchy? If it

 is, should we allow overriding the immutability of a particular

 contained element (i.e., to declare a contained data node as

 immutable=false inside an immutable container/list) ?

3. "Immutable" YANG Extension

 The "immutable" YANG extension can be a substatement to a leaf, leaf-

 list, container, list, anydata or anyxml statement. It indicates

 that data nodes based on the parent statement MUST NOT be added,

 removed or updated except according to the exceptions argument. The

 server MUST reject any such write attempt.

 The "immutable" YANG extension defines an argument statement named

 "exceptions" which gives a list of operations that users are

 permitted to invoke for the specified node.

 The following values are supported for the "exceptions" argument:

 * Create: allow users to create instances of the data node;

 * Update: allow users to modify instances of the data node;

 * Delete: allow users to delete instances of the data node.

4. "Immutable" Metadata Annotation

 The "immutable" flag is used to indicate the immutability of a

 particular instantiated data node. It only applies to the list/leaf-

 list entries. The values are boolean types indicating whether the

 data node instance is immutable or not.

 Any list/leaf-list instance annotated with immutable="true" is read-

 only to clients, which means that once an instance is created, the

 client cannot change it. If a list entry is annotated with

 immutable="true", any contained descendant instances of any type

 (including leafs, lists, containers, etc.) inside the specific

 instance is not allowed to be created, updated and deleted without

 the need to annotate descendant nodes instances explicitly.

Ma, et al. Expires 5 January 2023 [Page 5]

Internet-Draft Immutable Flag July 2022

 Note that "immutable" metadata annotation is used to annotate

 instances of a list/leaf-list rather than schema nodes. For

 instance, a list node may exist in multiple instances in the data

 tree, "immutable" can annotate some of the instances as read-only,

 while others are not.

 When the client retrieves a particular datastore, immutable data node

 instances MUST be annotated with immutable="true" by the server. If

 the "immutable" metadata annotation inside a list entry is not

 specified, the default "immutable" value for a list/leaf-list entry

 is false.

 Different from the "immutable" YANG extension, deletion to an

 instance marked with immutable="true" metadata annotation SHOULD

 always be allowed unless the list/leaf-list data node in the schema

 has an im:immutable extension as substatement without a "delete"

 exception.

5. YANG Module

 <CODE BEGINS>

 file="ietf-immutable@2022-04-18.yang"

 // RFC Ed.: replace XXXX with RFC number and remove this note

 module ietf-immutable {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-immutable";

 prefix im;

 import ietf-yang-metadata {

 prefix md;

 }

 organization

 "IETF Network Modeling (NETMOD) Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/netmod/>

 WG List: <mailto:netmod@ietf.org>

 Author: Qiufang Ma

 <mailto:maqiufang1@huawei.com>

 Author: Qin Wu

 <mailto:bill.wu@huawei.com>

 Author: Balazs Lengyel

 <mailto:balazs.lengyel@ericsson.com>

Ma, et al. Expires 5 January 2023 [Page 6]

Internet-Draft Immutable Flag July 2022

 Author: Hongwei Li

 <mailto:flycoolman@gmail.com>";

 description

 "This module defines a metadata annotation named ’immutable’

 to indicate the immutability of a particular instantiated

 data node. Any instantiated data node marked with

 immutable=’true’ by the server is read-only to the clients

 of YANG-driven management protocols, such as NETCONF,

 RESTCONF as well as SNMP and CLI requests.

 The module defines the immutable extension that indicates

 that data nodes based ona data-dafinition statement cannot

 be added removed or updated except according to the

 exceptions argument.

 Copyright (c) 2022 IETF Trust and the persons identified

 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with

 or without modification, is permitted pursuant to, and

 subject to the license terms contained in, the Revised

 BSD License set forth in Section 4.c of the IETF Trust’s

 Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC HHHH

 (https://www.rfc-editor.org/info/rfcHHHH); see the RFC

 itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’,

 ’SHALL NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’,

 ’NOT RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this document

 are to be interpreted as described in BCP 14 (RFC 2119)

 (RFC 8174) when, and only when, they appear in all

 capitals, as shown here.";

 revision 2022-04-18 {

 description

 "Initial revision.";

 reference

 "RFC XXXX: Immutable Metadata Annotation";

 }

 extension immutable {

 argument exceptions;

 description

 "The ’immutable’ extension as a substatement to a data

Ma, et al. Expires 5 January 2023 [Page 7]

Internet-Draft Immutable Flag July 2022

 definition statement indicates that data nodes based on

 the parent statement MUST NOT be added, removed or

 updated by management protocols, such as NETCONF,

 RESTCONF or other management operations (e.g., SNMP

 and CLI requests) except when indicated by the

 exceptions argument.

 Immutable data MAY be marked as config true to allow

 ’leafref’, ’when’ or ’must’ constraints to be based

 on it.

 The statement MUST only be a substatement of the leaf,

 leaf-list, container, list, anydata, anyxml statements.

 Zero or one immutable statement per parent statement

 is allowed.

 No substatements are allowed.

 The argument is a list of operations that are

 permitted to be used for the specified node, while

 other operations are forbidden by the immutable extension.

 - create: allows users to create instances of the data node

 - update: allows users to modify instances of the data node

 - delete: allows users to delete instances of the data node

 To disallow all user write access, omit the argument;

 To allow only create and delete user access, provide

 the string ’create delete’ for the ’exceptions’ parameter.

 Providing all 3 parameters has the same affect as not

 using this extension at all, but can be used anyway.

 Equivalent YANG definition for this extension:

 leaf immutable {

 type bits {

 bit create;

 bit update;

 bit delete;

 }

 default ’’;

 }

 Adding immutable or removing values from the

 exceptions argument of an existing immutable statement

 are non-backwards compatible changes.

 Other changes to immutable are backwards compatible.";

Ma, et al. Expires 5 January 2023 [Page 8]

Internet-Draft Immutable Flag July 2022

 }

 md:annotation immutable {

 type boolean;

 description

 "The ’immutable’ annotation indicates the immutability of an

 instantiated data node. Any data node instance marked as

 ’immutable=true’ is read-only to clients and cannot be

 updated through NETCONF, RESTCONF or CLI. It applies to the

 list and leaf-list entries. The default is ’immutable=false’

 if not specified for an instance.";

 }

 }

 <CODE ENDS>

6. IANA Considerations

6.1. The "IETF XML" Registry

 This document registers one XML namespace URN in the ’IETF XML

 registry’, following the format defined in [RFC3688].

 URI: urn:ietf:params:xml:ns:yang:ietf-immutable

 Registrant Contact: The IESG.

 XML: N/A, the requested URIs are XML namespaces.

6.2. The "YANG Module Names" Registry

 This document registers one module name in the ’YANG Module Names’

 registry, defined in [RFC6020].

 name: ietf-immutable

 prefix: im

 namespace: urn:ietf:params:xml:ns:yang:ietf-immutable

 RFC: XXXX // RFC Ed.: replace XXXX and remove this comment

7. Security Considerations

 The YANG module specified in this document defines a metadata

 annotation for data nodes that is designed to be accessed network

 management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040].

 The lowest NETCONF layer is the secure transport layer, and the

 mandatory-to-implement secure transport is Secure Shell (SSH)

 [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-

 implement secure transport is TLS [RFC8446].

Ma, et al. Expires 5 January 2023 [Page 9]

Internet-Draft Immutable Flag July 2022

 Since immutable information is tied to applied configuration values,

 it is only accessible to clients that have the permissions to read

 the applied configuration values.

 The security considerations for the Defining and Using Metadata with

 YANG (see Section 9 of [RFC7952]) apply to the metadata annotation

 defined in this document.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

 DOI 10.17487/RFC3688, January 2004,

 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for

 the Network Configuration Protocol (NETCONF)", RFC 6020,

 DOI 10.17487/RFC6020, October 2010,

 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,

 and A. Bierman, Ed., "Network Configuration Protocol

 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure

 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,

 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",

 RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC7952] Lhotka, L., "Defining and Using Metadata with YANG",

 RFC 7952, DOI 10.17487/RFC7952, August 2016,

 <https://www.rfc-editor.org/info/rfc7952>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

 <https://www.rfc-editor.org/info/rfc8040>.

Ma, et al. Expires 5 January 2023 [Page 10]

Internet-Draft Immutable Flag July 2022

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration

 Access Control Model", STD 91, RFC 8341,

 DOI 10.17487/RFC8341, March 2018,

 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol

 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,

 <https://www.rfc-editor.org/info/rfc8446>.

8.2. Informative References

 [I-D.ma-netmod-with-system]

 Ma, Q., Watsen, K., Wu, Q., Chong, F., and J. Lindblad,

 "System-defined Configuration", Work in Progress,

 Internet-Draft, draft-ma-netmod-with-system-03, 10 April

 2022, <https://www.ietf.org/archive/id/draft-ma-netmod-

 with-system-03.txt>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Appendix A. Usage Examples

A.1. Interface Example

 This section shows how to use im:immutable YANG extension to mark

 some data node as immutable.

 When an interface is physically present, the system will create an

 interface entry automatically with valid name and type values in

 <system> (see [I-D.ma-netmod-with-system]). The system-generated

 data is dependent on and must represent the HW present, and as a

 consequence must not be changed by the client. The data is modelled

 as "config true" and should be marked as immuable.

 Seemingly an alternative would be to model the list and these leaves

 as "config false", but that does not work because:

 * The list cannot be marked as "config false", because it needs to

 contain configurable child nodes, e.g., ip-address or enabled;

 * The key leaf (name) cannot be marked as "config false" as the list

 itself is config true;

 * The type cannot be marked "config false", because we MAY need to

 reference the type to make different configuration nodes

 conditionally available.

Ma, et al. Expires 5 January 2023 [Page 11]

Internet-Draft Immutable Flag July 2022

 The immutability of the data is the same for all interface instances,

 thus following fragment of a fictional interface module including an

 "immutable" YANG extension can be used:

 container interfaces {

 list interface {

 key "name";

 leaf name {

 type string;

 }

 leaf type {

 im:immutable "create";

 type identityref {

 base ianaift:iana-interface-type;

 }

 mandatory true;

 }

 leaf mtu {

 type uint16;

 }

 leaf-list ip-address {

 type inet:ip-address;

 }

 }

 }

 Note that the "name" leaf is defined as a list key which can never

 been modified for a particular list entry, there is no need to mark

 "name" as immutable.

A.1.1. Creating an Interface with a "type" Value

 As defined in the YANG model, there is an exception for "create"

 operation. Assume the interface hardware is not present physically

 at this point, the client is allowed to create an interface named

 "eth0" with a type value in <running>:

Ma, et al. Expires 5 January 2023 [Page 12]

Internet-Draft Immutable Flag July 2022

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

 message-id="101">

 <edit-config>

 <target>

 <running/>

 </target>

 <config>

 <interface xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0"

 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type"

 xc:operation="create">

 <name>eth0</name>

 <type>ianaift:ethernetCsmacd</type>

 </interface>

 </config>

 </edit-config>

 </rpc>

 <rpc-reply message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <ok/>

 </rpc-reply>

 The interface data does not appear in <operational> since the

 physical interface doesn’t exist. When the interface is inserted,

 the system will detect it and create the associated configuration in

 <system>. The system tries to merge the interface configuration in

 the <running> datastore with the same name as the inserted interface

 configuration in <system>. If no such interface configuration named

 "eth0" is found in <system> or the type set by the client doesn’t

 match the real interface type generated by the system, only the

 system-defined interface configuration is applied and present in

 <operational>.

A.1.2. Updating the Value of an Interface Type

 Assume the system applied the interface configuration named "eth0"

 successfully. If a client tries to change the type of an interface

 to a value that doesn’t match the real type of the interface used by

 the system, the server must reject the request:

Ma, et al. Expires 5 January 2023 [Page 13]

Internet-Draft Immutable Flag July 2022

 <rpc message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

 xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">

 <edit-config>

 <target>

 <running/>

 </target>

 <config>

 <interface xc:operation="merge"

 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">

 <name>eth0</name>

 <type>ianaift:tunnel</type>

 </interface>

 </config>

 </edit-config>

 </rpc>

 <rpc-reply message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

 xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">

 <rpc-error>

 <error-type>application</error-type>

 <error-tag>invalid-value</error-tag>

 <error-severity>error</error-severity>

 <error-path xmlns:t="http://example.com/schema/1.2/config">

 /interfaces/interface[name="eth0"]/type

 </error-path>

 <error-message xml:lang="en">

 Invalid type for interface eth0

 </error-message>

 </rpc-error>

 </rpc-reply>

A.2. Immutable System Capabilities Modelled as "config true"

 System capabilities might be represented as system-defined data nodes

 in the model. Configurable data nodes might need constraints

 specified as "when", "must" or "path" statements to ensure that

 configuration is set according to the system’s capabilities. E.g.,

 * A timer can support the values 1,5,8 seconds. This is defined in

 the leaf-list ’supported-timer-values’.

 * When the configurable ’interface-timer’ leaf is set, it should be

 ensured that one of the supported values is used. The natural

 solution would be to make the ’interface-timer’ a leaf-ref

 pointing at the ’supported-timer-values’.

Ma, et al. Expires 5 January 2023 [Page 14]

Internet-Draft Immutable Flag July 2022

 However, this is not possible as ’supported-timer-values’ must be

 read-only thus config=false while ’interface-timer’ must be writable

 thus config=true. According to the rules of YANG it is not allowed

 to put a constraint between config true and false schema nodes.

 The solution is that the supported-timer-values data node in the YANG

 Model shall be defined as "config true" and shall also be marked with

 the "immutable" extension. After this the ’interface-timer’ shall be

 defined as a leaf-ref pointing at the ’supported-timer-values’.

A.3. Immutable System-defined List Entries

 There are some system-defined entries for a "config true" list which

 are present in <system> (see [I-D.ma-netmod-with-system]) and cannot

 be updated by the client, such system-defined instances should be

 defined immutable. The client is free to define, update and delete

 their own list entries in <running>. Thus the list data node in the

 YANG model cannot be marked as "immutable" extension as a whole. But

 some of the system-defined list entries need to be protected if they

 are copied from the <system> datastore to <running>.

 An immutable metadata annotation can be useful in this case. When

 the client retrieves those system-defined entries towards <system>

 (or <running> if they are copied into <running>), an immutable="true"

 annotation is returned; so that the client can understand that the

 predefined list entries shall not be updated but they can configure

 their list entries without any restriction.

Appendix B. Changes between revisions

 Note to RFC Editor (To be removed by RFC Editor)

 v01 - v02

 * clarify the relation between the creation/deletion of the

 immutable data node with its parent data node;

 * Add a "TODO" comment about the inheritance of the immutable

 property;

 * Define that the server should reject write attempt to the

 immutable data node at an <edit-config> operation time, rather

 than waiting until a <commit> or <validate> operation takes place;

 v00 - v01

 * Added immutable extension

Ma, et al. Expires 5 January 2023 [Page 15]

Internet-Draft Immutable Flag July 2022

 * Added new use-cases for immutable extension and annotation

 * Added requirement that an update that means no effective change

 should always be allowed

 * Added clarification that immutable is only applied to read-write

 datastore

 * Narrowed the applied scope of metadata annotation to list/leaf-

 list instances

Authors’ Addresses

 Qiufang Ma

 Huawei

 101 Software Avenue, Yuhua District

 Nanjing

 Jiangsu, 210012

 China

 Email: maqiufang1@huawei.com

 Qin Wu

 Huawei

 101 Software Avenue, Yuhua District

 Nanjing

 Jiangsu, 210012

 China

 Email: bill.wu@huawei.com

 Balazs Lengyel

 Ericsson

 Email: balazs.lengyel@ericsson.com

 Hongwei Li

 HPE

 Email: flycoolman@gmail.com

Ma, et al. Expires 5 January 2023 [Page 16]

NETMOD Q. Ma

Internet-Draft Q. Wu

Intended status: Standards Track Huawei

Expires: 24 April 2024 B. Lengyel

 Ericsson

 H. Li

 HPE

 22 October 2023

 YANG Metadata Annotation for Immutable Flag

 draft-ma-netmod-immutable-flag-09

Abstract

 This document defines a way to formally document existing behavior,

 implemented by servers in production, on the immutability of some

 system configuration nodes, using a YANG metadata annotation called

 "immutable" to flag which nodes are immutable.

 Clients may use "immutable" annotations provided by the server, to

 know beforehand why certain otherwise valid configuration requests

 will cause the server to return an error.

 The immutable flag is descriptive, documenting existing behavior, not

 proscriptive, dictating server behavior.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 24 April 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the

 document authors. All rights reserved.

Ma, et al. Expires 24 April 2024 [Page 1]

Internet-Draft Immutable Flag October 2023

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3

 1.1. Terminology . 4

 1.2. Applicability . 5

 2. Solution Overview . 5

 3. "Immutable" Metadata Annotation 5

 3.1. Definition . 6

 3.2. "with-immutable" Parameter 6

 4. Use of "immutable" Flag for Different Statements 6

 4.1. The "leaf" Statement 7

 4.2. The "leaf-list" Statement 7

 4.3. The "container" Statement 7

 4.4. The "list" Statement 7

 4.5. The "anydata" Statement 7

 4.6. The "anyxml" Statement 7

 5. Immutability of Interior Nodes 8

 6. Interaction between Immutable Flag and <system> 8

 7. Interaction between Immutable Flag and NACM 9

 8. YANG Module . 9

 9. IANA Considerations . 11

 9.1. The "IETF XML" Registry 12

 9.2. The "YANG Module Names" Registry 12

 10. Security Considerations 12

 Acknowledgements . 12

 References . 12

 Normative References . 12

 Informative References . 13

 Appendix A. Detailed Use Cases 14

 A.1. UC1 - Modeling of server capabilities 14

 A.2. UC2 - HW based auto-configuration - Interface Example . . 15

 A.3. UC3 - Predefined Administrator Roles 15

 A.4. UC4 - Declaring immutable system configuration from an

 LNE’s perspective . 16

 Appendix B. Existing implementations 16

 Appendix C. Changes between revisions 16

 Appendix D. Open Issues tracking 19

 Authors’ Addresses . 19

Ma, et al. Expires 24 April 2024 [Page 2]

Internet-Draft Immutable Flag October 2023

1. Introduction

 This document defines a way to formally document as a YANG metadata

 annotation an existing model handling behavior that has been used by

 multiple standard organizations and vendors. It is the aim to create

 one single standard solution for documenting non-modifiable system

 data declared as configuration, instead of the multiple existing

 vendor and organization specific solutions. See Appendix B for

 existing implementations.

 YANG [RFC7950] is a data modeling language used to model both state

 and configuration data, based on the "config" statement. However,

 there exists some system configuration data that cannot be modified

 by the client (it is immutable), but still needs to be declared as

 "config true" to:

 * allow configuration of data nodes under immutable lists or

 containers;

 * place "when", "must" and "leafref" constraints between

 configuration and immutable data nodes.

 * ensure the existence of specific list entries that are provided

 and needed by the system, while additional list entries can be

 created, modified or deleted;

 If the server always rejects the client attempts to override

 immutable system configuration [I-D.ietf-netmod-system-config]

 because it internally thinks it immutable, it should document this

 towards the clients in a machine-readable way rather than writing as

 plain text in the description statement.

 This document defines a way to formally document existing behavior,

 implemented by servers in production, on the immutability of some

 system configuration nodes, using a YANG metadata annotation

 [RFC7952] called "immutable" to flag which nodes are immutable.

 This document does not apply to the server not having any immutable

 system configuration. While in some cases immutability may be

 needed, it also has disadvantages, therefore it SHOULD be avoided

 wherever possible.

 The following is a list of already implemented and potential use

 cases.

 UC1 Modeling of server capabilities

 UC2 HW based auto-configuration

Ma, et al. Expires 24 April 2024 [Page 3]

Internet-Draft Immutable Flag October 2023

 UC3 Predefined administrator roles

 UC4 Declaring immutable system configuration from an LNE’s

 perspective

 Appendix A describes the use cases in detail.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in BCP

 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

 The following terms are defined in [RFC6241]:

 * configuration data

 The following terms are defined in [RFC7950]:

 * data node

 * leaf

 * leaf-list

 * container

 * list

 * anydata

 * anyxml

 * interior node

 * data tree

 The following terms are defined in [RFC8341]:

 * access operation

 * write access

 The following terms are defined in this document:

 immutable flag: A read-only state value the server provides to

Ma, et al. Expires 24 April 2024 [Page 4]

Internet-Draft Immutable Flag October 2023

 describe system data it considers immutable. The immutability of

 data nodes is conveyed via a YANG metadata annotation called

 "immutable".

1.2. Applicability

 This document focuses on the configuration which can only be created,

 updated and deleted by the server.

 The immutable annotation information is also visible in read-only

 datastores like <system> (if exists), <intended> and <operational>

 when a "with-immutable" parameter is carried (see Section 3.2),

 however this only serves as descriptive information about the

 instance node itself, but has no effect on the handling of the read-

 only datastore.

 Configuration data must have the same immutability in different

 writable datastores. The immutability of data nodes is protocol and

 user independent. The immutability and configured value of an

 existing node must only change by software upgrade or hardware

 resource/license change.

2. Solution Overview

 Immutable configuration can only be created by the system regardless

 of the implementation of <system> [I-D.ietf-netmod-system-config].

 Immutable configuration is present in <system> (if implements). It

 may be updated or deleted depending on factors like software upgrade

 or hardware resources/license change. Immutable configuration does

 not appear in <running> unless it is copied explicitly or

 automatically (e.g., by "resolve-system" parameter)

 [I-D.ietf-netmod-system-config].

 A client may create/delete immutable nodes with same values as found

 in <system> (if exists) in read-write configuration datastore (e.g.,

 <running>), which merely mean making immutable nodes visible/

 invisible in read-write configuration datastore (e.g., <running>).

 The "immutable" flag is intended to be descriptive.

3. "Immutable" Metadata Annotation

Ma, et al. Expires 24 April 2024 [Page 5]

Internet-Draft Immutable Flag October 2023

3.1. Definition

 The "immutable" metadata annotation takes as an value which is a

 boolean type, it is not returned unless a client explicitly requests

 through a "with-immutable" parameter (see Section 3.2). If the

 "immutable" metadata annotation for data node instances is not

 specified, the default "immutable" value is the same as the

 immutability of its parent node in the data tree. The immutable

 metadata annotation value for a top-level instance node is false if

 not specified.

 Note that "immutable" metadata annotation is used to annotate data

 node instances. A list may have multiple entries/instances in the

 data tree, "immutable" can annotate some of the instances as read-

 only, while others are read-write.

3.2. "with-immutable" Parameter

 The YANG model defined in this document (see Section 8) augments the

 <get-config>, <get> operation defined in RFC 6241, and the <get-data>

 operation defined in RFC 8526 with a new parameter named "with-

 immutable". When this parameter is present, it requests that the

 server includes "immutable" metadata annotations in its response.

 This parameter may be used for read-only configuration datastores,

 e.g., <system> (if exists), <intended> and <operational>, but the

 "immutable" metadata annotation returned indicates the immutability

 towards read-write configuration datastores, e.g., <startup>,

 <candidate> and <running>. If the "immutable" metadata annotation

 for returned child nodes are omitted, it has the same immutability as

 its parent node. The immutability of top hierarchy of returned nodes

 is false by default.

 Note that "immutable" metadata annotation is not included in a

 response unless a client explicitly requests them with a "with-

 immutable" parameter.

4. Use of "immutable" Flag for Different Statements

 This section defines what the immutable flag means to the client for

 each instance of YANG data node statement.

 Throughout this section, the word "change" refers to create, update,

 and delete.

Ma, et al. Expires 24 April 2024 [Page 6]

Internet-Draft Immutable Flag October 2023

4.1. The "leaf" Statement

 When a leaf node instance is immutable, its value cannot change.

4.2. The "leaf-list" Statement

 When a leaf-list node instance is immutable, its value cannot change.

 When the "immutable" YANG metadata annotation is used on all existing

 leaf-list instances, or if a leaf-list inherits immutability from an

 ancestor, it means that the leaf-list as a whole cannot change:

 entries cannot be added, removed, or reordered, in case the leaf-list

 is "ordered-by user".

4.3. The "container" Statement

 When a container node instance is immutable, it cannot change, unless

 the immutability of its descendant node is toggled.

 By default, as with all interior nodes, immutability is recursively

 applied to descendants (see Section 5).

4.4. The "list" Statement

 When a list node instance is immutable, it cannot change, unless the

 immutability of its descendant node is toggled, per the description

 elsewhere in this section.

 By default, as with all interior nodes, immutability is recursively

 applied to descendants (see Section 5). This statement is applicable

 only to the "immutable" YANG extension, as the "list" node does not

 itself appear in data trees.

4.5. The "anydata" Statement

 When an anydata node instance is immutable, it cannot change.

 Additionally, as with all interior nodes, immutability is recursively

 applied to descendants (see Section 5).

4.6. The "anyxml" Statement

 When an "anyxml" node instance is immutable, it cannot change.

 Additionally, as with all interior nodes, immutability is recursively

 applied to descendants (see Section 5).

Ma, et al. Expires 24 April 2024 [Page 7]

Internet-Draft Immutable Flag October 2023

5. Immutability of Interior Nodes

 Immutability is a conceptual operational state value that is

 recursively applied to descendants, which may reset the immutability

 state as needed, thereby affecting their descendants. There is no

 limit to the number of times the immutability state may change in a

 data tree.

 For example, given the following application configuration XML

 snippets:

 <application im:immutable="true">

 <name>predefined-ftp</name>

 <protocol>ftp</protocol>

 <port-number im:immutable="false">69</port-number>

 </application>

 The list entry named "predefined-ftp" is immutable="true", but its

 child node "port-number" has the immutable="false" (thus the client

 can override this value). The other child node (e.g., "protocol")

 not specifying its immutability explicitly inherits immutability from

 its parent node thus is also immutable="true".

6. Interaction between Immutable Flag and <system>

 The system datastore is defined to hold system configuration provided

 by the device itself and make system configuration visible to clients

 in order for being referenced or configurable prior to present in

 <operational>. However, the device may allow some system-initialized

 node to be overridden, while others may not. System configuration

 exists regardless of whether <system> is implemented.

 This document defines a way to allow a server annotate instances of

 non-modifiable system configuration with metadata when system

 configuration is retrieved. A client aware of the "immutable"

 annotation can explicitly ask the server to return it via the "with-

 immutable" parameter in the request, thus is able to avoid making

 unnecessary modification attempts to immutable configuration. Legacy

 clients unaware of the "immutable" annotation don’t see any changes

 and encounter an error as always.

Ma, et al. Expires 24 April 2024 [Page 8]

Internet-Draft Immutable Flag October 2023

7. Interaction between Immutable Flag and NACM

 The server rejects an operation request due to immutability when it

 tries to perform the operation on the request data. It happens after

 any access control processing, if the Network Configuration Access

 Control Model (NACM) [RFC8341] is implemented on a server. For

 example, if an operation requests to override an immutable

 configuration data, but the server checks the user is not authorized

 to perform the requested access operation on the request data, the

 request is rejected with an "access-denied" error.

8. YANG Module

 <CODE BEGINS>

 file="ietf-immutable@2023-10-16.yang"

 //RFC Ed.: replace XXXX with RFC number and remove this note

 module ietf-immutable {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-immutable";

 prefix im;

 import ietf-yang-metadata {

 prefix md;

 }

 import ietf-netconf {

 prefix nc;

 reference

 "RFC 6241: Network Configuration Protocol (NETCONF)";

 }

 import ietf-netconf-nmda {

 prefix ncds;

 reference

 "RFC 8526: NETCONF Extensions to Support the Network

 Management Datastore Architecture";

 }

 organization

 "IETF Network Modeling (NETMOD) Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/netmod/>

 WG List: <mailto:netmod@ietf.org>

 Author: Qiufang Ma

 <mailto:maqiufang1@huawei.com>

 Author: Qin Wu

 <mailto:bill.wu@huawei.com>

Ma, et al. Expires 24 April 2024 [Page 9]

Internet-Draft Immutable Flag October 2023

 Author: Balazs Lengyel

 <mailto:balazs.lengyel@ericsson.com>

 Author: Hongwei Li

 <mailto:flycoolman@gmail.com>";

 description

 "This module defines a metadata annotation called ’immutable’

 to allow the server to formally document existing behavior on

 the mutability of some system configuration. Clients may use

 ’immutable’ metadata annotation provided by the server to know

 beforehand why certain otherwise valid configuration requests

 will cause the server to return an error.

 Copyright (c) 2023 IETF Trust and the persons identified

 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with

 or without modification, is permitted pursuant to, and

 subject to the license terms contained in, the Revised

 BSD License set forth in Section 4.c of the IETF Trust’s

 Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC HHHH

 (https://www.rfc-editor.org/info/rfcHHHH); see the RFC

 itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’,

 ’SHALL NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’,

 ’NOT RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this document

 are to be interpreted as described in BCP 14 (RFC 2119)

 (RFC 8174) when, and only when, they appear in all

 capitals, as shown here.";

 revision 2023-10-16 {

 description

 "Initial revision.";

 // RFC Ed.: replace XXXX and remove this comment

 reference

 "RFC XXXX: YANG Metadata Annotation for Immutable Flag";

 }

 md:annotation immutable {

 type boolean;

 description

 "The ’immutable’ metadata annotation indicates the

 immutability of an instantiated data node.

Ma, et al. Expires 24 April 2024 [Page 10]

Internet-Draft Immutable Flag October 2023

 The ’immutable’ metadata annotation takes as a value ’true’

 or ’false’. If the ’immutable’ metadata annotation for data

 node instances is not specified, the default value is the

 same as the value of its parent node in the data tree. The

 default value for a top-level instance node is false if not

 specified.";

 }

 grouping with-immutable-grouping {

 description

 "Grouping for the with-immutable parameter that augments the

 RPC operations.";

 leaf with-immutable {

 type empty;

 description

 "If this parameter is present, the server will return the

 ’immutable’ annotation for configuration that it

 internally thinks it immutable. When present, this

 parameter allows the server to formally document existing

 behavior on the mutability of some configuration nodes.";

 }

 }

 augment "/ncds:get-data/ncds:input" {

 description

 "Allows the server to include ’immutable’ metadata

 annotations in its response to get-data operation.";

 uses with-immutable-grouping;

 }

 augment "/nc:get-config/nc:input" {

 description

 "Allows the server to include ’immutable’ metadata

 annotations in its response to get-config operation.";

 uses with-immutable-grouping;

 }

 augment "/nc:get/nc:input" {

 description

 "Allows the server to include ’immutable’ metadata

 annotations in its response to get operation.";

 uses with-immutable-grouping;

 }

 }

 <CODE ENDS>

9. IANA Considerations

Ma, et al. Expires 24 April 2024 [Page 11]

Internet-Draft Immutable Flag October 2023

9.1. The "IETF XML" Registry

 This document registers one XML namespace URN in the ’IETF XML

 registry’, following the format defined in [RFC3688].

 URI: urn:ietf:params:xml:ns:yang:ietf-immutable

 Registrant Contact: The IESG.

 XML: N/A, the requested URIs are XML namespaces.

9.2. The "YANG Module Names" Registry

 This document registers one module name in the ’YANG Module Names’

 registry, defined in [RFC6020].

 name: ietf-immutable

 prefix: im

 namespace: urn:ietf:params:xml:ns:yang:ietf-immutable

 RFC: XXXX

 // RFC Ed.: replace XXXX and remove this comment

10. Security Considerations

 The YANG module specified in this document defines a YANG extension

 and a metadata Annotation. These can be used to further restrict

 write access but cannot be used to extend access rights.

 This document does not define any protocol-accessible data nodes.

 Since immutable information is tied to applied configuration values,

 it is only accessible to clients that have the permissions to read

 the applied configuration values.

 The security considerations for the Defining and Using Metadata with

 YANG (see Section 9 of [RFC7952]) apply to the metadata annotation

 defined in this document.

Acknowledgements

 Thanks to Kent Watsen, Andy Bierman, Robert Wilton, Jan Lindblad,

 Reshad Rahman, Anthony Somerset, Lou Berger, Joe Clarke, Scott

 Mansfield, and Juergen Schoenwaelder for reviewing, and providing

 important inputs to, this document.

References

Normative References

Ma, et al. Expires 24 April 2024 [Page 12]

Internet-Draft Immutable Flag October 2023

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for

 the Network Configuration Protocol (NETCONF)", RFC 6020,

 DOI 10.17487/RFC6020, October 2010,

 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,

 and A. Bierman, Ed., "Network Configuration Protocol

 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",

 RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC7952] Lhotka, L., "Defining and Using Metadata with YANG",

 RFC 7952, DOI 10.17487/RFC7952, August 2016,

 <https://www.rfc-editor.org/info/rfc7952>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration

 Access Control Model", STD 91, RFC 8341,

 DOI 10.17487/RFC8341, March 2018,

 <https://www.rfc-editor.org/info/rfc8341>.

Informative References

 [I-D.ietf-netmod-system-config]

 Ma, Q., Wu, Q., and C. Feng, "System-defined

 Configuration", Work in Progress, Internet-Draft, draft-

 ietf-netmod-system-config-03, 19 October 2023,

 <https://datatracker.ietf.org/doc/html/draft-ietf-netmod-

 system-config-03>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

 DOI 10.17487/RFC3688, January 2004,

 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8343] Bjorklund, M., "A YANG Data Model for Interface

 Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,

 <https://www.rfc-editor.org/info/rfc8343>.

Ma, et al. Expires 24 April 2024 [Page 13]

Internet-Draft Immutable Flag October 2023

 [RFC8530] Berger, L., Hopps, C., Lindem, A., Bogdanovic, D., and X.

 Liu, "YANG Model for Logical Network Elements", RFC 8530,

 DOI 10.17487/RFC8530, March 2019,

 <https://www.rfc-editor.org/info/rfc8530>.

 [TR-531] ONF, "UML to YANG Mapping Guidelines,

 <https://wiki.opennetworking.org/download/

 attachments/376340494/Draft_TR-531_UML-YANG_Mapping_Gdls_v

 1.1.03.docx?version=5&modificationDate=1675432243513&api=v

 2>", February 2023.

 [TS28.623] 3GPP, "Telecommunication management; Generic Network

 Resource Model (NRM) Integration Reference Point (IRP);

 Solution Set (SS) definitions,

 <https://www.3gpp.org/ftp/Specs/

 archive/28_series/28.623/28623-i02.zip>".

 [TS32.156] 3GPP, "Telecommunication management; Fixed Mobile

 Convergence (FMC) Model repertoire,

 <https://www.3gpp.org/ftp/Specs/

 archive/32_series/32.156/32156-h10.zip>".

Appendix A. Detailed Use Cases

A.1. UC1 - Modeling of server capabilities

 System capabilities might be represented as system-defined data nodes

 in the model. Configurable data nodes might need constraints

 specified as "when", "must" or "path" statements to ensure that

 configuration is set according to the system’s capabilities. E.g.,

 * A timer can support the values 1,5,8 seconds. This is defined in

 the leaf-list ’supported-timer-values’.

 * When the configurable ’interface-timer’ leaf is set, it should be

 ensured that one of the supported values is used. The natural

 solution would be to make the ’interface-timer’ a leaf-ref

 pointing at the ’supported-timer-values’.

 However, this is not possible as ’supported-timer-values’ must be

 read-only thus config=false while ’interface-timer’ must be writable

 thus config=true. According to the rules of YANG it is not allowed

 to put a constraint between config true and false data nodes.

Ma, et al. Expires 24 April 2024 [Page 14]

Internet-Draft Immutable Flag October 2023

 The solution is that the supported-timer-values data node in the YANG

 Model shall be defined as "config true" and shall also be marked with

 the "immutable" extension making it unchangeable. After this the

 ’interface-timer’ shall be defined as a leaf-ref pointing at the

 ’supported-timer-values’.

A.2. UC2 - HW based auto-configuration - Interface Example

 [RFC8343] defines a YANG data model for the management of network

 interfaces. When a system-controlled interface is physically

 present, the system creates an interface entry with valid name and

 type values in <system> (if exists, see

 [I-D.ietf-netmod-system-config]).

 The system-generated type value is dependent on and represents the HW

 present, and as a consequence cannot be changed by the client. If a

 client tries to set the type of an interface to a value that can

 never be used by the system, the request will be rejected by the

 server. The data is modelled as "config true" and should be

 annotated as immutable.

 Seemingly an alternative would be to model the list and these leaves

 as "config false", but that does not work because:

 * The list cannot be marked as "config false", because it needs to

 contain configurable child nodes, e.g., ip-address or enabled;

 * The key leaf (name) cannot be marked as "config false" as the list

 itself is config true;

 * The type cannot be marked "config false", because we MAY need to

 reference the type to make different configuration nodes

 conditionally available.

A.3. UC3 - Predefined Administrator Roles

 User and group management is fundamental for setting up access

 control rules (see section 2.5 of [RFC8341]).

 A device may provide a predefined user account (e.g., a system

 administrator that is always available and has full privileges) for

 initial system set up and management of other users/groups. It is

 possible that clients can define a new user/group and grant it

 particular privileges, but the predefined administrator account and

 its granted access cannot be modified.

Ma, et al. Expires 24 April 2024 [Page 15]

Internet-Draft Immutable Flag October 2023

A.4. UC4 - Declaring immutable system configuration from an LNE’s

 perspective

 An LNE (logical network element) is an independently managed virtual

 network device made up of resources allocated to it from its host or

 parent network device [RFC8530]. The host device may allocate some

 resources to an LNE, which from an LNE’s perspective is provided by

 the system and may not be modifiable.

 For example, a host may allocate an interface to an LNE with a valid

 MTU value as its management interface, so that the allocated

 interface should then be accessible as the LNE-specific instance of

 the interface model. The assigned MTU value is system-created and

 immutable from the context of the LNE.

Appendix B. Existing implementations

 There are already a number of full or partial implementations of

 immutability.

 3GPP TS 32.156 [TS32.156] and 28.623 [TS28.623]: Requirements and

 a partial solution

 ITU-T using ONF TR-531[TR-531] concept on information model level

 but no YANG representation.

 Ericsson: requirements and solution

 YumaPro: requirements and solution

 Nokia: partial requirements and solution

 Huawei: partial requirements and solution

 Cisco using the concept at least in some YANG modules

 Junos OS provides a hidden and immutable configuration group

 called junos-defaults

Appendix C. Changes between revisions

 Note to RFC Editor (To be removed by RFC Editor)

 v08 - v09

 * Remove immutable YANG extension definition to simplify the

 solution

Ma, et al. Expires 24 April 2024 [Page 16]

Internet-Draft Immutable Flag October 2023

 * Add a new section to discuss the interaction between immutable

 flag and <system>

 * Remove the error response example in Appendix A.

 * rewrite UC3, rename it to "Predefined Administrator Roles"

 v06 - v07

 * Use a Boolean type for the immutable value in YANG extension and

 metadata annotation

 * Define a "with-immutable" parameter and state that immutable

 metadata annotation is not included in a response unless a client

 explicitly requests them with a "with-immutable" parameter

 * reword the abstract and related introduction section to highlight

 immutable flag is descriptive

 * Add a new section to define immutability of interior nodes, and

 merge with "Inheritance of Immutable configuration" section

 * Add a new section to define what the immutable flag means for each

 YANG data node

 * Define the "immutable flag" term.

 * Add an item in the open issues tracking: Should the "immutable"

 metadata annotation also be returned for nodes described as

 immutable in the YANG schema so that there is a single source of

 truth?

 v05 - v06

 * Remove immutable BGP AS number case

 * Fix nits

 v04 - v05

 * Emphasized that the proposal tries to formally document existing

 allowed behavior

 * Reword the abstract and introduction sections;

 * Restructure the document;

 * Simplified the interface example in Appendix;

Ma, et al. Expires 24 April 2024 [Page 17]

Internet-Draft Immutable Flag October 2023

 * Add immutable BGP AS number and peer-type configuration example.

 * Added temporary section in Appendix B about list of existing non-

 standard solutions

 * Clarified inheritance of immutability

 * Clarified that this draft is not dependent on the existence of the

 <system> datastore.

 v03 - v04

 * Clarify how immutable flag interacts with NACM mechanism.

 v02 - v03

 * rephrase and avoid using "server MUST reject" statement, and try

 to clarify that this documents aims to provide visibility into

 existing immutable behavior;

 * Add a new section to discuss the inheritance of immutability;

 * Clarify that deletion to an immutable node in <running> which is

 instantiated in <system> and copied into <running> should always

 be allowed;

 * Clarify that write access restriction due to general YANG rules

 has no need to be marked as immutable.

 * Add an new section named "Acknowledgements";

 * editoral changes.

 v01 - v02

 * clarify the relation between the creation/deletion of the

 immutable data node with its parent data node;

 * Add a "TODO" comment about the inheritance of the immutable

 property;

 * Define that the server should reject write attempt to the

 immutable data node at an <edit-config> operation time, rather

 than waiting until a <commit> or <validate> operation takes place;

 v00 - v01

 * Added immutable extension

Ma, et al. Expires 24 April 2024 [Page 18]

Internet-Draft Immutable Flag October 2023

 * Added new use-cases for immutable extension and annotation

 * Added requirement that an update that means no effective change

 should always be allowed

 * Added clarification that immutable is only applied to read-write

 datastore

 * Narrowed the applied scope of metadata annotation to list/leaf-

 list instances

Appendix D. Open Issues tracking

 * Is this needed: error-code definition for edit failure because of

 immutability

Authors’ Addresses

 Qiufang Ma

 Huawei

 101 Software Avenue, Yuhua District

 Nanjing

 Jiangsu, 210012

 China

 Email: maqiufang1@huawei.com

 Qin Wu

 Huawei

 101 Software Avenue, Yuhua District

 Nanjing

 Jiangsu, 210012

 China

 Email: bill.wu@huawei.com

 Balazs Lengyel

 Ericsson

 Email: balazs.lengyel@ericsson.com

 Hongwei Li

 HPE

 Email: flycoolman@gmail.com

Ma, et al. Expires 24 April 2024 [Page 19]

NETMOD Q. Ma, Ed.
Internet-Draft Huawei
Updates: RFC8342, RFC6241, RFC8526, RFC8040 (if K. Watsen
 approved) Watsen Networks
Intended status: Standards Track Q. Wu
Expires: 12 October 2022 C. Feng
 Huawei
 J. Lindblad
 Cisco Systems
 10 April 2022

 System-defined Configuration
 draft-ma-netmod-with-system-03

Abstract

 This document updates NMDA [RFC8342] to define a read-only
 conventional configuration datastore called "system" to hold system-
 defined configurations. To avoid clients’ explicit copy/paste of
 referenced system-defined configuration into the target configuration
 datastore (e.g., <running>), a "resolve-system" parameter has been
 defined to allow the server acting as a "system client" to copy
 referenced system-defined nodes automatically. The solution enables
 clients manipulating the target configuration datastore (e.g.,
 <running>) to overlay and reference nodes defined in <system>,
 override values of configurations defined in <system>, and configure
 descendant nodes of system-defined nodes.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 12 October 2022.

Ma, et al. Expires 12 October 2022 [Page 1]

Internet-Draft System-defined Configuration April 2022

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 4
 1.2. Requirements Language 5
 1.3. Updates to RFC 8342 5
 1.4. Updates to RFC 6241, RFC 8526 5
 1.5. Updates to RFC 8040 6
 1.5.1. Query Parameter 6
 1.5.2. Query Parameter URI 6
 2. Kinds of System Configuration 7
 2.1. Immediately-Active 7
 2.2. Conditionally-Active 7
 2.3. Inactive-Until-Referenced 7
 3. Static Characteristics 7
 3.1. Read-only to Clients 7
 3.2. May Change via Software Upgrades 8
 3.3. No Impact to <operational> 8
 4. Dynamic Behavior . 8
 4.1. Conceptual Model . 8
 4.2. Explicit Declaration of System Configuration 9
 4.3. Servers Auto-configuring Referenced System
 Configuration . 10
 4.4. Modifying (overriding) System Configuration 10
 4.5. Examples . 11
 4.5.1. Server Configuring of <running> Automatically 11
 4.5.2. Declaring a System-defined Node in <running>
 Explicitly . 17
 4.5.3. Modifying a System-instantiated Leaf’s Value 20
 4.5.4. Configuring Descendant Nodes of a System-defined
 Node . 22
 5. The <system> Configuration Datastore 23
 6. The "ietf-system-datastore" Module 25
 6.1. Data Model Overview 25

Ma, et al. Expires 12 October 2022 [Page 2]

Internet-Draft System-defined Configuration April 2022

 6.2. Example Usage . 25
 6.3. YANG Module . 26
 7. The "ietf-netconf-resolve-system" Module 28
 7.1. Data Model Overview 28
 7.2. Example Usage . 29
 7.3. YANG Module . 32
 8. IANA Considerations . 34
 8.1. The "IETF XML" Registry 35
 8.2. The "YANG Module Names" Registry 35
 8.3. RESTCONF Capability URN Registry 35
 9. Security Considerations 35
 9.1. Regarding the "ietf-system-datastore" YANG Module 35
 9.2. Regarding the "ietf-netconf-resolve-system" YANG
 Module . 36
 10. Contributors . 36
 Acknowledgements . 36
 References . 36
 Normative References . 36
 Informative References . 37
 Appendix A. Key Use Cases 38
 A.1. Device Powers On . 38
 A.2. Client Commits Configuration 39
 A.3. Operator Installs Card into a Chassis 40
 Appendix B. Changes between Revisions 41
 Appendix C. Open Issues tracking 42
 Authors’ Addresses . 42

1. Introduction

 NMDA [RFC8342] defines system configuration as the configuration that
 is supplied by the device itself and should be present in
 <operational> when it is in use.

 However, there is a desire to enable a server to better document the
 system configuration. Clients can benefit from a standard mechanism
 to see what system configuration is available in a server.

 In some cases, the client references a system configuration which
 isn’t present in the target datastore (e.g., <running>). Having to
 copy the entire contents of the system configuration into the target
 datastore should be avoided or reduced when possible while ensuring
 that all referential integrity constraints are satisfied.

Ma, et al. Expires 12 October 2022 [Page 3]

Internet-Draft System-defined Configuration April 2022

 In some other cases, configuration of descendant nodes of system-
 defined configuration needs to be supported. For example, the system
 configuration may contain an almost empty physical interface, while
 the client needs to be able to add, modify, remove a number of
 descendant nodes. Some descendant nodes may not be modifiable (e.g.,
 "name" and "type" set by the system).

 This document updates NMDA [RFC8342] to define a read-only
 conventional configuration datastore called "system" to hold system-
 defined configurations. To avoid clients’ explicit copy/paste of
 referenced system-defined configuration into the target configuration
 datastore (e.g., <running>), a "resolve-system" parameter has been
 defined to allow the server acting as a "system client" to copy
 referenced system-defined nodes automatically. The solution enables
 clients manipulating the target configuration datastore (e.g.,
 <running>) to overlay and reference nodes defined in <system>,
 override values of configurations defined in <system>, and configure
 descendant nodes of system-defined nodes.

 Conformance to this document requires servers to implement the "ietf-
 system-datastore" YANG Module.

1.1. Terminology

 This document assumes that the reader is familiar with the contents
 of [RFC6241], [RFC7950], [RFC8342], [RFC8407], and [RFC8525] and uses
 terminologies from those documents.

 The following terms are defined in this document as follows:

 System configuration: Configuration that is provided by the system
 itself. System configuration is present in <system> once it’s
 created (regardless of being applied by the device), and appears
 in <intended> which is subject to validation. Applied system
 configuration also appears in <operational> with origin="system".

 System configuration datastore: A configuration datastore holding
 the complete configuration provided by the system itself. This
 datastore is referred to as "<system>".

 This document redefines the term "conventional configuration
 datastore" from RFC 8342 to add "system" to the list of conventional
 configuration datastores:

 Conventional configuration datastore: One of the following set of

Ma, et al. Expires 12 October 2022 [Page 4]

Internet-Draft System-defined Configuration April 2022

 configuration datastores: <running>, <startup>, <candidate>,
 <system>, and <intended>. These datastores share a common
 datastore schema, and protocol operations allow copying data
 between these datastores. The term "conventional" is chosen as a
 generic umbrella term for these datastores.

1.2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.3. Updates to RFC 8342

 This document updates RFC 8342 to define a configuration datastore
 called "system" to hold system configuration, it also redefines the
 term "conventional configuration datastore" from RFC 8342 to add
 "system" to the list of conventional configuration datastores. The
 contents of <system> datastore are read-only to clients but may
 change dynamically. The <system> aware client may retrieve all three
 types of system configuration defined in Section 2, reference nodes
 defined in <system>, override values of configurations defined in
 <system>, and configure descendant nodes of system-defined nodes.

 The server will merge <running> and <system> to create <intended>.
 As always, system configuration will appear in <operational> with
 origin="system" when it is in use.

 The <system> datastore makes system configuration visible to clients
 in order for being referenced or configurable prior to present in
 <operational>.

1.4. Updates to RFC 6241, RFC 8526

 This document augments <edit-config> and <edit-data> RPC operations
 defined in [RFC6241] and [RFC8526] respectively, with a new
 additional input parameter "resolve-system". The <copy-config> RPC
 operation defined in [RFC6241] is also augmented to support "resolve-
 system" parameter.

 The "resolve-system" parameter is optional and has no value. When it
 is provided and the server detects that there is a reference to a
 system-defined node during the validation, the server will
 automatically copy the referenced system configuration into the
 validated datastore to make the configuration valid without the

Ma, et al. Expires 12 October 2022 [Page 5]

Internet-Draft System-defined Configuration April 2022

 client doing so explicitly. Legacy Clients interacting with servers
 that support this parameter don’t see any changes in <edit-
 config>/<edit-data> and <copy-config> behaviors.

 According to the NETCONF constraint enforcement model defined in the
 section 8.3 of [RFC7950], if the target datastore of the <edit-
 config>/<edit-data> or <copy-config> is "running" or "startup", the
 server’s copy referenced nodes from <system> to the target datastore
 MUST be enforced at the end of the <edit-config>/<edit-data> or
 <copy-config> operations during the validation. If the target
 datastore of the <edit-config>/<edit-data> or <copy-config> is
 "candidate", the server’s copy referenced nodes from <system> to the
 target datastore is delayed until a <commit> or <validate> operation
 takes place.

1.5. Updates to RFC 8040

 This document extends Section 4.8 and Section 9.1.1 of [RFC8040] to
 add a new query parameter "resolve-system" and corresponding query
 parameter capability URI.

1.5.1. Query Parameter

 The "resolve-system" parameter controls whether to allow a server
 copy any referenced system-defined configuration automatically
 without the client doing so explicitly. This parameter is only
 allowed with no values carried. If this parameter has any unexpected
 value, then a "400 Bad Request" status-line is returned.

 +----------------+---------+---+
 | Name | Methods | Description |
 +----------------+---------+---+
resolve-system	POST,	resolve any references not resolved by
	PUT	the client and copy referenced
		system configuration into <running>
		automatically. This parameter can be
		given in any order.
 +----------------+---------+---+

1.5.2. Query Parameter URI

 To enable the RESTCONF client to discover if the "resolve-system"
 query parameter is supported by the server, the following capability
 URI is defined, which is advertised by the server if supported, using
 the "ietf-restconf-monitoring" module defined in RFC 8040:

 urn:ietf:params:restconf:capability:resolve-system:1.0

Ma, et al. Expires 12 October 2022 [Page 6]

Internet-Draft System-defined Configuration April 2022

2. Kinds of System Configuration

 There are three types of system configurations: immediately-active
 system configuration, conditionally-active system configuration and
 inactive-until-referenced system configuration.

2.1. Immediately-Active

 Immediately-active system configurations are those generated in
 <system> and applied immediately when the device is powered on (e.g.,
 a loop-back interface) , irrespective of physical resource present or
 not, a special functionality enabled or not.

2.2. Conditionally-Active

 System configurations which are generated in <system> and applied
 based on specific conditions being met in a system, e.g., if a
 physical resource is present (e.g., insert interface card), the
 system will automatically detect it and load pre-provisioned
 configuration; when the physical resource is not present(remove
 interface card), the system configuration will be automatically
 cleared. Another example is when a special functionality is enabled,
 e.g., when QoS function is enabled, QoS policies are automatically
 created by the system.

2.3. Inactive-Until-Referenced

 There are some predefined objects(e.g., application ids, anti-x
 signatures, trust anchor certs, etc.) as a convenience for the
 clients. The clients can also define their own data objects for
 their unique requirements. Inactive-until-referenced system
 configurations are generated in <system> immediately when it is
 powered on, but they are not applied and active until being
 referenced.

3. Static Characteristics

3.1. Read-only to Clients

 The <system> configuration datastore is a read-only configuration
 datastore (i.e., edits towards <system> directly MUST be denied),
 though the client may be allowed to override the value of a system-
 initialized data node (see Section 4.4). Configuration defined in
 <system> is merged into <intended>, and present in <operational> if
 it is actively in use by the device. Thus unless the resource is no
 longer available (e.g., the interface removed physically), there is
 no way to actually delete system configuration from a server, even if
 a client may be allowed to delete the configuration copied from

Ma, et al. Expires 12 October 2022 [Page 7]

Internet-Draft System-defined Configuration April 2022

 <system> into <running>. Any deletable system-provided configuration
 must be defined in <factory-default> [RFC8808], which is used to
 initialize <running> when the device is first-time powered on or
 reset to its factory default condition.

3.2. May Change via Software Upgrades

 System configuration MAY change dynamically, e.g., depending on
 factors like device upgrade or if system-controlled resources(e.g.,
 HW available) change. In some implementations, when QoS function is
 enabled, QoS-related policies are created by system. If the system
 configuration gets changed, YANG notification (e.g., "push-change-
 update" notification) [RFC8641][RFC8639][RFC6470] can be used to
 notify the client. Any update of the contents in <system> will not
 cause the automatic update of <running>, even if some of the system
 configuration has already been copied into <running> explicitly or
 automatically before the update.

3.3. No Impact to <operational>

 This work intends to have no impact to <operational>. As always,
 system configuration will appear in <operational> with
 "origin=system". This work enables a subset of those system
 generated nodes to be defined like configuration, i.e., made visible
 to clients in order for being referenced or configurable prior to
 present in <operational>. "Config false" nodes are out of scope,
 hence existing "config false" nodes are not impacted by this work.

4. Dynamic Behavior

4.1. Conceptual Model

 This document introduces a mandatory datastore named "system" which
 is used to hold all three types of system configurations defined in
 Section 2.

 When the device is powered on, immediately-active system
 configuration will be generated in <system> and applied immediately
 but inactive-until-referenced system configuration only becomes
 active if it is referenced by client-defined configuration. While
 conditionally-active system configuration will be created and
 immediately applied if the condition on system resources is met when
 the device is powered on or running.

Ma, et al. Expires 12 October 2022 [Page 8]

Internet-Draft System-defined Configuration April 2022

 All above three types of system configurations will appear in
 <system>. Clients MAY reference nodes defined in <system>, override
 values of configurations defined in <system>, and configure
 descendant nodes of system-defined nodes, by copying or writing
 intended configurations into the target configuration datastore
 (e.g., <running>).

 The server will merge <running> and <system> to create <intended>, in
 which process, the data node appears in <running> takes precedence
 over the same node in <system> if the server allows the node to be
 modifiable; additional nodes to a list entry or new list/leaf-list
 entries appear in <running> extends the list entry or the whole list/
 leaf-list defined in <system> if the server allows the list/leaf-list
 to be updated. In addition, the <intended> configuration datastore
 represents the configuration after all configuration transformation
 to <system> are performed (e.g., system-defined template expansion,
 removal of inactive system configuration). If a server implements
 <intended>, <system> MUST be merged into <intended>.

 Servers MUST enforce that configuration references in <running> are
 resolved within the <running> datastore and ensure that <running>
 contains any referenced system objects. Clients MUST either
 explicitly copy system-defined nodes into <running> or use the
 "resolve-system" parameter. The server MUST enforce that the
 referenced system nodes configured into <running> by the client is
 consistent with <system>. Note that <system> aware clients know how
 to discover what nodes exist in <system>. How clients unaware of the
 <system> datastore can find appropriate configurations is beyond the
 scope of this document.

 No matter how the referenced system objects are copied into
 <running>, the nodes copied into <running> would always be returned
 after a read of <running>, regardless if the client is <system>
 aware.

4.2. Explicit Declaration of System Configuration

 It is possible for a client to explicitly declare system
 configuration nodes in the target datastore (e.g., <running>) with
 the same values as in <system>, by configuring a node (list/leaf-list
 entry, leaf, etc) in the target datastore (e.g., <running>) that
 matches the same node and value in <system>.

 This explicit configuration of system-defined nodes in <running> can
 be useful, for example, when the client doesn’t want a "system
 client" to have a role or hasn’t implemented the "resolve-system"
 parameter. The client can explicitly declare (i.e. configure in
 <running>) the list entries (with at least the keys) for any system

Ma, et al. Expires 12 October 2022 [Page 9]

Internet-Draft System-defined Configuration April 2022

 configuration list entries that are referenced elsewhere in
 <running>. The client does not necessarily need to declare all the
 contents of the list entry (i.e. the descendant nodes) - only the
 parts that are required to make the <running> appear valid.

4.3. Servers Auto-configuring Referenced System Configuration

 This document defines a new parameter "resolve-system" to the input
 for the <edit-config>, <edit-data> and <copy-config> operations.
 Clients that are aware of the "resolve-system" parameter MAY use this
 parameter to avoid the requirement to provide a referentially
 complete configuration in <running>.

 If the "resolve-system" is present, the server MUST copy relevant
 referenced system-defined nodes into the target datastore (e.g.,
 <running>) without the client doing the copy/paste explicitly, to
 resolve any references not resolved by the client. The server acting
 as a "system client" like any other remote clients copies the
 referenced system-defined nodes when triggered by the "resolve-
 system" parameter. If the "resolve-system" parameter is not given by
 the client, the server SHOULD NOT modify <running> in any way
 otherwise not specified by the client.

 The server may automatically configure the list entries (with at
 least the keys) in the target datastore (e.g., <running>) for any
 system configuration list entries that are referenced elsewhere by
 the clients. Similarly, not all the contents of the list entry
 (i.e., the descendant nodes) are necessarily copied by the server -
 only the parts that are required to make the <running> valid. A read
 back of <running> (i.e., <get>, <get-config> or <get-data> operation)
 returns those automatically copied nodes.

4.4. Modifying (overriding) System Configuration

 In some cases, a server may allow some parts of system configuration
 to be modified. List keys in system configuration can’t be changed
 by a client, but other descendant nodes in a list entry may be
 modifiable or non-modifiable. Leafs and leaf-lists outside of lists
 may also be modifiable or non-modifiable. Even if some system
 configuration has been copied into <running> earlier, whether it is
 modifiable or not in <running> follows general YANG and NACM rules,
 and other server-internal restrictions. If a system configuration
 node is non-modifiable, then writing a different value for that node
 in <running> MUST return an error. The immutability of system
 configuration is further defined in [I-D.ma-netmod-immutable-flag].

Ma, et al. Expires 12 October 2022 [Page 10]

Internet-Draft System-defined Configuration April 2022

 Modification of system configuration is achieved by the client
 writing configuration to <running> that overrides the system
 configuration. Configurations defined in <running> take precedence
 over system configuration nodes in <system> if the server allows the
 nodes to be modified.

 A server may also allow a client to add data nodes to a list entry in
 <system> by writing those additional nodes in <running>. Those
 additional data nodes may not exist in <system> (i.e. an *addition*
 rather than an override).

 While modifying (overriding) system configuration nodes may be
 supported by a server, there is no mechanism for deleting a system
 configuration node unless the resource is no longer available. For
 example, a "mandatory true" leaf may have a value in <system> which
 can be modified (overridden) by a client setting that leaf to a value
 in <running>. But the leaf could not be deleted. Another example of
 this might be that system initializes a value for a particular leaf
 which is overridden by the client with intended value in <running>.
 The client may delete the leaf in <running>, but system-initialized
 value defined in <system> will be in use and appear in <operational>.

 Comment 1: What if <system> contains a set of values for a leaf-list,
 and a client configures another set of values for that leaf-list in
 <running>, will the set of values in <running> completely replace the
 set of values in <system>? Or the two sets of values are merged
 together?

 Comment 2: how "ordered-by user" lists and leaf-lists are merged? Do
 the <running> values go before or after, or is this a case where a
 full-replace is needed.

4.5. Examples

 This section shows the examples of server-configuring of <running>
 automatically, declaring a system-defined node in <running>
 explicitly, modifying a system-instantiated leaf’s value and
 configuring descendant nodes of a system-defined node. For each
 example, the corresponding XML snippets are provided.

4.5.1. Server Configuring of <running> Automatically

 In this subsection, the following fictional module is used:

Ma, et al. Expires 12 October 2022 [Page 11]

Internet-Draft System-defined Configuration April 2022

 module example-application {
 yang-version 1.1;
 namespace "urn:example:application";
 prefix "app";

 import ietf-inet-types {
 prefix "inet";
 }
 container applications {
 list application {
 key "name";
 leaf name {
 type string;
 }
 leaf protocol {
 type enumeration {
 enum tcp;
 enum udp;
 }
 }
 leaf destination-port {
 type inet:port-number;
 }
 }
 }
 }

 The server may predefine some applications as a convenience for the
 clients. These predefined objects are applied only after being
 referenced by other configurations, which fall into the "inactive-
 until-referenced" system configuration as defined in Section 2. The
 system-instantiated application entries may be present in <system> as
 follows:

Ma, et al. Expires 12 October 2022 [Page 12]

Internet-Draft System-defined Configuration April 2022

 <applications xmlns="urn:example:application">
 <application>
 <name>ftp</name>
 <protocol>tcp</protocol>
 <destination-port>21</destination-port>
 </application>
 <application>
 <name>tftp</name>
 <protocol>udp</protocol>
 <destination-port>69</destination-port>
 </application>
 <application>
 <name>smtp</name>
 <protocol>tcp</protocol>
 <destination-port>25</destination-port>
 </application>
 ...
 </applications>

 The client may also define its customized applications. Suppose the
 configuration of applications is present in <running> as follows:

 <applications xmlns="urn:example:application">
 <application>
 <name>my-app-1</name>
 <protocol>tcp</protocol>
 <destination-port>2345</destination-port>
 </application>
 <application>
 <name>my-app-2</name>
 <protocol>udp</protocol>
 <destination-port>69</destination-port>
 </application>
 </applications>

 A fictional ACL YANG module is used as follows, which defines a
 leafref for the leaf-list "application" data node to refer to an
 existing application name.

Ma, et al. Expires 12 October 2022 [Page 13]

Internet-Draft System-defined Configuration April 2022

 module example-acl {
 yang-version 1.1;
 namespace "urn:example:acl";
 prefix "acl";

 import example-application {
 prefix "app";
 }
 import ietf-inet-types {
 prefix "inet";
 }

 container acl {
 list acl_rule {
 key "name";
 leaf name {
 type string;
 }
 container matches {
 choice l3 {
 container ipv4 {
 leaf source_address {
 type inet:ipv4-prefix;
 }
 leaf destination_address {
 type inet:ipv4-prefix;
 }
 }
 }
 choice applications {
 leaf-list application {
 type leafref {
 path "/app:applications/app:application/app:name";
 }
 }
 }
 }
 leaf packet_action {
 type enumeration {
 enum forward;
 enum drop;
 enum redirect;
 }
 }
 }
 }
 }

Ma, et al. Expires 12 October 2022 [Page 14]

Internet-Draft System-defined Configuration April 2022

 If a client configures an ACL rule referencing system predefined
 nodes which are not present in <running>, the client MAY issue an
 <edit-config> operation with the parameter "resolve-system" as
 follows:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <acl xmlns="urn:example:acl">
 <acl_rule>
 <name>allow_access_to_ftp_tftp</name>
 <matches>
 <ipv4>
 <source_address>198.51.100.0/24</source_address>
 <destination_address>192.0.2.0/24</destination_address>
 </ipv4>
 <application>ftp</application>
 <application>tftp</application>
 <application>my-app-1</application>
 </matches>
 <packet_action>forward</packet_action>
 </acl_rule>
 </acl>
 </config>
 <resolve-system/>
 </edit-config>
 </rpc>

 Then following gives the configuration of applications in <running>
 which is returned in the response to a follow-up <get-config>
 operation:

Ma, et al. Expires 12 October 2022 [Page 15]

Internet-Draft System-defined Configuration April 2022

 <applications xmlns="urn:example:application">
 <application>
 <name>my-app-1</name>
 <protocol>tcp</protocol>
 <destination-port>2345</destination-port>
 </application>
 <application>
 <name>my-app-2</name>
 <protocol>udp</protocol>
 <destination-port>69</destination-port>
 </application>
 <application>
 <name>ftp</name>
 </application>
 <application>
 <name>tftp</name>
 </application>
 </applications>

 Then the configuration of applications is present in <operational> as
 follows:

 <applications xmlns="urn:example:application"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <application>
 <name>my-app-1</name>
 <protocol>tcp</protocol>
 <destination-port>2345</destination-port>
 </application>
 <application>
 <name>my-app-2</name>
 <protocol>udp</protocol>
 <destination-port>69</destination-port>
 </application>
 <application or:origin="or:system">
 <name>ftp</name>
 <protocol>tcp</protocol>
 <destination-port>21</destination-port>
 </application>
 <application or:origin="or:system">
 <name>tftp</name>
 <protocol>udp</protocol>
 <destination-port>69</destination-port>
 </application>
 </applications>

Ma, et al. Expires 12 October 2022 [Page 16]

Internet-Draft System-defined Configuration April 2022

 Since the configuration of application "smtp" is not referenced by
 the client, it does not appear in <operational> but only in <system>.

4.5.2. Declaring a System-defined Node in <running> Explicitly

 It’s also possible for a client to explicitly declare the system-
 defined configurations that are referenced. For instance, in the
 above example, the client MAY also explicitly configure the following
 system defined applications "ftp" and "tftp" only with the list key
 "name" before referencing:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <applications xmlns="urn:example:application">
 <application>
 <name>ftp</name>
 </application>
 <application>
 <name>tftp</name>
 </application>
 </applications>
 </config>
 </edit-config>
 </rpc>

 Then the client issues an <edit-config> operation to configure an ACL
 rule referencing applications "ftp" and "tftp" without the parameter
 "resolve-system" as follows:

Ma, et al. Expires 12 October 2022 [Page 17]

Internet-Draft System-defined Configuration April 2022

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <acl xmlns="urn:example:acl">
 <acl_rule>
 <name>allow_access_to_ftp_tftp</name>
 <matches>
 <ipv4>
 <source_address>198.51.100.0/24</source_address>
 <destination_address>192.0.2.0/24</destination_address>
 </ipv4>
 <application>ftp</application>
 <application>tftp</application>
 <application>my-app-1</application>
 </matches>
 <packet_action>forward</packet_action>
 </acl_rule>
 </acl>
 </config>
 </edit-config>
 </rpc>

 Then following gives the configuration of applications in <running>
 which is returned in the response to a follow-up <get-config>
 operation, all the configuration of applications are explicitly
 configured by the client:

Ma, et al. Expires 12 October 2022 [Page 18]

Internet-Draft System-defined Configuration April 2022

 <applications xmlns="urn:example:application">
 <application>
 <name>my-app-1</name>
 <protocol>tcp</protocol>
 <destination-port>2345</destination-port>
 </application>
 <application>
 <name>my-app-2</name>
 <protocol>udp</protocol>
 <destination-port>69</destination-port>
 </application>
 <application>
 <name>ftp</name>
 </application>
 <application>
 <name>tftp</name>
 </application>
 </applications>

 Then the configuration of applications is present in <operational> as
 follows:

 <applications xmlns="urn:example:application"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <application>
 <name>my-app-1</name>
 <protocol>tcp</protocol>
 <destination-port>2345</destination-port>
 </application>
 <application>
 <name>my-app-2</name>
 <protocol>udp</protocol>
 <destination-port>69</destination-port>
 </application>
 <application>
 <name>ftp</name>
 <protocol or:origin="or:system">tcp</protocol>
 <destination-port or:origin="or:system">21</destination-port>
 </application>
 <application>
 <name>tftp</name>
 <protocol or:origin="or:system">udp</protocol>
 <destination-port or:origin="or:system">69</destination-port>
 </application>
 </applications>

Ma, et al. Expires 12 October 2022 [Page 19]

Internet-Draft System-defined Configuration April 2022

 Since the application names "ftp" and "tftp" are explicitly
 configured by the client, they take precedence as the value in
 <system>, the "origin" attribute will be set to "intended".

4.5.3. Modifying a System-instantiated Leaf’s Value

 In this subsection, we will use this fictional QoS data model:

 module example-qos-policy {
 yang-version 1.1;
 namespace "urn:example:qos";
 prefix "qos";

 container qos-policies {
 list policy {
 key "name";
 leaf name {
 type string;
 }
 list queue {
 key "queue-id";
 leaf queue-id {
 type int32 {
 range "1..32";
 }
 }
 leaf maximum-burst-size {
 type int32 {
 range "0..100";
 }
 }
 }
 }
 }
 }

 Suppose a client creates a qos policy "my-policy" with 4 system
 instantiated queues(1˜4). The Configuration of qos-policies is
 present in <system> as follows:

Ma, et al. Expires 12 October 2022 [Page 20]

Internet-Draft System-defined Configuration April 2022

 <qos-policies xmlns="urn:example:qos">
 <name>my-policy</name>
 <queue>
 <queue-id>1</queue-id>
 <maximum-burst-size>50</maximum-burst-size>
 </queue>
 <queue>
 <queue-id>2</queue-id>
 <maximum-burst-size>60</maximum-burst-size>
 </queue>
 <queue>
 <queue-id>3</queue-id>
 <maximum-burst-size>70</maximum-burst-size>
 </queue>
 <queue>
 <queue-id>4</queue-id>
 <maximum-burst-size>80</maximum-burst-size>
 </queue>
 </qos-policies>

 A client modifies the value of maximum-burst-size to 55 in queue-id
 1:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <qos-policies xmlns="urn:example:qos">
 <name>my-policy</name>
 <queue>
 <queue-id>1</queue-id>
 <maximum-burst-size>55</maximum-burst-size>
 </queue>
 </qos-policies>
 </config>
 </edit-config>
 </rpc>

 Then the configuration of qos-policies is present in <operational> as
 follows:

Ma, et al. Expires 12 October 2022 [Page 21]

Internet-Draft System-defined Configuration April 2022

 <qos-policies xmlns="urn:example:qos"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <name>my-policy</name>
 <queue>
 <queue-id>1</queue-id>
 <maximum-burst-size>55</maximum-burst-size>
 </queue>
 <queue or:origin="or:system">
 <queue-id>2</queue-id>
 <maximum-burst-size>60</maximum-burst-size>
 </queue>
 <queue or:origin="or:system">
 <queue-id>3</queue-id>
 <maximum-burst-size>70</maximum-burst-size>
 </queue>
 <queue or:origin="or:system">
 <queue-id>4</queue-id>
 <maximum-burst-size>80</maximum-burst-size>
 </queue>
 </qos-policies>

4.5.4. Configuring Descendant Nodes of a System-defined Node

 This subsection also uses the fictional interface YANG module defined
 in Appendix C.3 of [RFC8342]. Suppose the system provides a loopback
 interface (named "lo0") with a default IPv4 address of "127.0.0.1"
 and a default IPv6 address of "::1".

 The configuration of "lo0" interface is present in <system> as
 follows:

 <interfaces>
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

 The configuration of "lo0" interface is present in <operational> as
 follows:

Ma, et al. Expires 12 October 2022 [Page 22]

Internet-Draft System-defined Configuration April 2022

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:system">
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

 Later on, the client further configures the description node of a
 "lo0" interface as follows:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <interfaces>
 <interface>
 <name>lo0</name>
 <description>loopback</description>
 </interface>
 </interfaces>
 </config>
 </edit-config>
 </rpc>

 Then the configuration of interface "lo0" is present in <operational>
 as follows:

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <interface>
 <name>lo0</name>
 <description>loopback</description>
 <ip-address or:origin="or:system">127.0.0.1</ip-address>
 <ip-address or:origin="or:system">::1</ip-address>
 </interface>
 </interfaces>

5. The <system> Configuration Datastore

 NMDA servers claiming to support this document MUST implement a
 <system> configuration datastore, and they SHOULD also implement the
 <intended> datastore.

Ma, et al. Expires 12 October 2022 [Page 23]

Internet-Draft System-defined Configuration April 2022

 Following guidelines for defining datastores in the appendix A of
 [RFC8342], this document introduces a new datastore resource named
 ’system’ that represents the system configuration. A device MAY
 implement the mechanism defined in this document without implementing
 the "system" datastore, which would only eliminate the ability to
 programmatically determine the system configuration.

 * Name: "system"

 * YANG modules: all

 * YANG nodes: all "config true" data nodes up to the root of the
 tree, generated by the system

 * Management operations: The content of the datastore is set by the
 server in an implementation dependent manner. The content can not
 be changed by management operations via NETCONF, RESTCONF, the
 CLI, etc, but may change itself by upgrades and/or when resource-
 conditions are met. The datastore can be read using the standard
 NETCONF/RESTCONF protocol operations.

 * Origin: This document does not define any new origin identity when
 it interacts with <intended> datastore and flows into
 <operational>. The "system" origin Metadata Annotation [RFC7952]
 is used to indicate the origin of a data item is system.

 * Protocols: YANG-driven management protocols, such as NETCONF and
 RESTCONF.

 * Defining YANG module: "ietf-system-datastore".

 The datastore’s content is defined by the server and read-only to
 clients. Upon the content is created or changed, it will be merged
 into <intended> datastore. Unlike <factory-default>[RFC8808], it MAY
 change dynamically, e.g., depending on factors like device upgrade or
 system-controlled resources change (e.g., HW available). The
 <system> datastore doesn’t persist across reboots; the contents of
 <system> will be lost upon reboot and recreated by the system with
 the same or changed contents. <factory-reset> RPC operation defined
 in [RFC8808] can reset it to its factory default configuration
 without including configuration generated due to the system update or
 client-enabled functionality.

 The <system> datastore is defined as a conventional configuration
 datastore and shares a common datastore schema with other
 conventional datastores. The <system> configuration datastore must
 always be valid, as defined in Section 8.1 of [RFC7950].

Ma, et al. Expires 12 October 2022 [Page 24]

Internet-Draft System-defined Configuration April 2022

6. The "ietf-system-datastore" Module

6.1. Data Model Overview

 This YANG module defines a new YANG identity named "system" that uses
 the "ds:datastore" identity defined in [RFC8342]. A client can
 discover the <system> datastore support on the server by reading the
 YANG library information from the operational state datastore. Note
 that no new origin identity is defined in this document, the
 "or:system" origin Metadata Annotation [RFC7952] is used to indicate
 the origin of a data item is system. Support for the "origin"
 annotation is identified with the feature "origin" defined in
 [RFC8526].

 The following diagram illustrates the relationship amongst the
 "identity" statements defined in the "ietf-system-datastore" and
 "ietf-datastores" YANG modules:

Identities:
 +--- datastore
 | +--- conventional
 | | +--- running
 | | +--- candidate
 | | +--- startup
 | | +--- system
 | | +--- intended
 | +--- dynamic
 | +--- operational
 The diagram above uses syntax that is similar to but not defined in [RFC8340].

6.2. Example Usage

 This section gives an example of data retrieval from <system>. The
 YANG module used are shown in Appendix C.2 of [RFC8342]. All the
 messages are presented in a protocol-independent manner. JSON is
 used only for its conciseness.

 Suppose the following data is added to <running>:

 {
 "bgp": {
 "local-as": "64501",
 "peer-as": "64502",
 "peer": {
 "name": "2001:db8::2:3"
 }
 }
 }

Ma, et al. Expires 12 October 2022 [Page 25]

Internet-Draft System-defined Configuration April 2022

 REQUEST (a <get-data> or GET request sent from the NETCONF or
 RESTCONF client):

 Datastore: <system>
 Target:/bgp

 An example of RESTCONF request:

 GET /restconf/ds/system/bgp HTTP/1.1
 Host: example.com
 Accept: application/yang-data+xml

 RESPONSE ("local-port" leaf value is supplied by the system):

 {
 "bgp": {
 "peer": {
 "name": "2001:db8::2:3",
 "local-port": "60794"
 }
 }
 }

6.3. YANG Module

 <CODE BEGINS>
 file="ietf-system-datastore@2021-05-14.yang"
 module ietf-system-datastore {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-system-datastore";
 prefix sysds;

 import ietf-datastores {
 prefix ds;
 reference
 "RFC 8342: Network Management Datastore Architecture(NMDA)";
 }

 organization
 "IETF NETMDOD (Network Modeling) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>
 Author: Qiufang Ma
 <mailto:maqiufang1@huawei.com>
 Author: Chong Feng
 <mailto:frank.fengchong@huawei.com>

Ma, et al. Expires 12 October 2022 [Page 26]

Internet-Draft System-defined Configuration April 2022

 Author: Qin Wu
 <mailto:bill.wu@huawei.com>";

 description
 "This module defines a new YANG identity that uses the
 ds:datastore identity defined in [RFC8342].

 Copyright (c) 2021 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Simplified
 BSD License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC HHHH
 (https://www.rfc-editor.org/info/rfcHHHH); see the RFC
 itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’,
 ’SHALL NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’,
 ’NOT RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this document
 are to be interpreted as described in BCP 14 (RFC 2119)
 (RFC 8174) when, and only when, they appear in all
 capitals, as shown here.";

 revision 2021-05-14 {
 description

 "Initial version.";
 reference
 "RFC XXXX: System-defined Configuration";
 }

 identity system {
 base ds:conventional;
 description
 "This read-only datastore contains the complete configuration
 provided by the system itself.";
 }
 }
 <CODE ENDS>

Ma, et al. Expires 12 October 2022 [Page 27]

Internet-Draft System-defined Configuration April 2022

7. The "ietf-netconf-resolve-system" Module

 This YANG module is optional to implement.

7.1. Data Model Overview

 This YANG module augments NETCONF <edit-config>, <edit-data> and
 <copy-config> operations with a new parameter "resolve-system" in the
 input parameters. If the "resolve-system" parameter is present, the
 server will copy the referenced system configuration into target
 datastore automatically. A NETCONF client can discover the "resolve-
 system" parameter support on the server by checking the YANG library
 information with "ietf-netconf-resolve-system" included from the
 operational state datastore.

 The following tree diagram [RFC8340] illustrates the "ietf-netconf-
 resolve-system" module:

 module: ietf-netconf-resolve-system
 augment /nc:edit-config/nc:input:
 +---w resolve-system? empty
 augment /nc:copy-config/nc:input:
 +---w resolve-system? empty
 augment /ncds:edit-data/ncds:input:
 +---w resolve-system? empty

 The following tree diagram [RFC8340] illustrates "edit-config",
 "copy-config" and "edit-data" rpcs defined in "ietf-netconf" and
 "ietf-netconf-nmda" respectively, augmented by "ietf-netconf-resolve-
 system" YANG module :

 rpcs:
 +---x edit-config
 | +---w input
 | +---w target
 | | +---w (config-target)
 | | +--:(candidate)
 | | | +---w candidate? empty {candidate}?
 | | +--:(running)
 | | +---w running? empty {writable-running}?
 | +---w default-operation? enumeration
 | +---w test-option? enumeration {validate}?
 | +---w error-option? enumeration
 | +---w (edit-content)
 | | +--:(config)
 | | | +---w config? <anyxml>
 | | +--:(url)
 | | +---w url? inet:uri {url}?

Ma, et al. Expires 12 October 2022 [Page 28]

Internet-Draft System-defined Configuration April 2022

 | +---w resolve-system? empty
 +---x copy-config
 | +---w input
 | +---w target
 | | +---w (config-target)
 | | +--:(candidate)
 | | | +---w candidate? empty {candidate}?
 | | +--:(running)
 | | | +---w running? empty {writable-running}?
 | | +--:(startup)
 | | | +---w startup? empty {startup}?
 | | +--:(url)
 | | +---w url? inet:uri {url}?
 | +---w source
 | | +---w (config-source)
 | | +--:(candidate)
 | | | +---w candidate? empty {candidate}?
 | | +--:(running)
 | | | +---w running? empty
 | | +--:(startup)
 | | | +---w startup? empty {startup}?
 | | +--:(url)
 | | | +---w url? inet:uri {url}?
 | | +--:(config)
 | | +---w config? <anyxml>
 | +---w resolve-system? empty
 +---x edit-data
 +---w input
 +---w datastore ds:datastore-ref
 +---w default-operation? enumeration
 +---w (edit-content)
 | +--:(config)
 | | +---w config? <anydata>
 | +--:(url)
 | +---w url? inet:uri {nc:url}?
 +---w resolve-system? empty

7.2. Example Usage

 This section gives an example of an <edit-config> request to
 reference system-defined data nodes which are not present in
 <running> with a "resolve-system" parameter. A retrieval of
 <running> to show the auto-copied referenced system objects after the
 <edit-config> request is also given. The YANG module used is shown
 as follows, leafrefs refer to an existing name and address of an
 interface:

Ma, et al. Expires 12 October 2022 [Page 29]

Internet-Draft System-defined Configuration April 2022

 module example-interface-management {
 yang-version 1.1;
 namespace "urn:example:interfacemgmt";
 prefix "inm";

 container interfaces {
 list interface {
 key name;
 leaf name {
 type string;
 }
 leaf description {
 type string;
 }
 leaf mtu {
 type uint16;
 }
 leaf ip-address {
 type inet:ip-address;
 }
 }
 }
 container default-address {
 leaf ifname {
 type leafref {
 path "../../interfaces/interface/name";
 }
 }
 leaf address {
 type leafref {
 path "../../interfaces/interface[name = current()/../ifname]"
 + "/ip-address";
 }
 }
 }
 }

 Image that the system provides a loopback interface (named "lo0")
 with a predefined MTU value of "1500" and a predefined IP address of
 "127.0.0.1". The <system> datastore shows the following
 configuration of loopback interface:

Ma, et al. Expires 12 October 2022 [Page 30]

Internet-Draft System-defined Configuration April 2022

 <interfaces xmlns="urn:example:interfacemgmt">
 <interface>
 <name>lo0</name>
 <mtu>1500</mtu>
 <ip-address>127.0.0.1</ip-address>
 </interface>
 </interfaces>

 The client sends an <edit-config> operation to add the configuration
 of default-address with a "resolve-system" parameter:

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <default-address xmlns="urn:example:interfacemgmt">
 <if-name>lo0</if-name>
 <address>127.0.0.1</address>
 </default-address>
 </config>
 <resolve-system/>
 </edit-config>
 </rpc>

 Since the "resolve-system" parameter is provided, the server will
 resolve any leafrefs to system configurations and copy the referenced
 system-defined nodes into <running> automatically with the same value
 (i.e., the name and ip-address data nodes of lo0 interface) in
 <system> at the end of <edit-config> operation constraint
 enforcement. After the processing, a positive resonse is returned:

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

 Then the client sends a <get-config> operation towards <running>:

Ma, et al. Expires 12 October 2022 [Page 31]

Internet-Draft System-defined Configuration April 2022

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter type="subtree">
 <interfaces xmlns="urn:example:interfacemgmt"/>
 </filter>
 </get-config>
 </rpc>

 Given that the referenced interface "name" and "ip-address" of lo0
 are configured by the server, the following response is returned:

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <interfaces xmlns="urn:example:interfacemgmt">
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 </interface>
 </interfaces>
 </data>
 </rpc-reply>

7.3. YANG Module

 <CODE BEGINS>
 file="ietf-netconf-resolve-system@2021-05-14.yang"
 module ietf-netconf-resolve-system {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-resolve-system";
 prefix ncrs;

 import ietf-netconf {
 prefix nc;
 reference
 "RFC 6241: Network Configuration Protocol (NETCONF)";
 }

 import ietf-netconf-nmda {
 prefix ncds;
 reference
 "RFC 8526: NETCONF Extensions to Support the Network
 Management Datastore Architecture";
 }

Ma, et al. Expires 12 October 2022 [Page 32]

Internet-Draft System-defined Configuration April 2022

 organization
 "IETF NETMOD (Network Modeling) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>
 Author: Qiufang Ma
 <mailto:maqiufang1@huawei.com>
 Author: Chong Feng
 <mailto:frank.fengchong@huawei.com>
 Author: Qin Wu
 <mailto:bill.wu@huawei.com>";

 description
 "This module defines an extension to the NETCONF protocol
 that allows the NETCONF client to control whether the server
 is allowed to copy referenced system configuration
 automatically without the client doing so explicitly.

 Copyright (c) 2021 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Simplified
 BSD License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC HHHH
 (https://www.rfc-editor.org/info/rfcHHHH); see the RFC
 itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’,
 ’SHALL NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’,
 ’NOT RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this document
 are to be interpreted as described in BCP 14 (RFC 2119)
 (RFC 8174) when, and only when, they appear in all
 capitals, as shown here.";

 revision 2021-05-14 {
 description
 "Initial version.";
 reference
 "RFC XXXX: System-defined Configuration";
 }

 augment /nc:edit-config/nc:input {

Ma, et al. Expires 12 October 2022 [Page 33]

Internet-Draft System-defined Configuration April 2022

 description
 "Allows the server to automatically configure
 referenced system configuration to make configuration
 valid.";
 leaf resolve-system {
 type empty ;
 description
 "When present, the server is allowed to automatically
 configure referenced system configuration into the
 target configuration datastore.";
 }
 }

 augment /nc:copy-config/nc:input {
 description
 "Allows the server to automatically configure
 referenced system configuration to make configuration
 valid.";
 leaf resolve-system {
 type empty ;
 description
 "When present, the server is allowed to automatically
 configure referenced system configuration into the
 target configuration datastore.";
 }
 }

 augment /ncds:edit-data/ncds:input {
 description
 "Allows the server to automatically configure
 referenced system configuration to make configuration
 valid.";
 leaf resolve-system {
 type empty ;
 description
 "When present, the server is allowed to automatically
 configure referenced system configuration into the
 target configuration datastore.";
 }
 }
 }
 <CODE ENDS>

8. IANA Considerations

Ma, et al. Expires 12 October 2022 [Page 34]

Internet-Draft System-defined Configuration April 2022

8.1. The "IETF XML" Registry

 This document registers two XML namespace URNs in the ’IETF XML
 registry’, following the format defined in [RFC3688].

 URI: urn:ietf:params:xml:ns:yang:ietf-system-datastore
 Registrant Contact: The IESG.
 XML: N/A, the requested URIs are XML namespaces.

 URI: urn:ietf:params:xml:ns:yang:ietf-netconf-resolve-system
 Registrant Contact: The IESG.
 XML: N/A, the requested URIs are XML namespaces.

8.2. The "YANG Module Names" Registry

 This document registers two module names in the ’YANG Module Names’
 registry, defined in [RFC6020] .

 name: ietf-system-datastore
 prefix: sys
 namespace: urn:ietf:params:xml:ns:yang:ietf-system-datatstore
 RFC: XXXX // RFC Ed.: replace XXXX and remove this comment

 name: ietf-netconf-resolve-system
 prefix: ncrs
 namespace: urn:ietf:params:xml:ns:yang:ietf-netconf-resolve-system
 RFC: XXXX // RFC Ed.: replace XXXX and remove this comment

8.3. RESTCONF Capability URN Registry

 This document registers a capability in the "RESTCONF Capability
 URNs" registry [RFC8040]:

 Index Capability Identifier
 --
-
 :resolve-system urn:ietf:params:restconf:capability:resolve-system:1.
0

9. Security Considerations

9.1. Regarding the "ietf-system-datastore" YANG Module

 The YANG module defined in this document extends the base operations
 for NETCONF [RFC6241] and RESTCONF [RFC8040]. The lowest NETCONF
 layer is the secure transport layer, and the mandatory-to-implement
 secure transport is Secure Shell (SSH) [RFC6242]. The lowest
 RESTCONF layer is HTTPS, and the mandatory-to-implement secure
 transport is TLS [RFC8446].

Ma, et al. Expires 12 October 2022 [Page 35]

Internet-Draft System-defined Configuration April 2022

 The Network Configuration Access Control Model (NACM) [RFC8341]
 provides the means to restrict access for particular NETCONF users to
 a preconfigured subset of all available NETCONF protocol operations
 and content.

9.2. Regarding the "ietf-netconf-resolve-system" YANG Module

 The YANG module defined in this document extends the base operations
 for NETCONF [RFC6241] and [RFC8526]. The lowest NETCONF layer is the
 secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC8446].

 The Network Configuration Access Control Model (NACM) [RFC8341]
 provides the means to restrict access for particular NETCONF users to
 a preconfigured subset of all available NETCONF protocol operations
 and content.

 The security considerations for the base NETCONF protocol operations
 (see Section 9 of [RFC6241] apply to the new extended RPC operations
 defined in this document.

10. Contributors

 Chongfeng Xie
 China Telecom
 Beijing
 China

 Email: xiechf@chinatelecom.cn

 Jason Sterne
 Nokia

 Email: jason.sterne@nokia.com

Acknowledgements

 Thanks to Robert Wilton, Balazs Lengyel, Andy Bierman, Juergen
 Schoenwaelder, Alex Clemm, Martin Bjorklund, Timothy Carey for
 reviewing, and providing important input to, this document.

References

Normative References

Ma, et al. Expires 12 October 2022 [Page 36]

Internet-Draft System-defined Configuration April 2022

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

Informative References

 [I-D.ma-netmod-immutable-flag]
 Ma, Q., Wu, Q., and H. Li, "Immutable Metadata
 Annotation", Work in Progress, Internet-Draft, draft-ma-
 netmod-immutable-flag-00, 10 February 2022,
 <https://www.ietf.org/archive/id/draft-ma-netmod-
 immutable-flag-00.txt>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of
 Documents Containing YANG Data Models", BCP 216, RFC 8407,
 DOI 10.17487/RFC8407, October 2018,
 <https://www.rfc-editor.org/info/rfc8407>.

 [RFC8525] Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
 and R. Wilton, "YANG Library", RFC 8525,
 DOI 10.17487/RFC8525, March 2019,
 <https://www.rfc-editor.org/info/rfc8525>.

 [RFC8808] Wu, Q., Lengyel, B., and Y. Niu, "A YANG Data Model for
 Factory Default Settings", RFC 8808, DOI 10.17487/RFC8808,
 August 2020, <https://www.rfc-editor.org/info/rfc8808>.

Ma, et al. Expires 12 October 2022 [Page 37]

Internet-Draft System-defined Configuration April 2022

Appendix A. Key Use Cases

 Following provides three use cases related to system-defined
 configuration lifecycle management. The simple interface data model
 defined in Appendix C.3 of [RFC8342] is used. For each use case,
 snippets of <running>, <system>, <intended> and <operational> are
 shown.

A.1. Device Powers On

 <running>:

 No configuration for lo0 appears in <running>;

 <system>:

 <interfaces>
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

 <intended>:

 <interfaces>
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

 <operational>:

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:system">
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

Ma, et al. Expires 12 October 2022 [Page 38]

Internet-Draft System-defined Configuration April 2022

A.2. Client Commits Configuration

 If a client creates an interface "et-0/0/0" but the interface does
 not physically exist at this point:

 <running>:

 <interfaces>
 <interface>
 <name>et-0/0/0</name>
 <description>Test interface</description>
 </interface>
 </interfaces>

 <system>:

 <interfaces>
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

 <intended>:

 <interfaces>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 <interface>
 <name>et-0/0/0</name>
 <description>Test interface</description>
 </interface>
 <interface>
 </interfaces>

 <operational>:

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <interface or:origin="or:system">
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

Ma, et al. Expires 12 October 2022 [Page 39]

Internet-Draft System-defined Configuration April 2022

A.3. Operator Installs Card into a Chassis

 <running>:

 <interfaces>
 <interface>
 <name>et-0/0/0</name>
 <description>Test interface</description>
 </interface>
 </interfaces>

 <system>:

 <interfaces>
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 <interface>
 <name>et-0/0/0</name>
 <mtu>1500</mtu>
 </interface>
 </interfaces>

 <intended>:

 <interfaces>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 <interface>
 <name>et-0/0/0</name>
 <description>Test interface</description>
 <mtu>1500</mtu>
 </interface>
 <interface>
 </interfaces>

 <operational>:

Ma, et al. Expires 12 October 2022 [Page 40]

Internet-Draft System-defined Configuration April 2022

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <interface or:origin="or:system">
 <name or:origin>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 <interface>
 <name>et-0/0/0</name>
 <description>Test interface</description>
 <mtu or:origin="or:system">1500</mtu>
 </interface>
 <interface>
 </interfaces>

Appendix B. Changes between Revisions

 v02 - v03

 * Define a RESTCONF capability URI for "resolve-system" RESTCONF
 query parameter;

 * Augment <copy-config> RPC operation to support "resolve-system"
 for input parameter;

 * Editorial changes for clarification and explanation. E.g.,
 definition of system configuration, is <system> always valid?
 Will the update of <system> be reflected into <running>? Clarify
 "read-only to clients" and "modifying system configuration", non-
 deletable system configuration, etc

 v00 - v02

 * Remove the "with-system" parameter to retrieve <running> with
 system configuration merged in.

 * Add a new parameter named "resolve-system" to allow the server to
 populate referenced system configuration into <running>
 automatically in order to make <running> valid.

 * Usage examples refinement.

 v02 - v00

 * Restructure the document content based on input in the system
 defined configuration interim meeting.

Ma, et al. Expires 12 October 2022 [Page 41]

Internet-Draft System-defined Configuration April 2022

 * Updates NMDA to define a read-only conventional configuration
 datastore called "system".

 * Retrieval of implicit hidden system configuration via <get><get-
 config> with "with-system" parameter to support non-NMDA servers.

 * Provide system defined configuration classification.

 * Define Static Characteristics and dynamic behavior for system
 defined configuration.

 * Separate "ietf-system-datastore" Module from "ietf-netconf-with-
 system" Module.

 * Provide usage examples for dynamic behaviors.

 * Provide usage examples for two YANG modules.

 * Provide three use cases related to system-defined configuration
 lifecycle management.

 * Classify the relation with <factory-default>.

Appendix C. Open Issues tracking

 * Should the "with-origin" parameter be supported for <intended>?

Authors’ Addresses

 Qiufang Ma (editor)
 Huawei
 101 Software Avenue, Yuhua District
 Nanjing
 Jiangsu, 210012
 China
 Email: maqiufang1@huawei.com

 Kent Watsen
 Watsen Networks
 Email: kent+ietf@watsen.net

Ma, et al. Expires 12 October 2022 [Page 42]

Internet-Draft System-defined Configuration April 2022

 Qin Wu
 Huawei
 101 Software Avenue, Yuhua District
 Nanjing
 Jiangsu, 210012
 China
 Email: bill.wu@huawei.com

 Feng Chong
 Huawei
 101 Software Avenue, Yuhua District
 Nanjing
 Jiangsu, 210012
 China
 Email: frank.fengchong@huawei.com

 Jan Lindblad
 Cisco Systems
 Email: jlindbla@cisco.com

Ma, et al. Expires 12 October 2022 [Page 43]

NETMOD Q. Ma, Ed.
Internet-Draft Q. Wu
Updates: RFC8342, RFC6241, RFC8526, RFC8040 (if C. Feng
 approved) Huawei
Intended status: Standards Track 29 September 2022
Expires: 2 April 2023

 System-defined Configuration
 draft-ma-netmod-with-system-05

Abstract

 This document updates NMDA to define a read-only conventional
 configuration datastore called "system" to hold system-defined
 configurations. To avoid clients’ explicit copy/paste of referenced
 system-defined configuration into the target configuration datastore
 (e.g., <running>), a "resolve-system" parameter has been defined to
 allow the server acting as a "system client" to copy referenced
 system-defined nodes automatically. The solution enables clients
 manipulating the target configuration datastore (e.g., <running>) to
 overlay and reference nodes defined in <system>, override values of
 configurations defined in <system>, and configure descendant nodes of
 system-defined nodes.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 2 April 2023.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Ma, et al. Expires 2 April 2023 [Page 1]

Internet-Draft System-defined Configuration September 2022

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 4
 1.2. Requirements Language 5
 1.3. Updates to RFC 8342 5
 1.4. Updates to RFC 6241, RFC 8526 5
 1.5. Updates to RFC 8040 6
 1.5.1. Query Parameter 6
 1.5.2. Query Parameter URI 6
 2. Kinds of System Configuration 6
 2.1. Immediately-Active 7
 2.2. Conditionally-Active 7
 2.3. Inactive-Until-Referenced 7
 3. Static Characteristics 7
 3.1. Read-only to Clients 7
 3.2. May Change via Software Upgrades 8
 3.3. No Impact to <operational> 8
 4. Dynamic Behavior . 8
 4.1. Conceptual Model . 8
 4.2. Explicit Declaration of System Configuration 9
 4.3. Servers Auto-configuring Referenced System
 Configuration . 10
 4.4. Modifying (overriding) System Configuration 10
 4.5. Examples . 11
 4.5.1. Server Configuring of <running> Automatically 11
 4.5.2. Declaring a System-defined Node in <running>
 Explicitly . 17
 4.5.3. Modifying a System-instantiated Leaf’s Value 20
 4.5.4. Configuring Descendant Nodes of a System-defined
 Node . 22
 5. The <system> Configuration Datastore 23
 6. The "ietf-system-datastore" Module 25
 6.1. Data Model Overview 25
 6.2. Example Usage . 25
 6.3. YANG Module . 26
 7. The "ietf-netconf-resolve-system" Module 28
 7.1. Data Model Overview 28
 7.2. Example Usage . 29

Ma, et al. Expires 2 April 2023 [Page 2]

Internet-Draft System-defined Configuration September 2022

 7.3. YANG Module . 32
 8. IANA Considerations . 34
 8.1. The "IETF XML" Registry 35
 8.2. The "YANG Module Names" Registry 35
 8.3. RESTCONF Capability URN Registry 35
 9. Security Considerations 35
 9.1. Regarding the "ietf-system-datastore" YANG Module 35
 9.2. Regarding the "ietf-netconf-resolve-system" YANG
 Module . 36
 10. Contributors . 36
 Acknowledgements . 37
 References . 37
 Normative References . 37
 Informative References . 37
 Appendix A. Key Use Cases 38
 A.1. Device Powers On . 38
 A.2. Client Commits Configuration 39
 A.3. Operator Installs Card into a Chassis 40
 Appendix B. Changes between Revisions 41
 Appendix C. Open Issues tracking 43
 Authors’ Addresses . 43

1. Introduction

 NMDA [RFC8342] defines system configuration as the configuration that
 is supplied by the device itself and appears in <operational> when it
 is in use.

 However, there is a desire to enable a server to better document the
 system configuration. Clients can benefit from a standard mechanism
 to see what system configuration is available in a server.

 In some cases, the client references a system configuration which
 isn’t present in the target datastore (e.g., <running>). Having to
 copy the entire contents of the system configuration into the target
 datastore should be avoided or reduced when possible while ensuring
 that all referential integrity constraints are satisfied.

 In some other cases, configuration of descendant nodes of system-
 defined configuration needs to be supported. For example, the system
 configuration contains an almost empty physical interface, while the
 client needs to be able to add, modify, remove a number of descendant
 nodes. Some descendant nodes may not be modifiable (e.g., "name" and
 "type" set by the system).

 This document updates NMDA [RFC8342] to define a read-only
 conventional configuration datastore called "system" to hold system-
 defined configurations. To avoid clients’ explicit copy/paste of

Ma, et al. Expires 2 April 2023 [Page 3]

Internet-Draft System-defined Configuration September 2022

 referenced system-defined configuration into the target configuration
 datastore (e.g., <running>), a "resolve-system" parameter has been
 defined to allow the server acting as a "system client" to copy
 referenced system-defined nodes automatically. The solution enables
 clients manipulating the target configuration datastore (e.g.,
 <running>) to overlay and reference nodes defined in <system>,
 override values of configurations defined in <system>, and configure
 descendant nodes of system-defined nodes.

 Conformance to this document requires servers to implement the "ietf-
 system-datastore" YANG module.

1.1. Terminology

 This document assumes that the reader is familiar with the contents
 of [RFC6241], [RFC7950], [RFC8342], [RFC8407], and [RFC8525] and uses
 terminologies from those documents.

 The following terms are defined in this document as follows:

 System configuration: Configuration that is provided by the system
 itself. System configuration is present in <system> once it’s
 created (regardless of being applied by the device), and appears
 in <intended> which is subject to validation. Applied system
 configuration also appears in <operational> with origin="system".

 System configuration datastore: A configuration datastore holding
 the complete configuration provided by the system itself. This
 datastore is referred to as "<system>".

 This document redefines the term "conventional configuration
 datastore" from RFC 8342 to add "system" to the list of conventional
 configuration datastores:

 Conventional configuration datastore: One of the following set of
 configuration datastores: <running>, <startup>, <candidate>,
 <system>, and <intended>. These datastores share a common
 datastore schema, and protocol operations allow copying data
 between these datastores. The term "conventional" is chosen as a
 generic umbrella term for these datastores.

Ma, et al. Expires 2 April 2023 [Page 4]

Internet-Draft System-defined Configuration September 2022

1.2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.3. Updates to RFC 8342

 This document updates RFC 8342 to define a configuration datastore
 called "system" to hold system configuration, it also redefines the
 term "conventional configuration datastore" from RFC 8342 to add
 "system" to the list of conventional configuration datastores. The
 contents of <system> datastore are read-only to clients but may
 change dynamically. The <system> aware client may retrieve all three
 types of system configuration defined in Section 2, reference nodes
 defined in <system>, override values of configurations defined in
 <system>, and configure descendant nodes of system-defined nodes.

 The server will merge <running> and <system> to create <intended>.
 As always, system configuration will appear in <operational> with
 origin="system" when it is in use.

 The <system> datastore makes system configuration visible to clients
 in order for being referenced or configurable prior to present in
 <operational>.

1.4. Updates to RFC 6241, RFC 8526

 This document augments <edit-config> and <edit-data> RPC operations
 defined in [RFC6241] and [RFC8526] respectively, with a new
 additional input parameter "resolve-system". The <copy-config> RPC
 operation defined in [RFC6241] is also augmented to support "resolve-
 system" parameter.

 The "resolve-system" parameter is optional and has no value. When it
 is provided and the server detects that there is a reference to a
 system-defined node during the validation, the server will
 automatically copy the referenced system configuration into the
 validated datastore to make the configuration valid without the
 client doing so explicitly. Legacy Clients interacting with servers
 that support this parameter don’t see any changes in <edit-
 config>/<edit-data> and <copy-config> behaviors.

 According to the NETCONF constraint enforcement model defined in the
 section 8.3 of [RFC7950], if the target datastore of the <edit-
 config>/<edit-data> or <copy-config> is "running" or "startup", the

Ma, et al. Expires 2 April 2023 [Page 5]

Internet-Draft System-defined Configuration September 2022

 server’s copy referenced nodes from <system> to the target datastore
 MUST be enforced at the end of the <edit-config>/<edit-data> or
 <copy-config> operations during the validation. If the target
 datastore of the <edit-config>/<edit-data> or <copy-config> is
 "candidate", the server’s copy referenced nodes from <system> to the
 target datastore is delayed until a <commit> or <validate> operation
 takes place.

1.5. Updates to RFC 8040

 This document extends Section 4.8 and Section 9.1.1 of [RFC8040] to
 add a new query parameter "resolve-system" and corresponding query
 parameter capability URI.

1.5.1. Query Parameter

 The "resolve-system" parameter controls whether to allow a server
 copy any referenced system-defined configuration automatically
 without the client doing so explicitly. This parameter is only
 allowed with no values carried. If this parameter has any unexpected
 value, then a "400 Bad Request" status-line is returned.

 +----------------+---------+---+
 | Name | Methods | Description |
 +----------------+---------+---+
resolve-system	POST,	resolve any references not resolved by
	PUT	the client and copy referenced
		system configuration into <running>
		automatically. This parameter can be
		given in any order.
 +----------------+---------+---+

1.5.2. Query Parameter URI

 To enable the RESTCONF client to discover if the "resolve-system"
 query parameter is supported by the server, the following capability
 URI is defined, which is advertised by the server if supported, using
 the "ietf-restconf-monitoring" module defined in RFC 8040:

 urn:ietf:params:restconf:capability:resolve-system:1.0

2. Kinds of System Configuration

 There are three types of system configurations: immediately-active
 system configuration, conditionally-active system configuration and
 inactive-until-referenced system configuration.

Ma, et al. Expires 2 April 2023 [Page 6]

Internet-Draft System-defined Configuration September 2022

2.1. Immediately-Active

 Immediately-active system configurations are those generated in
 <system> and applied immediately when the device is powered on (e.g.,
 a loop-back interface) , irrespective of physical resource present or
 not, a special functionality enabled or not.

2.2. Conditionally-Active

 System configurations which are generated in <system> and applied
 based on specific conditions being met in a system, e.g., if a
 physical resource is present (e.g., insert interface card), the
 system will automatically detect it and load pre-provisioned
 configuration; when the physical resource is not present(remove
 interface card), the system configuration will be automatically
 cleared. Another example is when a special functionality is enabled,
 e.g., when QoS function is enabled, QoS policies are automatically
 created by the system.

2.3. Inactive-Until-Referenced

 There are some system configurations predefined (e.g., application
 ids, anti-x signatures, trust anchor certs, etc.) as a convenience
 for the clients, which must be referenced to be active. The clients
 can also define their own configurations for their unique
 requirements. Inactive-until-referenced system configurations are
 generated in <system> immediately when the device is powered on, but
 they are not applied and active until being referenced.

3. Static Characteristics

3.1. Read-only to Clients

 The <system> configuration datastore is a read-only configuration
 datastore (i.e., edits towards <system> directly MUST be denied),
 though the client may be allowed to override the value of a system-
 initialized data node (see Section 4.4). Configuration defined in
 <system> is merged into <intended>, and present in <operational> if
 it is actively in use by the device. Thus unless the resource is no
 longer available (e.g., the interface removed physically), there is
 no way to actually delete system configuration from a server, even if
 a client may be allowed to delete the configuration copied from
 <system> into <running>. Any deletable system-provided configuration
 must be defined in <factory-default> [RFC8808], which is used to
 initialize <running> when the device is first-time powered on or
 reset to its factory default condition.

Ma, et al. Expires 2 April 2023 [Page 7]

Internet-Draft System-defined Configuration September 2022

3.2. May Change via Software Upgrades

 System configuration MAY change dynamically, e.g., depending on
 factors like device upgrade or if system-controlled resources(e.g.,
 HW available) change. In some implementations, when QoS function is
 enabled, QoS-related policies are created by system. If the system
 configuration gets changed, YANG notification (e.g., "push-change-
 update" notification) [RFC8641][RFC8639][RFC6470] can be used to
 notify the client. Any update of the contents in <system> will not
 cause the automatic update of <running>, even if some of the system
 configuration has already been copied into <running> explicitly or
 automatically before the update.

3.3. No Impact to <operational>

 This work intends to have no impact to <operational>. As always,
 system configuration will appear in <operational> with
 "origin=system". This work enables a subset of those system
 generated nodes to be defined like configuration, i.e., made visible
 to clients in order for being referenced or configurable prior to
 present in <operational>. "Config false" nodes are out of scope,
 hence existing "config false" nodes are not impacted by this work.

4. Dynamic Behavior

4.1. Conceptual Model

 This document introduces a mandatory datastore named "system" which
 is used to hold all three types of system configurations defined in
 Section 2.

 When the device is powered on, immediately-active system
 configuration will be generated in <system> and applied immediately
 but inactive-until-referenced system configuration only becomes
 active if it is referenced by client-defined configuration. While
 conditionally-active system configuration will be created and
 immediately applied if the condition on system resources is met when
 the device is powered on or running.

 All above three types of system configurations will appear in
 <system>. Clients MAY reference nodes defined in <system>, override
 values of configurations defined in <system>, and configure
 descendant nodes of system-defined nodes, by copying or writing
 intended configurations into the target configuration datastore
 (e.g., <running>).

Ma, et al. Expires 2 April 2023 [Page 8]

Internet-Draft System-defined Configuration September 2022

 The server will merge <running> and <system> to create <intended>, in
 which process, the data node appears in <running> takes precedence
 over the same node in <system> if the server allows the node to be
 modifiable; additional nodes to a list entry or new list/leaf-list
 entries appear in <running> extends the list entry or the whole list/
 leaf-list defined in <system> if the server allows the list/leaf-list
 to be updated. In addition, the <intended> configuration datastore
 represents the configuration after all configuration transformation
 to <system> are performed (e.g., system-defined template expansion,
 removal of inactive system configuration). If a server implements
 <intended>, <system> MUST be merged into <intended>.

 Servers MUST enforce that configuration references in <running> are
 resolved within the <running> datastore and ensure that <running>
 contains any referenced system configuration. Clients MUST either
 explicitly copy system-defined nodes into <running> or use the
 "resolve-system" parameter. The server MUST enforce that the
 referenced system nodes configured into <running> by the client is
 consistent with <system>. Note that <system> aware clients know how
 to discover what nodes exist in <system>. How clients unaware of the
 <system> datastore can find appropriate configurations is beyond the
 scope of this document.

 No matter how the referenced system configurations are copied into
 <running>, the nodes copied into <running> would always be returned
 after a read of <running>, regardless if the client is <system>
 aware.

4.2. Explicit Declaration of System Configuration

 It is possible for a client to explicitly declare system
 configuration nodes in the target datastore (e.g., <running>) with
 the same values as in <system>, by configuring a node (list/leaf-list
 entry, leaf, etc) in the target datastore (e.g., <running>) that
 matches the same node and value in <system>.

 This explicit configuration of system-defined nodes in <running> can
 be useful, for example, when the client doesn’t want a "system
 client" to have a role or hasn’t implemented the "resolve-system"
 parameter. The client can explicitly declare (i.e. configure in
 <running>) the list entries (with at least the keys) for any system
 configuration list entries that are referenced elsewhere in
 <running>. The client does not necessarily need to declare all the
 contents of the list entry (i.e. the descendant nodes) - only the
 parts that are required to make the <running> appear valid.

Ma, et al. Expires 2 April 2023 [Page 9]

Internet-Draft System-defined Configuration September 2022

4.3. Servers Auto-configuring Referenced System Configuration

 This document defines a new parameter "resolve-system" to the input
 for the <edit-config>, <edit-data> and <copy-config> operations.
 Clients that are aware of the "resolve-system" parameter MAY use this
 parameter to avoid the requirement to provide a referentially
 complete configuration in <running>.

 If the "resolve-system" is present, the server MUST copy relevant
 referenced system-defined nodes into the target datastore (e.g.,
 <running>) without the client doing the copy/paste explicitly, to
 resolve any references not resolved by the client. The server acting
 as a "system client" like any other remote clients copies the
 referenced system-defined nodes when triggered by the "resolve-
 system" parameter.

 If the "resolve-system" parameter is not given by the client, the
 server should not modify <running> in any way otherwise not specified
 by the client. Not using capitalized "SHOULD NOT" in the previous
 sentence is intentional. The intention is bring awareness to the
 general need to not surprise clients with unexpected changes. It is
 desirable for clients to always opt into using mechanisms having
 server-side changes. This document enables a client to opt into this
 behavior using the "resolve-system" parameter. RFC 7317 enables a
 client to opt into its behavior using a "0" prefix (see
 ianach:crypt-hash type defined in [RFC7317]).

 The server may automatically configure the list entries (with at
 least the keys) in the target datastore (e.g., <running>) for any
 system configuration list entries that are referenced elsewhere by
 the clients. Similarly, not all the contents of the list entry
 (i.e., the descendant nodes) are necessarily copied by the server -
 only the parts that are required to make the <running> valid. A read
 back of <running> (i.e., <get>, <get-config> or <get-data> operation)
 returns those automatically copied nodes.

4.4. Modifying (overriding) System Configuration

 In some cases, a server may allow some parts of system configuration
 to be modified. List keys in system configuration can’t be changed
 by a client, but other descendant nodes in a list entry may be
 modifiable or non-modifiable. Leafs and leaf-lists outside of lists
 may also be modifiable or non-modifiable. Even if some system
 configuration has been copied into <running> earlier, whether it is
 modifiable or not in <running> follows general YANG and NACM rules,
 and other server-internal restrictions. If a system configuration
 node is non-modifiable, then writing a different value for that node
 in <running> MUST return an error. The immutability of system

Ma, et al. Expires 2 April 2023 [Page 10]

Internet-Draft System-defined Configuration September 2022

 configuration is further defined in [I-D.ma-netmod-immutable-flag].

 Modification of system configuration is achieved by the client
 writing configuration to <running> that overrides the system
 configuration. Configurations defined in <running> take precedence
 over system configuration nodes in <system> if the server allows the
 nodes to be modified.

 A server may also allow a client to add data nodes to a list entry in
 <system> by writing those additional nodes in <running>. Those
 additional data nodes may not exist in <system> (i.e. an *addition*
 rather than an override).

 While modifying (overriding) system configuration nodes may be
 supported by a server, there is no mechanism for deleting a system
 configuration node in <system> unless the resource is no longer
 available. For example, a "mandatory true" leaf may have a value in
 <system> which can be modified (overridden) by a client setting that
 leaf to a value in <running>. But the leaf could not be deleted.
 Another example of this might be that system initializes a value for
 a particular leaf which is overridden by the client with intended
 value in <running>. The client may delete the leaf in <running>, but
 system-initialized value defined in <system> will be in use and
 appear in <operational>.

 Comment 1: What if <system> contains a set of values for a leaf-list,
 and a client configures another set of values for that leaf-list in
 <running>, will the set of values in <running> completely replace the
 set of values in <system>? Or the two sets of values are merged
 together?

 Comment 2: how "ordered-by user" lists and leaf-lists are merged? Do
 the <running> values go before or after, or is this a case where a
 full-replace is needed.

4.5. Examples

 This section shows the examples of server-configuring of <running>
 automatically, declaring a system-defined node in <running>
 explicitly, modifying a system-instantiated leaf’s value and
 configuring descendant nodes of a system-defined node. For each
 example, the corresponding XML snippets are provided.

4.5.1. Server Configuring of <running> Automatically

 In this subsection, the following fictional module is used:

Ma, et al. Expires 2 April 2023 [Page 11]

Internet-Draft System-defined Configuration September 2022

 module example-application {
 yang-version 1.1;
 namespace "urn:example:application";
 prefix "app";

 import ietf-inet-types {
 prefix "inet";
 }
 container applications {
 list application {
 key "name";
 leaf name {
 type string;
 }
 leaf protocol {
 type enumeration {
 enum tcp;
 enum udp;
 }
 }
 leaf destination-port {
 type inet:port-number;
 }
 }
 }
 }

 The server may predefine some applications as a convenience for the
 clients. These predefined configurations are applied only after
 being referenced by other configurations, which fall into the
 "inactive-until-referenced" system configuration as defined in
 Section 2. The system-instantiated application entries may be
 present in <system> as follows:

Ma, et al. Expires 2 April 2023 [Page 12]

Internet-Draft System-defined Configuration September 2022

 <applications xmlns="urn:example:application">
 <application>
 <name>ftp</name>
 <protocol>tcp</protocol>
 <destination-port>21</destination-port>
 </application>
 <application>
 <name>tftp</name>
 <protocol>udp</protocol>
 <destination-port>69</destination-port>
 </application>
 <application>
 <name>smtp</name>
 <protocol>tcp</protocol>
 <destination-port>25</destination-port>
 </application>
 ...
 </applications>

 The client may also define its customized applications. Suppose the
 configuration of applications is present in <running> as follows:

 <applications xmlns="urn:example:application">
 <application>
 <name>my-app-1</name>
 <protocol>tcp</protocol>
 <destination-port>2345</destination-port>
 </application>
 <application>
 <name>my-app-2</name>
 <protocol>udp</protocol>
 <destination-port>69</destination-port>
 </application>
 </applications>

 A fictional ACL YANG module is used as follows, which defines a
 leafref for the leaf-list "application" data node to refer to an
 existing application name.

Ma, et al. Expires 2 April 2023 [Page 13]

Internet-Draft System-defined Configuration September 2022

 module example-acl {
 yang-version 1.1;
 namespace "urn:example:acl";
 prefix "acl";

 import example-application {
 prefix "app";
 }
 import ietf-inet-types {
 prefix "inet";
 }

 container acl {
 list acl_rule {
 key "name";
 leaf name {
 type string;
 }
 container matches {
 choice l3 {
 container ipv4 {
 leaf source_address {
 type inet:ipv4-prefix;
 }
 leaf dest_address {
 type inet:ipv4-prefix;
 }
 }
 }
 choice applications {
 leaf-list application {
 type leafref {
 path "/app:applications/app:application/app:name";
 }
 }
 }
 }
 leaf packet_action {
 type enumeration {
 enum forward;
 enum drop;
 enum redirect;
 }
 }
 }
 }
 }

Ma, et al. Expires 2 April 2023 [Page 14]

Internet-Draft System-defined Configuration September 2022

 If a client configures an ACL rule referencing system predefined
 nodes which are not present in <running>, the client MAY issue an
 <edit-config> operation with the parameter "resolve-system" as
 follows:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <acl xmlns="urn:example:acl">
 <acl_rule>
 <name>allow_access_to_ftp_tftp</name>
 <matches>
 <ipv4>
 <source_address>198.51.100.0/24</source_address>
 <dest_address>192.0.2.0/24</dest_address>
 </ipv4>
 <application>ftp</application>
 <application>tftp</application>
 <application>my-app-1</application>
 </matches>
 <packet_action>forward</packet_action>
 </acl_rule>
 </acl>
 </config>
 <resolve-system/>
 </edit-config>
 </rpc>

 Then following gives the configuration of applications in <running>
 which is returned in the response to a follow-up <get-config>
 operation:

Ma, et al. Expires 2 April 2023 [Page 15]

Internet-Draft System-defined Configuration September 2022

 <applications xmlns="urn:example:application">
 <application>
 <name>my-app-1</name>
 <protocol>tcp</protocol>
 <destination-port>2345</destination-port>
 </application>
 <application>
 <name>my-app-2</name>
 <protocol>udp</protocol>
 <destination-port>69</destination-port>
 </application>
 <application>
 <name>ftp</name>
 </application>
 <application>
 <name>tftp</name>
 </application>
 </applications>

 Then the configuration of applications is present in <operational> as
 follows:

 <applications xmlns="urn:example:application"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <application>
 <name>my-app-1</name>
 <protocol>tcp</protocol>
 <destination-port>2345</destination-port>
 </application>
 <application>
 <name>my-app-2</name>
 <protocol>udp</protocol>
 <destination-port>69</destination-port>
 </application>
 <application or:origin="or:system">
 <name>ftp</name>
 <protocol>tcp</protocol>
 <destination-port>21</destination-port>
 </application>
 <application or:origin="or:system">
 <name>tftp</name>
 <protocol>udp</protocol>
 <destination-port>69</destination-port>
 </application>
 </applications>

Ma, et al. Expires 2 April 2023 [Page 16]

Internet-Draft System-defined Configuration September 2022

 Since the configuration of application "smtp" is not referenced by
 the client, it does not appear in <operational> but only in <system>.

4.5.2. Declaring a System-defined Node in <running> Explicitly

 It’s also possible for a client to explicitly declare the system-
 defined configurations that are referenced. For instance, in the
 above example, the client MAY also explicitly configure the following
 system defined applications "ftp" and "tftp" only with the list key
 "name" before referencing:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <applications xmlns="urn:example:application">
 <application>
 <name>ftp</name>
 </application>
 <application>
 <name>tftp</name>
 </application>
 </applications>
 </config>
 </edit-config>
 </rpc>

 Then the client issues an <edit-config> operation to configure an ACL
 rule referencing applications "ftp" and "tftp" without the parameter
 "resolve-system" as follows:

Ma, et al. Expires 2 April 2023 [Page 17]

Internet-Draft System-defined Configuration September 2022

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <acl xmlns="urn:example:acl">
 <acl_rule>
 <name>allow_access_to_ftp_tftp</name>
 <matches>
 <ipv4>
 <source_address>198.51.100.0/24</source_address>
 <dest_address>192.0.2.0/24</dest_address>
 </ipv4>
 <application>ftp</application>
 <application>tftp</application>
 <application>my-app-1</application>
 </matches>
 <packet_action>forward</packet_action>
 </acl_rule>
 </acl>
 </config>
 </edit-config>
 </rpc>

 Then following gives the configuration of applications in <running>
 which is returned in the response to a follow-up <get-config>
 operation, all the configuration of applications are explicitly
 configured by the client:

Ma, et al. Expires 2 April 2023 [Page 18]

Internet-Draft System-defined Configuration September 2022

 <applications xmlns="urn:example:application">
 <application>
 <name>my-app-1</name>
 <protocol>tcp</protocol>
 <destination-port>2345</destination-port>
 </application>
 <application>
 <name>my-app-2</name>
 <protocol>udp</protocol>
 <destination-port>69</destination-port>
 </application>
 <application>
 <name>ftp</name>
 </application>
 <application>
 <name>tftp</name>
 </application>
 </applications>

 Then the configuration of applications is present in <operational> as
 follows:

 <applications xmlns="urn:example:application"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <application>
 <name>my-app-1</name>
 <protocol>tcp</protocol>
 <destination-port>2345</destination-port>
 </application>
 <application>
 <name>my-app-2</name>
 <protocol>udp</protocol>
 <destination-port>69</destination-port>
 </application>
 <application>
 <name>ftp</name>
 <protocol or:origin="or:system">tcp</protocol>
 <destination-port or:origin="or:system">21</destination-port>
 </application>
 <application>
 <name>tftp</name>
 <protocol or:origin="or:system">udp</protocol>
 <destination-port or:origin="or:system">69</destination-port>
 </application>
 </applications>

Ma, et al. Expires 2 April 2023 [Page 19]

Internet-Draft System-defined Configuration September 2022

 Since the application names "ftp" and "tftp" are explicitly
 configured by the client, they take precedence over the values in
 <system>, the "origin" attribute will be set to "intended".

4.5.3. Modifying a System-instantiated Leaf’s Value

 In this subsection, we will use this fictional QoS data model:

 module example-qos-policy {
 yang-version 1.1;
 namespace "urn:example:qos";
 prefix "qos";

 container qos-policies {
 list policy {
 key "name";
 leaf name {
 type string;
 }
 list queue {
 key "queue-id";
 leaf queue-id {
 type int32 {
 range "1..32";
 }
 }
 leaf maximum-burst-size {
 type int32 {
 range "0..100";
 }
 }
 }
 }
 }
 }

 Suppose a client creates a qos policy "my-policy" with 4 system
 instantiated queues(1˜4). The Configuration of qos-policies is
 present in <system> as follows:

Ma, et al. Expires 2 April 2023 [Page 20]

Internet-Draft System-defined Configuration September 2022

 <qos-policies xmlns="urn:example:qos">
 <name>my-policy</name>
 <queue>
 <queue-id>1</queue-id>
 <maximum-burst-size>50</maximum-burst-size>
 </queue>
 <queue>
 <queue-id>2</queue-id>
 <maximum-burst-size>60</maximum-burst-size>
 </queue>
 <queue>
 <queue-id>3</queue-id>
 <maximum-burst-size>70</maximum-burst-size>
 </queue>
 <queue>
 <queue-id>4</queue-id>
 <maximum-burst-size>80</maximum-burst-size>
 </queue>
 </qos-policies>

 A client modifies the value of maximum-burst-size to 55 in queue-id
 1:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <qos-policies xmlns="urn:example:qos">
 <name>my-policy</name>
 <queue>
 <queue-id>1</queue-id>
 <maximum-burst-size>55</maximum-burst-size>
 </queue>
 </qos-policies>
 </config>
 </edit-config>
 </rpc>

 Then the configuration of qos-policies is present in <operational> as
 follows:

Ma, et al. Expires 2 April 2023 [Page 21]

Internet-Draft System-defined Configuration September 2022

 <qos-policies xmlns="urn:example:qos"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <name>my-policy</name>
 <queue>
 <queue-id>1</queue-id>
 <maximum-burst-size>55</maximum-burst-size>
 </queue>
 <queue or:origin="or:system">
 <queue-id>2</queue-id>
 <maximum-burst-size>60</maximum-burst-size>
 </queue>
 <queue or:origin="or:system">
 <queue-id>3</queue-id>
 <maximum-burst-size>70</maximum-burst-size>
 </queue>
 <queue or:origin="or:system">
 <queue-id>4</queue-id>
 <maximum-burst-size>80</maximum-burst-size>
 </queue>
 </qos-policies>

4.5.4. Configuring Descendant Nodes of a System-defined Node

 This subsection also uses the fictional interface YANG module defined
 in Appendix C.3 of [RFC8342]. Suppose the system provides a loopback
 interface (named "lo0") with a default IPv4 address of "127.0.0.1"
 and a default IPv6 address of "::1".

 The configuration of "lo0" interface is present in <system> as
 follows:

 <interfaces>
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

 The configuration of "lo0" interface is present in <operational> as
 follows:

Ma, et al. Expires 2 April 2023 [Page 22]

Internet-Draft System-defined Configuration September 2022

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:system">
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

 Later on, the client further configures the description node of a
 "lo0" interface as follows:

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <interfaces>
 <interface>
 <name>lo0</name>
 <description>loopback</description>
 </interface>
 </interfaces>
 </config>
 </edit-config>
 </rpc>

 Then the configuration of interface "lo0" is present in <operational>
 as follows:

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <interface>
 <name>lo0</name>
 <description>loopback</description>
 <ip-address or:origin="or:system">127.0.0.1</ip-address>
 <ip-address or:origin="or:system">::1</ip-address>
 </interface>
 </interfaces>

5. The <system> Configuration Datastore

 NMDA servers claiming to support this document MUST implement a
 <system> configuration datastore, and they SHOULD also implement the
 <intended> datastore.

Ma, et al. Expires 2 April 2023 [Page 23]

Internet-Draft System-defined Configuration September 2022

 Following guidelines for defining datastores in the appendix A of
 [RFC8342], this document introduces a new datastore resource named
 ’system’ that represents the system configuration. A device MAY
 implement the mechanism defined in this document without implementing
 the "system" datastore, which would only eliminate the ability to
 programmatically determine the system configuration.

 * Name: "system"

 * YANG modules: all

 * YANG nodes: all "config true" data nodes up to the root of the
 tree, generated by the system

 * Management operations: The content of the datastore is set by the
 server in an implementation dependent manner. The content can not
 be changed by management operations via NETCONF, RESTCONF, the
 CLI, etc, but may change itself by upgrades and/or when resource-
 conditions are met. The datastore can be read using the standard
 NETCONF/RESTCONF protocol operations.

 * Origin: This document does not define any new origin identity when
 it interacts with <intended> datastore and flows into
 <operational>. The "system" origin Metadata Annotation [RFC7952]
 is used to indicate the origin of a data item is system.

 * Protocols: YANG-driven management protocols, such as NETCONF and
 RESTCONF.

 * Defining YANG module: "ietf-system-datastore".

 The datastore’s content is defined by the server and read-only to
 clients. Upon the content is created or changed, it will be merged
 into <intended> datastore. Unlike <factory-default>[RFC8808], it MAY
 change dynamically, e.g., depending on factors like device upgrade or
 system-controlled resources change (e.g., HW available). The
 <system> datastore doesn’t persist across reboots; the contents of
 <system> will be lost upon reboot and recreated by the system with
 the same or changed contents. <factory-reset> RPC operation defined
 in [RFC8808] can reset it to its factory default configuration
 without including configuration generated due to the system update or
 client-enabled functionality.

 The <system> datastore is defined as a conventional configuration
 datastore and shares a common datastore schema with other
 conventional datastores. The <system> configuration datastore must
 always be valid, as defined in Section 8.1 of [RFC7950].

Ma, et al. Expires 2 April 2023 [Page 24]

Internet-Draft System-defined Configuration September 2022

6. The "ietf-system-datastore" Module

6.1. Data Model Overview

 This YANG module defines a new YANG identity named "system" that uses
 the "ds:datastore" identity defined in [RFC8342]. A client can
 discover the <system> datastore support on the server by reading the
 YANG library information from the operational state datastore. Note
 that no new origin identity is defined in this document, the
 "or:system" origin Metadata Annotation [RFC7952] is used to indicate
 the origin of a data item is system. Support for the "origin"
 annotation is identified with the feature "origin" defined in
 [RFC8526].

 The following diagram illustrates the relationship amongst the
 "identity" statements defined in the "ietf-system-datastore" and
 "ietf-datastores" YANG modules:

Identities:
 +--- datastore
 | +--- conventional
 | | +--- running
 | | +--- candidate
 | | +--- startup
 | | +--- system
 | | +--- intended
 | +--- dynamic
 | +--- operational
 The diagram above uses syntax that is similar to but not defined in [RFC8340].

6.2. Example Usage

 This section gives an example of data retrieval from <system>. The
 YANG module used are shown in Appendix C.2 of [RFC8342]. All the
 messages are presented in a protocol-independent manner. JSON is
 used only for its conciseness.

 Suppose the following data is added to <running>:

 {
 "bgp": {
 "local-as": "64501",
 "peer-as": "64502",
 "peer": {
 "name": "2001:db8::2:3"
 }
 }
 }

Ma, et al. Expires 2 April 2023 [Page 25]

Internet-Draft System-defined Configuration September 2022

 REQUEST (a <get-data> or GET request sent from the NETCONF or
 RESTCONF client):

 Datastore: <system>
 Target:/bgp

 An example of RESTCONF request:

 GET /restconf/ds/system/bgp HTTP/1.1
 Host: example.com
 Accept: application/yang-data+xml

 RESPONSE ("local-port" leaf value is supplied by the system):

 {
 "bgp": {
 "peer": {
 "name": "2001:db8::2:3",
 "local-port": "60794"
 }
 }
 }

6.3. YANG Module

 <CODE BEGINS>
 file="ietf-system-datastore@2022-08-09.yang"
 module ietf-system-datastore {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-system-datastore";
 prefix sysds;

 import ietf-datastores {
 prefix ds;
 reference
 "RFC 8342: Network Management Datastore Architecture(NMDA)";
 }

 organization
 "IETF NETMDOD (Network Modeling) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>
 Author: Qiufang Ma
 <mailto:maqiufang1@huawei.com>
 Author: Qin Wu
 <mailto:bill.wu@huawei.com>

Ma, et al. Expires 2 April 2023 [Page 26]

Internet-Draft System-defined Configuration September 2022

 Author: Chong Feng
 <mailto:frank.fengchong@huawei.com>";

 description
 "This module defines a new YANG identity that uses the
 ds:datastore identity defined in [RFC8342].

 Copyright (c) 2022 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Revised
 BSD License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC HHHH
 (https://www.rfc-editor.org/info/rfcHHHH); see the RFC
 itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’,
 ’SHALL NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’,
 ’NOT RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this document
 are to be interpreted as described in BCP 14 (RFC 2119)
 (RFC 8174) when, and only when, they appear in all
 capitals, as shown here.";

 revision 2022-08-09 {
 description

 "Initial version.";
 reference
 "RFC XXXX: System-defined Configuration";
 }

 identity system {
 base ds:conventional;
 description
 "This read-only datastore contains the complete configuration
 provided by the system itself.";
 }
 }
 <CODE ENDS>

Ma, et al. Expires 2 April 2023 [Page 27]

Internet-Draft System-defined Configuration September 2022

7. The "ietf-netconf-resolve-system" Module

 This YANG module is optional to implement.

7.1. Data Model Overview

 This YANG module augments NETCONF <edit-config>, <edit-data> and
 <copy-config> operations with a new parameter "resolve-system" in the
 input parameters. If the "resolve-system" parameter is present, the
 server will copy the referenced system configuration into target
 datastore automatically. A NETCONF client can discover the "resolve-
 system" parameter support on the server by checking the YANG library
 information with "ietf-netconf-resolve-system" included from the
 operational state datastore.

 The following tree diagram [RFC8340] illustrates the "ietf-netconf-
 resolve-system" module:

 module: ietf-netconf-resolve-system
 augment /nc:edit-config/nc:input:
 +---w resolve-system? empty
 augment /nc:copy-config/nc:input:
 +---w resolve-system? empty
 augment /ncds:edit-data/ncds:input:
 +---w resolve-system? empty

 The following tree diagram [RFC8340] illustrates "edit-config",
 "copy-config" and "edit-data" rpcs defined in "ietf-netconf" and
 "ietf-netconf-nmda" respectively, augmented by "ietf-netconf-resolve-
 system" YANG module :

 rpcs:
 +---x edit-config
 | +---w input
 | +---w target
 | | +---w (config-target)
 | | +--:(candidate)
 | | | +---w candidate? empty {candidate}?
 | | +--:(running)
 | | +---w running? empty {writable-running}?
 | +---w default-operation? enumeration
 | +---w test-option? enumeration {validate}?
 | +---w error-option? enumeration
 | +---w (edit-content)
 | | +--:(config)
 | | | +---w config? <anyxml>
 | | +--:(url)
 | | +---w url? inet:uri {url}?

Ma, et al. Expires 2 April 2023 [Page 28]

Internet-Draft System-defined Configuration September 2022

 | +---w resolve-system? empty
 +---x copy-config
 | +---w input
 | +---w target
 | | +---w (config-target)
 | | +--:(candidate)
 | | | +---w candidate? empty {candidate}?
 | | +--:(running)
 | | | +---w running? empty {writable-running}?
 | | +--:(startup)
 | | | +---w startup? empty {startup}?
 | | +--:(url)
 | | +---w url? inet:uri {url}?
 | +---w source
 | | +---w (config-source)
 | | +--:(candidate)
 | | | +---w candidate? empty {candidate}?
 | | +--:(running)
 | | | +---w running? empty
 | | +--:(startup)
 | | | +---w startup? empty {startup}?
 | | +--:(url)
 | | | +---w url? inet:uri {url}?
 | | +--:(config)
 | | +---w config? <anyxml>
 | +---w resolve-system? empty
 +---x edit-data
 +---w input
 +---w datastore ds:datastore-ref
 +---w default-operation? enumeration
 +---w (edit-content)
 | +--:(config)
 | | +---w config? <anydata>
 | +--:(url)
 | +---w url? inet:uri {nc:url}?
 +---w resolve-system? empty

7.2. Example Usage

 This section gives an example of an <edit-config> request to
 reference system-defined data nodes which are not present in
 <running> with a "resolve-system" parameter. A retrieval of
 <running> to show the auto-copied referenced system configurations
 after the <edit-config> request is also given. The YANG module used
 is shown as follows, leafrefs refer to an existing name and address
 of an interface:

Ma, et al. Expires 2 April 2023 [Page 29]

Internet-Draft System-defined Configuration September 2022

 module example-interface-management {
 yang-version 1.1;
 namespace "urn:example:interfacemgmt";
 prefix "inm";

 container interfaces {
 list interface {
 key name;
 leaf name {
 type string;
 }
 leaf description {
 type string;
 }
 leaf mtu {
 type uint16;
 }
 leaf ip-address {
 type inet:ip-address;
 }
 }
 }
 container default-address {
 leaf ifname {
 type leafref {
 path "../../interfaces/interface/name";
 }
 }
 leaf address {
 type leafref {
 path "../../interfaces/interface[name = current()/../ifname]"
 + "/ip-address";
 }
 }
 }
 }

 Image that the system provides a loopback interface (named "lo0")
 with a predefined MTU value of "1500" and a predefined IP address of
 "127.0.0.1". The <system> datastore shows the following
 configuration of loopback interface:

Ma, et al. Expires 2 April 2023 [Page 30]

Internet-Draft System-defined Configuration September 2022

 <interfaces xmlns="urn:example:interfacemgmt">
 <interface>
 <name>lo0</name>
 <mtu>1500</mtu>
 <ip-address>127.0.0.1</ip-address>
 </interface>
 </interfaces>

 The client sends an <edit-config> operation to add the configuration
 of default-address with a "resolve-system" parameter:

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
 <edit-config>
 <target>
 <running/>
 </target>
 <config>
 <default-address xmlns="urn:example:interfacemgmt">
 <if-name>lo0</if-name>
 <address>127.0.0.1</address>
 </default-address>
 </config>
 <resolve-system/>
 </edit-config>
 </rpc>

 Since the "resolve-system" parameter is provided, the server will
 resolve any leafrefs to system configurations and copy the referenced
 system-defined nodes into <running> automatically with the same value
 (i.e., the name and ip-address data nodes of lo0 interface) in
 <system> at the end of <edit-config> operation constraint
 enforcement. After the processing, a positive resonse is returned:

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <ok/>
 </rpc-reply>

 Then the client sends a <get-config> operation towards <running>:

Ma, et al. Expires 2 April 2023 [Page 31]

Internet-Draft System-defined Configuration September 2022

 <rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <source>
 <running/>
 </source>
 <filter type="subtree">
 <interfaces xmlns="urn:example:interfacemgmt"/>
 </filter>
 </get-config>
 </rpc>

 Given that the referenced interface "name" and "ip-address" of lo0
 are configured by the server, the following response is returned:

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <interfaces xmlns="urn:example:interfacemgmt">
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 </interface>
 </interfaces>
 </data>
 </rpc-reply>

7.3. YANG Module

 <CODE BEGINS>
 file="ietf-netconf-resolve-system@2022-08-09.yang"
 module ietf-netconf-resolve-system {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-netconf-resolve-system";
 prefix ncrs;

 import ietf-netconf {
 prefix nc;
 reference
 "RFC 6241: Network Configuration Protocol (NETCONF)";
 }

 import ietf-netconf-nmda {
 prefix ncds;
 reference
 "RFC 8526: NETCONF Extensions to Support the Network
 Management Datastore Architecture";
 }

Ma, et al. Expires 2 April 2023 [Page 32]

Internet-Draft System-defined Configuration September 2022

 organization
 "IETF NETMOD (Network Modeling) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>
 Author: Qiufang Ma
 <mailto:maqiufang1@huawei.com>
 Author: Qin Wu
 <mailto:bill.wu@huawei.com>
 Author: Chong Feng
 <mailto:frank.fengchong@huawei.com>";

 description
 "This module defines an extension to the NETCONF protocol
 that allows the NETCONF client to control whether the server
 is allowed to copy referenced system configuration
 automatically without the client doing so explicitly.

 Copyright (c) 2022 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Revised
 BSD License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC HHHH
 (https://www.rfc-editor.org/info/rfcHHHH); see the RFC
 itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’,
 ’SHALL NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’,
 ’NOT RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this document
 are to be interpreted as described in BCP 14 (RFC 2119)
 (RFC 8174) when, and only when, they appear in all
 capitals, as shown here.";

 revision 2022-08-09 {
 description
 "Initial version.";
 reference
 "RFC XXXX: System-defined Configuration";
 }

 augment /nc:edit-config/nc:input {

Ma, et al. Expires 2 April 2023 [Page 33]

Internet-Draft System-defined Configuration September 2022

 description
 "Allows the server to automatically configure
 referenced system configuration to make configuration
 valid.";
 leaf resolve-system {
 type empty ;
 description
 "When present, the server is allowed to automatically
 configure referenced system configuration into the
 target configuration datastore.";
 }
 }

 augment /nc:copy-config/nc:input {
 description
 "Allows the server to automatically configure
 referenced system configuration to make configuration
 valid.";
 leaf resolve-system {
 type empty ;
 description
 "When present, the server is allowed to automatically
 configure referenced system configuration into the
 target configuration datastore.";
 }
 }

 augment /ncds:edit-data/ncds:input {
 description
 "Allows the server to automatically configure
 referenced system configuration to make configuration
 valid.";
 leaf resolve-system {
 type empty ;
 description
 "When present, the server is allowed to automatically
 configure referenced system configuration into the
 target configuration datastore.";
 }
 }
 }
 <CODE ENDS>

8. IANA Considerations

Ma, et al. Expires 2 April 2023 [Page 34]

Internet-Draft System-defined Configuration September 2022

8.1. The "IETF XML" Registry

 This document registers two XML namespace URNs in the ’IETF XML
 registry’, following the format defined in [RFC3688].

 URI: urn:ietf:params:xml:ns:yang:ietf-system-datastore
 Registrant Contact: The IESG.
 XML: N/A, the requested URIs are XML namespaces.

 URI: urn:ietf:params:xml:ns:yang:ietf-netconf-resolve-system
 Registrant Contact: The IESG.
 XML: N/A, the requested URIs are XML namespaces.

8.2. The "YANG Module Names" Registry

 This document registers two module names in the ’YANG Module Names’
 registry, defined in [RFC6020] .

 name: ietf-system-datastore
 prefix: sys
 namespace: urn:ietf:params:xml:ns:yang:ietf-system-datatstore
 RFC: XXXX // RFC Ed.: replace XXXX and remove this comment

 name: ietf-netconf-resolve-system
 prefix: ncrs
 namespace: urn:ietf:params:xml:ns:yang:ietf-netconf-resolve-system
 RFC: XXXX // RFC Ed.: replace XXXX and remove this comment

8.3. RESTCONF Capability URN Registry

 This document registers a capability in the "RESTCONF Capability
 URNs" registry [RFC8040]:

 Index Capability Identifier

 :resolve-system urn:ietf:params:restconf:capability:resolve-system:1.0

9. Security Considerations

9.1. Regarding the "ietf-system-datastore" YANG Module

 The YANG module defined in this document extends the base operations
 for NETCONF [RFC6241] and RESTCONF [RFC8040]. The lowest NETCONF
 layer is the secure transport layer, and the mandatory-to-implement
 secure transport is Secure Shell (SSH) [RFC6242]. The lowest
 RESTCONF layer is HTTPS, and the mandatory-to-implement secure
 transport is TLS [RFC8446].

Ma, et al. Expires 2 April 2023 [Page 35]

Internet-Draft System-defined Configuration September 2022

 The Network Configuration Access Control Model (NACM) [RFC8341]
 provides the means to restrict access for particular NETCONF users to
 a preconfigured subset of all available NETCONF protocol operations
 and content.

9.2. Regarding the "ietf-netconf-resolve-system" YANG Module

 The YANG module defined in this document extends the base operations
 for NETCONF [RFC6241] and [RFC8526]. The lowest NETCONF layer is the
 secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC8446].

 The Network Configuration Access Control Model (NACM) [RFC8341]
 provides the means to restrict access for particular NETCONF users to
 a preconfigured subset of all available NETCONF protocol operations
 and content.

 The security considerations for the base NETCONF protocol operations
 (see Section 9 of [RFC6241] apply to the new extended RPC operations
 defined in this document.

10. Contributors

 Kent Watsen
 Watsen Networks

 Email: kent+ietf@watsen.net

 Jan Lindblad
 Cisco Systems

 Email: jlindbla@cisco.com

 Chongfeng Xie
 China Telecom
 Beijing
 China

 Email: xiechf@chinatelecom.cn

 Jason Sterne
 Nokia

 Email: jason.sterne@nokia.com

Ma, et al. Expires 2 April 2023 [Page 36]

Internet-Draft System-defined Configuration September 2022

Acknowledgements

 Thanks to Robert Wilton, Balazs Lengyel, Andy Bierman, Juergen
 Schoenwaelder, Alex Clemm, Martin Bjorklund, Timothy Carey for
 reviewing, and providing important input to, this document.

References

Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8526] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "NETCONF Extensions to Support the Network
 Management Datastore Architecture", RFC 8526,
 DOI 10.17487/RFC8526, March 2019,
 <https://www.rfc-editor.org/info/rfc8526>.

Informative References

 [I-D.ma-netmod-immutable-flag]
 Ma, Q., Wu, Q., Lengyel, B., and H. Li, "YANG Extension
 and Metadata Annotation for Immutable Flag", Work in
 Progress, Internet-Draft, draft-ma-netmod-immutable-flag-
 03, 11 August 2022, <https://www.ietf.org/archive/id/
 draft-ma-netmod-immutable-flag-03.txt>.

 [RFC7317] Bierman, A. and M. Bjorklund, "A YANG Data Model for
 System Management", RFC 7317, DOI 10.17487/RFC7317, August
 2014, <https://www.rfc-editor.org/info/rfc7317>.

Ma, et al. Expires 2 April 2023 [Page 37]

Internet-Draft System-defined Configuration September 2022

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of
 Documents Containing YANG Data Models", BCP 216, RFC 8407,
 DOI 10.17487/RFC8407, October 2018,
 <https://www.rfc-editor.org/info/rfc8407>.

 [RFC8525] Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
 and R. Wilton, "YANG Library", RFC 8525,
 DOI 10.17487/RFC8525, March 2019,
 <https://www.rfc-editor.org/info/rfc8525>.

 [RFC8808] Wu, Q., Lengyel, B., and Y. Niu, "A YANG Data Model for
 Factory Default Settings", RFC 8808, DOI 10.17487/RFC8808,
 August 2020, <https://www.rfc-editor.org/info/rfc8808>.

Appendix A. Key Use Cases

 Following provides three use cases related to system-defined
 configuration lifecycle management. The simple interface data model
 defined in Appendix C.3 of [RFC8342] is used. For each use case,
 snippets of <running>, <system>, <intended> and <operational> are
 shown.

A.1. Device Powers On

 <running>:

 No configuration for "lo0" appears in <running>;

 <system>:

 <interfaces>
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

 <intended>:

Ma, et al. Expires 2 April 2023 [Page 38]

Internet-Draft System-defined Configuration September 2022

 <interfaces>
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

 <operational>:

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:system">
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

A.2. Client Commits Configuration

 If a client creates an interface "et-0/0/0" but the interface does
 not physically exist at this point:

 <running>:

 <interfaces>
 <interface>
 <name>et-0/0/0</name>
 <description>Test interface</description>
 </interface>
 </interfaces>

 <system>:

 <interfaces>
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

 <intended>:

Ma, et al. Expires 2 April 2023 [Page 39]

Internet-Draft System-defined Configuration September 2022

 <interfaces>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 <interface>
 <name>et-0/0/0</name>
 <description>Test interface</description>
 </interface>
 <interface>
 </interfaces>

 <operational>:

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <interface or:origin="or:system">
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 </interfaces>

A.3. Operator Installs Card into a Chassis

 <running>:

 <interfaces>
 <interface>
 <name>et-0/0/0</name>
 <description>Test interface</description>
 </interface>
 </interfaces>

 <system>:

 <interfaces>
 <interface>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 <interface>
 <name>et-0/0/0</name>
 <mtu>1500</mtu>
 </interface>
 </interfaces>

Ma, et al. Expires 2 April 2023 [Page 40]

Internet-Draft System-defined Configuration September 2022

 <intended>:

 <interfaces>
 <name>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 <interface>
 <name>et-0/0/0</name>
 <description>Test interface</description>
 <mtu>1500</mtu>
 </interface>
 <interface>
 </interfaces>

 <operational>:

 <interfaces xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <interface or:origin="or:system">
 <name or:origin>lo0</name>
 <ip-address>127.0.0.1</ip-address>
 <ip-address>::1</ip-address>
 </interface>
 <interface>
 <name>et-0/0/0</name>
 <description>Test interface</description>
 <mtu or:origin="or:system">1500</mtu>
 </interface>
 <interface>
 </interfaces>

Appendix B. Changes between Revisions

 v03 - v04

 * Clarify the "should not" statement;

 * Editorial changes, like avoid using "object";

 v02 - v03

 * Define a RESTCONF capability URI for "resolve-system" RESTCONF
 query parameter;

 * Augment <copy-config> RPC operation to support "resolve-system"
 for input parameter;

Ma, et al. Expires 2 April 2023 [Page 41]

Internet-Draft System-defined Configuration September 2022

 * Editorial changes for clarification and explanation. E.g.,
 definition of system configuration, is <system> always valid?
 Will the update of <system> be reflected into <running>? Clarify
 "read-only to clients" and "modifying system configuration", non-
 deletable system configuration, etc

 v00 - v02

 * Remove the "with-system" parameter to retrieve <running> with
 system configuration merged in.

 * Add a new parameter named "resolve-system" to allow the server to
 populate referenced system configuration into <running>
 automatically in order to make <running> valid.

 * Usage examples refinement.

 v02 - v00

 * Restructure the document content based on input in the system
 defined configuration interim meeting.

 * Updates NMDA to define a read-only conventional configuration
 datastore called "system".

 * Retrieval of implicit hidden system configuration via <get><get-
 config> with "with-system" parameter to support non-NMDA servers.

 * Provide system defined configuration classification.

 * Define Static Characteristics and dynamic behavior for system
 defined configuration.

 * Separate "ietf-system-datastore" Module from "ietf-netconf-with-
 system" Module.

 * Provide usage examples for dynamic behaviors.

 * Provide usage examples for two YANG modules.

 * Provide three use cases related to system-defined configuration
 lifecycle management.

 * Classify the relation with <factory-default>.

Ma, et al. Expires 2 April 2023 [Page 42]

Internet-Draft System-defined Configuration September 2022

Appendix C. Open Issues tracking

 * Should the "with-origin" parameter be supported for <intended>?

Authors’ Addresses

 Qiufang Ma (editor)
 Huawei
 101 Software Avenue, Yuhua District
 Nanjing
 Jiangsu, 210012
 China
 Email: maqiufang1@huawei.com

 Qin Wu
 Huawei
 101 Software Avenue, Yuhua District
 Nanjing
 Jiangsu, 210012
 China
 Email: bill.wu@huawei.com

 Feng Chong
 Huawei
 101 Software Avenue, Yuhua District
 Nanjing
 Jiangsu, 210012
 China
 Email: frank.fengchong@huawei.com

Ma, et al. Expires 2 April 2023 [Page 43]

	draft-ietf-netmod-node-tags-08
	draft-ietf-netmod-node-tags-11
	draft-ietf-netmod-syslog-model-27
	draft-ietf-netmod-syslog-model-32
	draft-ietf-netmod-yang-module-versioning-06
	draft-ietf-netmod-yang-module-versioning-11
	draft-ietf-netmod-yang-semver-07
	draft-ietf-netmod-yang-semver-15
	draft-ma-netmod-immutable-flag-02
	draft-ma-netmod-immutable-flag-09
	draft-ma-netmod-with-system-03
	draft-ma-netmod-with-system-05

