Yang Data Model for OAM and Management of ALTO protocol

draft-zhang-alto-oam-yang

Jingxuan Zhang Dhruv Dhody Roland Schott Kai Gao

Presenter: Mahdi Soleimani

ALTO WG @ IETF 114

Current Status

Main goal: Define a YANG data model for Operations, Administration, and Maintenance (OAM) & Management of ALTO Protocol.

Latest version: https://datatracker.ietf.org/doc/html/draft-ietf-alto-oam-yang-01

Editor's copy on GitHub: https://ietf-wg-alto.github.io/draft-ietf-alto-oam-yang.html

YANG modules: https://github.com/ietf-wg-alto/draft-ietf-alto-oam-yang/tree/main/yang

Current Status (Cont.)

Comments/Reviews since IETT 113:

- Received 5 reviews/comments from WG mailing list:
 - Many good suggestions on measurement, server setup, logging management, etc.
 - Thanks for Qiufang Ma, Qin Wu, and Chongfeng Xie
- 1 discussion with netmod WG is continuing
 - Tom Petch provided some intelligent analysis about whether to use IANA maintained YANG modules
- 5 discussions on GitHub:
 - https://github.com/ietf-wg-alto/draft-ietf-alto-oam-yang/issues

Achieved Milestones:

- WG document adoption
 - Latest version draft-ietf-alto-oam-yang-01 improved YANG model and addressed part of comments from WG
- IETF 114 Hackathon
 - Concepts proof in OpenALTO implementation: https://github.com/openalto/alto

List of Remaining Issues/Open Discussions

- Issues that have been discussed in WG mailing list
 - Q1: How to handle data types in ALTO related IANA registries?
 - Q2: How to configure server level management for ALTO?
 - Q3: How to define data model for logging and fault management?
- Issues that have been discussed internally
 - Q4: How to support ALTO client-side O&M?
 - Q5: How to support ALTO server-to-server communication?
- Issues that have not been discussed yet
 - Q6: How to support different data sources using a unified data model?

Q1: Data Types in ALTO Related IANA Registries

ALTO related IANA registries:

https://www.iana.org/assignments/alto-protocol/alto-protocol.xhtml

Created by RFC7285

Identifier	Intended Semantics
routingcost	See <u>Section 6.1.1.1</u>
priv:	Private use

Table 3: ALTO Cost Metrics

Option 1: Define "enumeration" in "iana-alto-types.yang"

file "iana-alto-types.yang"

```
typedef cost-metric {
  type enumeration {
    enum routingcost {
     value 1;
     description "Generic measurement";
  }
  enum ane-path {
    value 2;
    description "Array of ANE names";
  }
  }
}
```

Updated by draft-ietf-alto-path-vector

+======+============	+=======+
Identifier Intended Semantics	
+=======+====+========	+========+
ane-path See Section 6.5.1	See <u>Section 11</u>
+	++

Table 1: ALTO Cost Metric Registry

Pros:

Guarantee consistency between different documents / YANG modules

Cons:

- Require IANA to have YANG skills
- Hard to extend new values for experimental drafts

Q1: Data Types in ALTO Related IANA Registries

ALTO related IANA registries:

https://www.iana.org/assignments/alto-protocol/alto-protocol.xhtml

Created by RFC7285

Identifier	Intended Semantics
routingcost	See <u>Section 6.1.1.1</u> Private use

Table 3: ALTO Cost Metrics

Option 2 (Current): Define "identity" in "ietf-alto.yang"

```
// Identities for cost metrics
identity routingcost {
  base cost-metric;
  description
    "This metric conveys a generic measure for the cost of routing
    traffic from a source to a destination.";
}
identity ane-path {
  if-feature "path-vector";
  base cost-metric;
  description
    "This metric indicates that the value of such a cost type
    conveys an array of Abstract Network Element (ANE) names,
    where each ANE name uniquely represents an ANE traversed by
    traffic from a source to a destination.";
}
```

Updated by draft-ietf-alto-path-vector

+======+====+==========================	+======+
Identifier Intended Semantics	Security Considerations
+======+===+===========================	+==========+
ane-path See Section 6.5.1	See <u>Section 11</u>
+	++

Table 1: ALTO Cost Metric Registry

Pros:

 Anyone can easily add new values to the data type. (Just define new identities)

Cons:

 Lack of change control (There is no registry to guarantee the consistency. May bring challenges to interop.)

Q2: Server Level Management

Inspired by RESTCONF model, complete configuration for server-listen-stack is added.

ALTO server is based on many underlay protocols. (e.g., HTTP/HTTPS for message, DHCP/DNS for discovery)

Question: whether more configuration parameters in underlay protocol stack should be included (e.g., HTTP Cache-Control, Retry-After, etc.)

Q3: Logging and Fault Management

Current related records: success/failure counts for requests/responses

server-level:

resource-level:

```
augment /alto:alto-server/alto:resource:
+--ro num-res-upd? yang:counter32
+--ro res-mem-size? yang:counter32
+--ro res-enc-size? yang:counter32
+--ro num-res-req? yang:counter32
+--ro num-res-succ? yang:counter32
+--ro num-res-fail? yang:counter32
```

Following records suggested by Qiufang Ma and Chongfeng Xie will be added in the next revision:

- Success/failure records for configuration update events
 - e.g., Add a new information to an existing "update" resource to enable incremental updates.
- Records for types of configuration update events
 - O Can YANG model provide this feature itself?
- Status updates of connections to data sources

We are looking forward to getting more suggested useful metrics from experiences of real deployments.

Q4: ALTO Client-Side O&M

So far, only data model for ALTO server O&M is defined. But in practice, ALTO clients also need O&M.

From experience in two IETF Hackathons, the following parameters are suggested for ALTO client O&M:

- Data model for how to access ALTO services
 - URI to the IRD of the ALTO server (can also be discovered using ALTO server discovery mechanism [RFC7286] [RFC8686])
 - Resource IDs of required ALTO information resources
 - Parameters to required ALTO information resources (e.g., cost types, endpoint properties)
- Data model for transport mechanism control
 - Data polling (e.g., polling interval)
 - Pub/sub (e.g., SSE or HTTP/2)
 - On-demand query (some applications may change the requests frequently)

Design option 1:

Add a new top-level container/list for ALTO client.

Design option 2:

Add a new data source type for ALTO server, and consider ALTO client as an ALTO data source listener.

Q5: Server-to-Server Communication

Several drafts have already discussed ALTO use cases in multi-domain settings:

- https://datatracker.ietf.org/doc/html/draft-lachos-alto-multi-domain-use-cases
- https://datatracker.ietf.org/doc/html/draft-xiang-alto-multidomain-analytics

To support ALTO O&M in multi-domain settings, the following features are required:

- ALTO server need to be a data source of another ALTO server:
 - Design option 1: collect data using ALTO protocol directly. (may need extension to ALTO)
 - Design option 2: Use other southbound protocol to expose database of ALTO server.
 - No standard so far; need to decide whether to be a standard.
- Cross-domain path discovery:
 - Non-existing ALTO services can provide information for cross-domain path discovery.
 - Require some mechanism to look up ingress/egress points of inter-domain routes in each administrative domain.

Q6: Model for Data Sources

Data model for data source listener configuration:

- Southbound protocol stack parameters
 - Protocol version, URI, authentication, etc.
- Query parameters
 - Query expression (PromQL)
 - Xpath (RESTCONF)
 - 0 ...
- Data collection mechanism parameters
 - Periodically polling
 - Pub/sub
 - On demand

- Example of data source for YANG data store:
- local: access data store from memory.
- remote: access data store using RESTCONF.

```
+--:(yang-datastore)
| +--rw yang-datastore-source-params
| +--rw source-path
| | yang:xpath1.0
| +--rw (restconf-endpoint)?
| +--:(local)
| +--:(remote)
| +--rw restconf-endpoint-params
| +--u rcc:restconf-client-listen-stack-grouping
```

- Network controllers: OpenDaylight, ONOS
- Measurement tools: Prometheus
- Network elements: NETCONF, BGP, PCE Southbound

Next Step

The authors will:

- Make decisions to Q1-Q3 as soon and submit a new version.
- Continue to collect feedback to Q4-Q6 from ALTO WG and other related WGs/communities.
- Test YANG model in real implementation.

Target milestones

- Reach agreement on Q1-Q6 and get the document ready before next IETF.
- Push ALTO O&M YANG Model to OpenALTO implementation and get deployment before Mar 2023.