
WGLC / Review
changes to

constrained join
proxy

Michael Richardson, Peter van der Stok, Panos
Kampanakis

IETF 114 - ANIMA Working Group

draft-ietf-anima-constrained-join-proxy-12

Discovery issues: GRASP and mDNS
Registrar Discovery (by Join Proxy)

Discovery in Constrained-Voucher

[M_FLOOD, 51804321, h'fda379a6f6ee00000200000064000001', 180000,

 [["AN_join_registrar", 4, 255, "BRSKI_JP"],

 [O_IPv6_LOCATOR,

 h'fda379a6f6ee00000200000064000001', IPPROTO_UDP, 5684]]]

Discovery in Constrained-Join-Proxy

[M_FLOOD, 51840231, h'fda379a6f6ee00000200000064000001', 180000,

 [

 ["AN_join_registrar", 4, 255, ""], [O_IPv6_LOCATOR,
h'fda379a6f6ee00000200000064000001', IPPROTO_TCP, 8443],

 ["AN_join_registrar", 4, 255, "BRSKI_JP"], [O_IPv6_LOCATOR,
h'fda379a6f6ee00000200000064000001', IPPROTO_UDP, 5684],

 ["AN_join_registrar", 4, 255, "BRSKI_RJP"], [O_IPv6_LOCATOR,
h'fda379a6f6ee00000200000064000001', IPPROTO_UDP, 5685]

]]

Abirtary port

Discovery issues: GRASP and mDNS
Join-Proxy Discovery (by Pledge)

Discovery in Constrained-Voucher

[M_FLOOD, 12340851, h'fe800000000000000000000000000001', 180000,

 [["AN_Proxy", 4, 1, ""], [O_IPv6_LOCATOR,

 h'fe800000000000000000000000000001', IPPROTO_TCP, 4443],

 ["AN_Proxy", 4, 1, "DTLS"], [O_IPv6_LOCATOR,

 h'fe800000000000000000000000000001', IPPROTO_UDP, 5684]]

Discovery in Constrained-Join-Proxy

 NO CHANGE
Abirtary port

Mesh Network Diagram
 multi-hop mesh

 .---.

 | R +---. +----+ +---+ +--+

 | | \ |6LR +----+ J |........|P |

 '---' `--+ | | | clear | |

 +----+ +---+ +--+

 Registrar Join Proxy Pledge

What’s Mandatory To Implement?
● Was:

– “A Join Proxy MAY implement both”

● Now:

– “A Join Proxy MUST implement both”

● Seems to be the result of some review
comments.

● Probably not what we want.

1) All Registrars have to support stateful
connections, because that’s what coaps:// is.
They will announce this.

2) Some Registrars support stateless connections
(JPY), and those Registrars will announce that.

3) A Join Proxy can support one or both methods.
If it supports only stateless, and there is no
stateless, then it can not operate as a join
proxy. It’s not a failure of interoperation, it’s a
purchasing decision.

4) The goal here is there is no configuration
required, not that there is magic that forces
every device to implement everything.

Registrar supports: Stateful

MUST

Stateless
(MAY)

Registrar does
not do

Stateless

Stateless
(MAY)

Registrar does
 Stateless

Join Proxy Supports:

Stateful:YES
Stateless: YES Uses Stateful Uses Stateful Uses Stateless

Stateful:YES
Stateless: NO Use stateful N/A N/A

Stateful:NO
Stateless: YES

Does not
use stateful

● Does not
operate as

a join
proxy

● Uses
Stateless

Stateful:NO
Stateless: NO

● Not a Join Proxy

JPY message changed

OLD:
 JPY_message =

 [

 ip : bstr,

 port : int,

 family : int,

 index : int

 content : bstr

]

NEW:
JPY_message =

[

 pledge_context_message:bstr,

 content : bstr

]

Contents SHOULD
be encrypted, but

Contents not standardized

Use of CoAP Discovery for JPY “tunnel”

Normal CoAP discovery looks like:

REQ: GET /.well-known/core?rt=brski* <- to Multicast address.

Unicase responses:

 RES: 2.05 Content

 Content-Format: 40

 Payload:

 ;rt=brski,

 </b/rv>;rt=brski.rv;ct=836,

 </b/vs>;rt=brski.vs;ct="50 60",

 </b/es>;rt=brski.es;ct="50 60"

JPY Discovery looks like this:

 REQ: GET /.well-known/core?rt=brski*

 RES: 2.05 Content

<coaps://[2001:db8:0:abcd::52]:7634>; rt=brski.rjp,

<coaps://[2001:db8:0:abcd::52]:5683/.well-known/
brski/rv>;rt=brski.rv;ct=836,

<coaps://[2001:db8:0:abcd::52]:5683/.well-known/
brski/vs>;rt=brski.vs;ct="50 60",

<coaps://[2001:db8:0:abcd::52]:5683/.well-known/
brski/es>;rt=brski.es;ct="50 60",

Actually:
1) CoAP
2) DTLS
3) JPY
4) UDP
5)IPv6

Options for dealing with coaps which is not
exactly coaps

1)What issue? I don’t see an issue, do
you?

2)Create/Register a new scheme “jpy://”
3)Abuse some other scheme (but which
one?)

4)Never use CoAP Discovery for JPY
(GRASP is just fine)

5)Your Brilliant Idea Here

Discussion
And questions

Current status was AD writeup/reviews

New status: 2nd WGLC?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

