Automated Attack Synthesis by Extracting Finite State Machines
from Protocol Specification Documents

| =
B |
| g
5{ I]
£ -

{ = =1
= .
g ==

E i 1 = ==

‘ — : J = =

£ > £, T =

s Wil i =
7 o ——— b e
i 1‘% - - i i —4y m e s . -
s y g = e ——

i
it
l

i

Maria L. Pacheco®, Max von Hippel®, Ben Weintraub®, Dan Goldwasser*, Cristina Nita-Rotaru®

{pachecog, dgoldwas}@purdue edu
{vonhippel.m, weintraub.b, c.nitarotaru}@northeastern.edu

< Purdue University, © Northeastern University. Image courtesy of WikiMedia. This work was supported by NSF grants CNS-1814105,
CNS-1815219, and GRFP-1938052.

https://commons.wikimedia.org/wiki/File:A_printer%27s_workshop;_on_the_left_a_printing_press,_on_the_r_Wellcome_V0023751.jpg

Automated Protocol Analysis

The internet runs on
protocols, like TCP, UDP,
DCCP, SFTP, etc.

THE ARPA NETWORK

DEC (989

Y Noodes

Image courtesy of Scientific American.

https://www.scientificamerican.com/gallery/early-sketch-of-arpanets-first-four-nodes/

Automated Protocol Analysis

The internet runs on Each protocol peer runs a
protocols, like TCP, UDP, finite state machine .
DCCP, SFTP, etc.

—>{ CLOSED
oper
/* pa P
LISTEN SYN_SENT
(SYN? ACK? or ACK? SYN?)
SYN? SYN! ACK! SYN? ACK}
ACK!
ACK?
SYN_RECEIVED ESTABLISHED
FIN! N’,’ ACK!
FIN_WAIT_1 CLOSE_WAIT
1 ACK?
FIN? ACK! FIN!
FIN_WAIT_2
&} HE A RPA NETND&K CLOSING LAST_ACK
FIN? ACK!
DEC (989 ACK? ACK?
TIME_WAIT
Y Nobdes

Image courtesy of Scientific American.

https://www.scientificamerican.com/gallery/early-sketch-of-arpanets-first-four-nodes/

Automated Protocol Analysis

The internet runs on
protocols, like TCP, UDP,
DCCP, SFTP, etc.

THE ARPA NETWORK

DEC (989

Y Noodes

Image courtesy of Scientific American.

Each protocol peer runs a
finite state machine.

—>{ CLOSED

LISTEN

Protocol flaws are found

by analyzing

SYN_RECEIVED

ACK?

SYN_SENT

ACK?
FIN? ACK/ 1
FIN_WAIT_2

CLOSING

ACK?

ESTABLISHED

(SYN? ACK? or ACK? SYN?)

SYN? SYN! ACK! | SYN? ACK!
ACK!
FIN! N? ACK!

sender atta

FIN_WAIT_1

CLOSE_WAIT

TIME_WAIT

FIN? ACK!

FIN!

LAST_ACK

ACK?

ATA i

D,
Ay

the FSM.

cker receiver

ATA 1

D,

%
pck

Ay

https://www.scientificamerican.com/gallery/early-sketch-of-arpanets-first-four-nodes/

From Spec to Implementation

RFC Specification

The nine possible states are as follows. They are listed in
increasing order, so that "state >= CLOSEREQ" means the same as
"state = CLOSEREQ or state = CLOSING or state = TIMEWAIT". Section 8
describes the states in more detail.

CLOSED
Represents nonexistent connections.

LISTEN
Represents server sockets in the passive listening state. LISTEN
and CLOSED are not associated with any particular DCCP connection.

REQUEST
A client socket enters this state, from CLOSED, after sending a
DCCP-Request packet to try to initiate a connection.

RESPOND
A server socket enters this state, from LISTEN, after receiving a
DCCP-Request from a client.

PARTOPEN
A client socket enters this state, from REQUEST, after receiving a
DCCP-Response from the server. This state represents the third
phase of the three-way handshake. The client may send application
data in this state, but it MUST include an Acknowledgement Number
on all of its packets.

e Produced by IETFE.
e Written in English prose.

From Spec to Implementation

RFC Specification Implementation

The nine possible states are as follows. They are listed in
increasing order, so that "state >= CLOSEREQ" means the same as
"state = CLOSEREQ or state = CLOSING or state = TIMEWAIT". Section 8
describes the states in more detail.

CLOSED
Represents nonexistent connections.

LISTEN
Represents server sockets in the passive listening state. LISTEN
and CLOSED are not associated with any particular DCCP connection.

<linux/ktime.h>

<net/tcp. h>

REQUEST
A client socket enters this state, from CLOSED, after sending a
DCCP-Request packet to try to initiate a connection.

“ack

RESPOND
A server socket enters this state, from LISTEN, after receiving a
DCCP-Request from a client.

PARTOPEN
A client socket enters this state, from REQUEST, after receiving a
DCCP-Response from the server. This state represents the third
phase of the three-way handshake. The client may send application
data in this state, but it MUST include an Acknowledgement Number
on all of its packets.

DCCP_PRINTK(enable, f

e Produced by IETFE. e Written in C, Go,
e Written in English prose. Rust, etc. by a
programmer.

From Spec to Implementation

RFC Specification

The nine possible states are as follows. They are listed in
increasing order, so that "state >= CLOSEREQ" means the same as

"state = CLOSEREQ or state = CLOSING or state = TIMEWAIT". Section 8

describes the states in more detail.

CLOSED
Represents nonexistent connections.

LISTEN
Represents server sockets in the passive listening state. LISTEN
and CLOSED are not associated with any particular DCCP connection.

REQUEST
A client socket enters this state, from CLOSED, after sending a
DCCP-Request packet to try to initiate a connection.

RESPOND

A server socket enters this state, from LISTEN, after receiving a
DCCP-Request from a client.

PARTOPEN
A client socket enters this state, from REQUEST, after receiving a
DCCP-Response from the server. This state represents the third
phase of the three-way handshake. The client may send application
data in this state, but it MUST include an Acknowledgement Number
on all of its packets.

Implementation

<linw h>
<linux/ktime.h>

<net/tcp. h>

ackvec. h'

DCCP_WARN(fmt, ..

(enabl
printk(fmt, ##ar
(0

e How does the
programmer interpret
the specification?

Where do Bugs Come From?

RFC Specification

The nine possible states are as follows. They are listed in
increasing order, so that "state >= CLOSEREQ" means the same as

"state = CLOSEREQ or state = CLOSING or state = TIMEWAIT". Section 8

describes the states in more detail.

CLOSED
Represents nonexistent connections.

LISTEN
Represents server sockets in the passive listening state. LISTEN
and CLOSED are not associated with any particular DCCP connection.

REQUEST
A client socket enters this state, from CLOSED, after sending a
DCCP-Request packet to try to initiate a connection.

RESPOND
A server socket enters this state, from LISTEN, after receiving a
DCCP-Request from a client.

PARTOPEN
A client socket enters this state, from REQUEST, after receiving a
DCCP-Response from the server. This state represents the third
phase of the three-way handshake. The client may send application
data in this state, but it MUST include an Acknowledgement Number
on all of its packets.

N J
Y

Fundamental issues with the
protocol design.

Implementation

DCCP_PRINTK(enable, f

Where do Bugs Come From?

RFC Specification

The nine possible states are as follows. They are listed in
increasing order, so that "state >= CLOSEREQ" means the same as

"state = CLOSEREQ or state = CLOSING or state = TIMEWAIT". Section 8

describes the states in more detail.

CLOSED
Represents nonexistent connections.

LISTEN
Represents server sockets in the passive listening state. LISTEN
and CLOSED are not associated with any particular DCCP connection.

REQUEST
A client socket enters this state, from CLOSED, after sending a
DCCP-Request packet to try to initiate a connection.

RESPOND
A server socket enters this state, from LISTEN, after receiving a
DCCP-Request from a client.

PARTOPEN
A client socket enters this state, from REQUEST, after receiving a
DCCP-Response from the server. This state represents the third
phase of the three-way handshake. The client may send application
data in this state, but it MUST include an Acknowledgement Number
on all of its packets.

N J
Y

Fundamental issues with the
protocol design.

N J

%

Ambiguities and omissions in the
specification.

Implementation

Where do Bugs Come From?

RFC Specification

Implementation

The nine possible states are as follows. They are listed in
increasing order, so that "state >= CLOSEREQ" means the same as

"state = CLOSEREQ or state = CLOSING or state = TIMEWAIT". Section 8

describes the states in more detail.

CLOSED
Represents nonexistent connections.

LISTEN
Represents server sockets in the passive listening state. LISTEN
and CLOSED are not associated with any particular DCCP connection.

REQUEST
A client socket enters this state, from CLOSED, after sending a
DCCP-Request packet to try to initiate a connection.

RESPOND
A server socket enters this state, from LISTEN, after receiving a
DCCP-Request from a client.

PARTOPEN
A client socket enters this state, from REQUEST, after receiving a
DCCP-Response from the server. This state represents the third
phase of the three-way handshake. The client may send application
data in this state, but it MUST include an Acknowledgement Number
on all of its packets.

DCCP_PRINTK (enal

N J
Y

Fundamental issues with the
protocol design.

N J N J
Y Y

Ambiguities and omissions in the Programming mistakes.
specification.

10

Where do Bugs Come From?

RFC Specification Implementation

The nine possible states are as follows. They are listed in
increasing order, so that "state >= CLOSEREQ" means the same as
"state = CLOSEREQ or state = CLOSING or state = TIMEWAIT". Section 8
describes the states in more detail.

CLOSED
Represents nonexistent connections.

LISTEN
Represents server sockets in the passive listening state. LISTEN
and CLOSED are not associated with any particular DCCP connection.

REQUEST
A client socket enters this state, from CLOSED, after sending a
DCCP-Request packet to try to initiate a connection.

RESPOND
A server socket enters this state, from LISTEN, after receiving a
DCCP-Request from a client.

PARTOPEN
A client socket enters this state, from REQUEST, after receiving a
DCCP-Response from the server. This state represents the third
phase of the three-way handshake. The client may send application
data in this state, but it MUST include an Acknowledgement Number
on all of its packets.

DCCP_PRINTK (e

Programming mistakes.

11

Where do Bugs Come From?

RFC Specification

The nine possible states are as follows. They are listed in
increasing order, so that "state >= CLOSEREQ" means the same as

"state = CLOSEREQ or state = CLOSING or state = TIMEWAIT". Section 8
describes the states in more detail.
CLOSED
Represents nonexistent connections.
LISTEN
Represents server sockets in the passive listening state. LISTEN

and CLOSED are not associated with any particular DCCP connection.

REQUEST
A client socket enters this state, from CLOSED, after sending a
DCCP-Request packet to try to initiate a connection.

RESPOND
A server socket enters this state, from LISTEN, after receiving a
DCCP-Request from a client.

PARTOPEN
A client socket enters this state, from REQUEST, after receiving a
DCCP-Response from the server. This state represents the third
phase of the three-way handshake. The client may send application
data in this state, but it MUST include an Acknowledgement Number
on all of its packets.

Implementation

Property Testers

Heuristic
Algorithms

Symbolic or
Concolic
Execution

Randomized
Testing

Protocol
Bake-Offs

DCCP_PRINTK(

##args);

Programming mistakes.

Static or Dynamic
Analysis

... etc.

Fuzzing

12

Where do Bugs Come From?

RFC Specification

Implementation

The nine possible states are as follows. They are listed in
increasing order, so that "state >= CLOSEREQ" means the same as

"state = CLOSEREQ or state = CLOSING or state = TIMEWAIT". Section 8

describes the states in more detail.

CLOSED
Represents nonexistent connections.

LISTEN
Represents server sockets in the passive listening state. LISTEN
and CLOSED are not associated with any particular DCCP connection.

REQUEST
A client socket enters this state, from CLOSED, after sending a
DCCP-Request packet to try to initiate a connection.

RESPOND
A server socket enters this state, from LISTEN, after receiving a
DCCP-Request from a client.

PARTOPEN
A client socket enters this state, from REQUEST, after receiving a
DCCP-Response from the server. This state represents the third
phase of the three-way handshake. The client may send application
data in this state, but it MUST include an Acknowledgement Number
on all of its packets.

<linux/ktime.h>

<net/tcp. h>

“ack

\ J
A4

Fundamental issues with the
protocol design.

A4

Ambiguities and omissions in the
specification.

13

This Presentation

RFC Specification

FSM Interpretation

The nine possible states are as follows. They are listed in
increasing order, so that "state >= CLOSEREQ" means the same as
"state = CLOSEREQ or state = CLOSING or state = TIMEWAIT". Section 8
describes the states in more detail.

CLOSED
Represents nonexistent connections.

LISTEN
Represents server sockets in the passive listening state. LISTEN
and CLOSED are not associated with any particular DCCP connection.

REQUEST
A client socket enters this state, from CLOSED, after sending a
DCCP-Request packet to try to initiate a connection.

RESPOND
A server socket enters this state, from LISTEN, after receiving a
DCCP-Request from a client.

PARTOPEN
A client socket enters this state, from REQUEST, after receiving a
DCCP-Response from the server. This state represents the third
phase of the three-way handshake. The client may send application
data in this state, but it MUST include an Acknowledgement Number
on all of its packets.

/» active open
/ SYN!

SYN? SYN! ACK!

14

This Presentation

RFC Specification

FSM Interpretation

The nine possible states are as follows. They are listed in
increasing order, so that "state >= CLOSEREQ" means the same as
"state = CLOSEREQ or state = CLOSING or state = TIMEWAIT". Section 8
describes the states in more detail.

CLOSED
Represents nonexistent connections.

LISTEN
Represents server sockets in the passive listening state. LISTEN
and CLOSED are not associated with any particular DCCP connection.

REQUEST
A client socket enters this state, from CLOSED, after sending a
DCCP-Request packet to try to initiate a connection.

RESPOND
A server socket enters this state, from LISTEN, after receiving a
DCCP-Request from a client.

PARTOPEN
A client socket enters this state, from REQUEST, after receiving a
DCCP-Response from the server. This state represents the third
phase of the three-way handshake. The client may send application
data in this state, but it MUST include an Acknowledgement Number
on all of its packets.

/» active open
/ SYN!

(SYN? ACK? or ACK? SYN?)
SYN? SYN! ACK!
ACK!

Bugs & Attacks

sender

DATA 1
DATA 2

pCKZ

attacker receiver

h 4

Attack Synthesis

15

Extracting FSMs from RFCs

RFC Specification

FSM Interpretation

The nine possible states are as follows. They are listed in
increasing order, so that "state >= CLOSEREQ" means the same as
"state = CLOSEREQ or state = CLOSING or state = TIMEWAIT". Section 8
describes the states in more detail.

CLOSED
Represents nonexistent connections.

LISTEN
Represents server sockets in the passive listening state. LISTEN
and CLOSED are not associated with any particular DCCP connection.

REQUEST
A client socket enters this state, from CLOSED, after sending a
DCCP-Request packet to try to initiate a connection.

RESPOND
A server socket enters this state, from LISTEN, after receiving a
DCCP-Request from a client.

PARTOPEN
A client socket enters this state, from REQUEST, after receiving a
DCCP-Response from the server. This state represents the third
phase of the three-way handshake. The client may send application
data in this state, but it MUST include an Acknowledgement Number
on all of its packets.

/+ active open

CLOSED
+/ SYN!

/+ passive open

SYN? SYN! ACK!

Bugs & Attacks

sender

DATA 1
DAt 2

pCKZ

attacker receiver

I

h 4

Attack Synthesis

16

Extracting FSMs from RFCs: Main Challenges

e No one-to-one mapping between the text and the canonical FSM

SEOTED DCCP_RESET?
The nine possible states are as follows. They are listed in active:=True; | or
increasing order, so that "state >= CLOSEREQ" means the same as DCCP_REQUEST! | (DCCP_SYNC?
"state = CLOSEREQ or state = CLOSING or state = TIMEWAIT". Section 8 Ctive:=Fales S DCCP_RESET!)
describes the states in more detail. & N
& _ or timeout
5 =
CLOSED)) LISTEN o % %\ |REQUEST
Represents nonexistent connections. % @ i N
o, &
DCCP_REQUEST? % DCCP_RESPONSE? é’
LISTEN 3.“1 DCCP_RESPONSE! LN DCCP_ACK! o
Represents server sockets in the passive listening state. LISTEN - - ~ o = B
and CLOSED are not associated with any particular DCCP connection.

DCCP-Request packet to try to initiate a connection.

2 &7
% | $
1 DCCP_DATA! RESPOND PARTOPE! Q
REQUEST
A client socket enters this state, from CLOSED, after sending a DCCP_ACK? or (G o o | DCCP_CLOSEREQ?

DCCP_DATAACK? 2 % e DCCP_CLOSE !
5
RESPOND e x?-?‘dn
: o | OPEN | © o o¥ CLOSING
A server socket enters this state, from LISTEN, after receiving a DCCP_DATA! or kogc - &
DCCP-Request from a client. DCCP_DATRACK! or _ ooce)‘
Pl
DCCP_ACK?
PARTOPEN e s B (active==true;
A client socket enters this state, from REQUEST, after receiving a DeGE DRI ot i3 DCCP_CLOSE!) or
: : = * DCCP_RESET?
DCCP-Response from the server. This state represents the third DCCP_DATAACK? § o N -
phase of the three-way handshake. The client may send application E B‘ (DCCPICTOSEREQS
data in this state, but it MUST include an Acknowledgement Number 8 g DCCP_CLOSE!)

on all of its packets.

CLOSEREQ TIME'
(DCCP_CLOSE?

DCCP_RESET!) or, as

i

en e-transition.

17

Extracting FSMs from RFCs: Main Challenges

RFCs contain omissions, mistakes, & ambiguities.

The client leaves the PARTOPEN state
for OPEN when it receives a valid
packet other than DCCP-Response,
DCCP-Reset, or DCCP-Sync from the
server.

Why not [PARTOPEN — DCCP-Close? — OPEN]

ctive:=False

CLOSED

p or timeout
B %
LISTEN 9 O 2% REQUEST
Q% 5 <
RN &
N T &
DCCP_REQUEST? N DCCP_RESPONSE? v
W, 9 &
DCCP_RESPONSE ! B DCCP_ACK! &F
> 3
&
DCCP_DATA! C RESPOND , PARTOPEN D &
timeout, then optionally :
ot
DCCP_ACK? or DCCP_RESET ! O o | DCCP_CLOSEREQ?
e
DCCP_DATAACK? A i DCCP_CLOSE!
= o
2.
< 2
Cloeen| © o CLOSING
DCCP_DATA! or RO2
| © oo
0t
DCCP_DATAACK! or oc©
DCCP_ACK? or ° 2
g g (active==true;
DCCP_DATA? or 5 2
e DCCP_CLOSE!) or DCCP_RESET?
DCCP_DATAACK? & 3 =
5 7 (DCCP_CLOSEREQ?
oo
S DCCP_CLOSE!)
T Q
CLOSEREQ TIMEWAIT
(DCCP_CLOSE?

DCCP_RESET!) or, as

active:=True;
DCCP_REQUEST!

DCCP_RESET?
or
(DCCP_SYNC?
DCCP_RESET!)

18

Extracting FSMs from RFCs: Main Challenges

e There is no canonical FSM.
e RFCs contain omissions, mistakes, & ambiguities.

e Off-the-shelf NLP approaches are not suitable.

V.S.
= €he New Pork Eimes

U.S. DEATHS NEAR 100,

N INCALCULABLE LOSS

T

Extracting FSMs from RFCs: Main Challenges

e There is a lot of variation in the language and structure of different RFCs.

20

Our Approach

(1)Technical
Language Embedding

21

Our Approach

retransmit

4

time ACK i *
out : @
‘

no

\Marchry 1 -
(1)Technical

Language Embedding

If the ack ..retransmit

Train: Test: TCP
SCp,UDP, ..

D
—
—
—
—

(2)Zero-shot Protocol
Information Extraction

22

Our Approach

ACK s N

Train: Test: TCP
SCP,UDP, ..

D | E

(1)Technical
Language Embedding

(2)Zero-shot Protocol
Information Extraction

3)Protocol State
achine Extraction

(
M

Our Approach

Language Embedding Information Extraction

Machine Extraction

| : ! [Monitoring J
i T § ' !
- e U [| S
1
| N | ' .
| '/ \‘_. \,‘:.): (ﬂl Fuzzing
| G W W % | \
retransmit !) 4 4 4 ! : -
timg 71{ 3 ACK : E i Attack
out { g S ! | Synthesis
| . : — L I 1 |
no 1 ! !
) ! If the ack ..retransmit | ! -
! ! e : Program
i Train: Test: TCP ! | Analysis
! SCP,UDP, .. : : L
! D ! Fin I
e |)
1
: — ! e : Model
. | g I Checking
1 ! !
1 1 1 .
1 ! !
. 1 ! ! . .
(1)Technical ' (2)Zero-shot Protocol ! (3)Protocol State | (4)Applications
1 1 1
1 ! !
1 ! !

Step 1. Learning Technical Language Embeddings

e (Contextualized representations

and should be reset

The connection is in error (I) VS. Send ResetCode 5 </ >

Next Sentence Masked Word Masked Word
1 1
JDHOHOOEHEEE)
BERT
| - N -N-N-0 N ==

Masked Sentence A Masked Sentence B

*

Unlabeled Sentence Pair

éﬁﬁﬁé&ﬁﬁéé

Each word is informed
by all of its surroundings

Trained on 8,858 documents
and approximately 475M
words

25

Step 2. Protocol Information Extraction

REQUEST
A client socket enters this state, from CLOSED, after

sending a

DCCP-Request packet to try to initiate a connection.

26

Step 2. Zero-Shot Protocol Information Extraction: Grammar

true | false

ref-event ::= ref_event id="##" type="type"

ref-tag ::= ref-event | ref-state
def-atom ::= <def-tag>engl</def-tag>
sm-atom ::= <ref-tag>engl</ref-tag> | engl
sm-tag ::= trigger | variable | error | timer
act-atom ::= <arg>sm-atom</arg> | sm-atom
act-struct::= act-struct | act-struct act-atom
trn-arg 1= arg_source | arg_target | arg_inter
trn-atom : <trn-arg>sm-atom<trn-arg> | sm-atom
trn-struct::= trn-struct | trn-struct trn-atom
ctl-atom ::= <sm-tag>sm-atom</sm-tag>
| <action type="type'">act-struct</action>
| <transition>trn-struct</transition>
| sm-atom
ctl-struct::= ctl-atom | ctl-struct ctl-atom
ctl-rel ::= relevant=bool
control ::= <control ctl-rel>ctl-struct</control>
e ::= control | ctl-atom | def-atom | e 0 e_1

Definition tags, used to define

states, events, etc.;

27

Step 2. Zero-Shot Protocol Information Extraction: Grammar

s | s e Definition tags, used to define
= S | rEesdE || IS states, events, etc.;

def_state | def_var | def_event
ref-state ::= ref_state id="##"

ref-event ::= ref_event id="##" type="type" PY Reference taqs Used to observe

ref-tag ::= ref-event | ref-state - . .
def-atom ::= <def-tag>engl</def-tag> mentions of previously defined data;
sm-atom ::= <ref-tag>engl</ref-tag> | engl

sm-tag ::= trigger | variable | error | timer

act-atom ::= <arg>sm-atom</arg> | sm-atom

act-struct::= act-struct | act-struct act-atom

trn-arg 1= arg_source | arg_target | arg_inter

trn-atom ::= <trn-arg>sm-atom<trn-arg> | sm-atom

trn-struct::= trn-struct | trn-struct trn-atom

ctl-atom ::= <sm-tag>sm-atom</sm-tag>
| <action type="type'">act-struct</action>
| <transition>trn-struct</transition>
| sm-atom

ctl-struct::= ctl-atom | ctl-struct ctl-atom

ctl-rel ::= relevant=bool

control ::= <control ctl-rel>ctl-struct</control>
e ::= control | ctl-atom | def-atom | e 0 e_1

Step 2. Zero-Shot Protocol Information Extraction: Grammar

e Definition tags, used to define
sendfl[frecerve) issue states, events, etc.;

def-tag ::= def_state | def_var | def_event
ref-state ::= ref_state id="##"

ref-event ::= ref_event id="##" type="type" PY Reference taqs Used to observe

ref-tag ::= ref-event | ref-state - . .
def-atom ::= <def-tag>engl</def-tag> mentions of preVIously defined data;
sm-atom ::= <ref-tag>engl</ref-tag> | engl

sm-tag ::= trigger | variable | error | timer

act-atom ::= <arg>sm-atom</arg> | sm-atom e State Machine tags, used to track
act-struct::= act-struct | act-struct act-atom iy .

trn-arg 1= arg_source | arg_target | arg_inter tranS|t|OnS, aCt|OnS, etC,

trn-atom ::= <trn-arg>sm-atom<trn-arg> | sm-atom

trn-struct::= trn-struct | trn-struct trn-atom

ctl-atom ::= <sm-tag>sm-atom</sm-tag>
| <action type="type'">act-struct</action>
| <transition>trn-struct</transition>
| sm-atom

ctl-struct::= ctl-atom | ctl-struct ctl-atom

ctl-rel ::= relevant=bool

control ::= <control ctl-rel>ctl-struct</control>
e ::= control | ctl-atom | def-atom | e 0 e_1

Step 2. Zero-Shot Protocol Information Extraction: Grammar

s | s e Definition tags, used to define
= || TEEEE || L5s0s states, events, etc.;

def_state | def_var | def_event
ref_state id="##"

AN L SR e Reference tags, used to observe

ref-event | ref-state - . .
<def-tag>engl</def-tag> mentions of previously defined data;
<ref-tag>engl</ref-tag> | engl

trigger | variable | error | timer

<arg>sm-atom</arg> | sm-atom e State Machine tags, used to track
act-struct | act-struct act-atom iy .

arg_source | arg_target | arg_inter tranS|t|OnS, aCt|OnS, etC,
<trn-arg>sm-atom<trn-arg> | sm-atom

trn-struct | trn-struct trn-atom

<sm-tag>sm-atom</sn-tag> e Control flow tags, used to record the
| <action type="type'">act-struct</action> |Ogica| Structure Of the FSM

| <transition>trn-struct</transition>
| sm-atom
ctl-struct::= ctl-atom | ctl-struct ctl-atom
ctl-rel relevant=bool
control <control ctl-rel>ctl-struct</control>
e control | ctl-atom | def-atom | e 0 e_1

bool

type
def-tag
ref-state ::
ref-event ::
ref-tag
def-atom
sm-atom
sm-tag
act-atom
act-struct::
trn-arg
trn-atom
trn-struct::

ctl-atom

Step 2. Zero-Shot Protocol Info. Extraction: Intermediate Repr.

<control relevant="true">
<transition>
The client leaves the
<arg_source>
<ref_state id="3">REQUEST</ref_state>
</arg_source>
state for
<arg_target>
<ref_state id="5">PARTOPEN</ref_state>
</arg_target>
</transition>
<trigger>
when it receives a
<ref_event type="receive" id="2">
DCCP-Response
</ref_event>
from the server.
</trigger>
</control>

Control block scopes search.

31

Step 2. Zero-Shot Protocol Info. Extraction: Intermediate Repr.

<control relevant="true">

<transition>
The client leaves the
<arg_source>
<ref_state id="3">REQUEST</ref_state>
</arg_source>
state for
<arg_target>
<ref_state id="5">PARTOPEN</ref_state>
</arg_target>
</transition>

Control block scopes search.

Transition block contains a
transitions = s’.

<trigger>
when it receives a
<ref_event type="receive" id="2">

DCCP-Response

</ref_event>
from the server.

</trigger>

</control>

32

Step 2. Zero-Shot Protocol Info. Extraction: Intermediate Repr.

<control relevant="true">

<transition>
The client leaves the

Control block scopes search.

<arg_source>
<ref_state id="3">REQUEST</ref_state>
</arg_source>

Transition block contains a
transitions = s’.

state for
<arg_target>
<ref_state id="5">PARTOPEN</ref_state>
</arg_target>
</transition>

Source state s is described in arg
source within a state reference.

<trigger>
when it receives a
<ref_event type="receive" id="2">

DCCP-Response

</ref_event>
from the server.

</trigger>

</control>

33

Step 2. Zero-Shot Protocol Info. Extraction: Intermediate Repr.

<control relevant="true">

<transition>
The client leaves the

Control block scopes search.

<arg_source>
<ref_state id="3">REQUEST</ref_state> |
</arg_source>

Transition block contains a
transitions = s’.

state for
<arg_target>
<ref_state id="5">PARTOPEN</ref_state>
</arg_target>
</transition>

Source state s is described in arg
source within a state reference.

<trigger>
when it receives a
<ref_event type="receive" id="2">

DCCP-Response

</ref_event>
from the server.

</trigger>

</control>

34

Step 2. Zero-Shot Protocol Info. Extraction: Intermediate Repr.

<control relevant="true">

<transition>
The client leaves the

Control block scopes search.

<arg_source>
<ref_state id="3">REQUEST</ref_state> |
</arg_source>

Transition block contains a
transitions = s’.

state for

<arg_target>
<ref_state id="5">PARTOPEN</ref_state>|
</arg_target>

Source state s is described in arg
source within a state reference.

</transition>

<trigger>
when it receives a
<ref_event type="receive" id="2">

DCCP-Response

</ref_event>
from the server.

</trigger>

</control>

Target state s’ is described in arg
target within a state reference.

35

Step 2. Zero-Shot Protocol Info. Extraction: Intermediate Repr.

<control relevant="true">

<transition>
The client leaves the

Control block scopes search.

<arg_source>
<ref_state id="3">REQUEST</ref_state> |
</arg_source>

Transition block contains a
transitions = s’.

state for

<arg_target>
<ref_state id="5">PARTOPEN</ref_state>|
</arg_target>

Source state s is described in arg
source within a state reference.

</transition>

<trigger>
when it receives a
<ref_event type="receive" id="2">
DCCP-Response
</ref_event>
from the server.
</trigger>

Target state s’ is described in arg
target within a state reference.

The transition is triggered by an
event.

</control>

36

Step 2. Zero-Shot Protocol Info. Extraction: Intermediate Repr.

<control relevant="true"> Control block scopes search.
<transition>

The client leaves the
<arg_source>
<ref_state id="3">REQUEST</ref_state> |

Transition block contains a
transitions = s’.

</arg_source>
state for Source state s is described in arg
<arg_target> source within a state reference.

<ref_state id="5">PARTOPEN</ref_state>|

</arg_target>

Target state s’ is described in arg

</transition> 1
<trigger> target within a state reference.
when it receives a
<ref_event type="receive" id="2"> The transition is triggered by an
DCCP-Response event.
</ref_event>

from the server. :
</trigger> In the event, the peer receives the

</control> packet DCCP-Response, which we
assign identifier “2”. 37

Step 2. Zero-Shot Protocol Information Extraction: LinearCRF

If SND.UNA > ISS

change the connection state

1. Split text in chunks

to ESTABLISHED .

38

Step 2. Zero-Shot Protocol Information Extraction: LinearCRF

2.

A

rm

If SND.UNA > ISS

change the connection state

to ESTABLISHED .

Extract features

39

Step 2. Zero-Shot Protocol Information Extraction: LinearCRF

B-Trigger B-Transition I-Transition
E > E R E 3. Linear CRF Model
_ ply,=)
PIe) = 5 ol
max max T
D_IE]:I D-Im 1T p(z,y) = H exp(f (Y, Yt—1,+; 0))
t=1
[Linear Classifier]
A A A
I mn 0

If SND.UNA > ISS change the connection state to ESTABLISHED .

40

Step 2. Zero-Shot Protocol Information Extraction: Neural CRF

B-Trigger

B-Transition

»

I-Transition

>]

L]

Soft
max

??%?

»

=

[EX]

s g
|

ih

BiLSTM-CRF

_ p(y,x)
p(ylw) _ Zy’ p(y',w)

BiLSTM

p(z,y) = H exp(f(yt, yt—1,%¢; 0))

=

.f(yta Yt—1, wt) = h't + Pyt,yt—1

[BERT J [BERT [
r t 1t ¢ t i I
DEEH HEEE
If SND.UNA > ISS change the connection state to ESTABLISHED . 41

Step 2. Zero-Shot Protocol Information Extraction: Evaluation

70

53

35

18

B Rule-based

Intermediate Representation Accuracy

Heuristics based on word
usage:

leave/move -> transition
send/receive/issue -> action
if/while -> trigger

Token-level Span-level (Strict)

I LinearCRF+R I NeuralCRF+R

Step 2. Zero-Shot Protocol Information Extraction: Evaluation

Intermediate Representation Accuracy

70
53 The neural model
outperforms the linear model
35
18
0

Token-level Span-level (Strict)

B Rule-based I LinearCRF+R " NeuralCRF+R

Step 3. Protocol State Machine Extraction

<control relevant="true"> Control block scopes search.
<transition>

The client leaves the
<arg_source>
<ref_state id="3">REQUEST</ref_state> |

Transition block contains a
transitions = s’.

</arg_source>
state for Source state s is described in arg
<arg_target> source within a state reference.

<ref_state id="5">PARTOPEN</ref_state>|

</arg_target>

Target state s’ is described in arg

</transition> 1
<trigger> target within a state reference.
when it receives a
<ref_event type="receive" id="2"> The transition is triggered by an
DCCP-Response event.
</ref_event>

from the server. :
</trigger> In the event, the peer receives the

</control> packet DCCP-Response, which we
assign identifier “2”. 44

Step 3. Protocol State Machine Extraction

Control block scopes search.

Transition block contains a

<arg_source=>

3" REQUEST transitions = s.

</erg_source>

state reference

Target state s’ is described in arg
target within a state reference.

PARTOPEN

<ref_eveut iype=" : The transition is triggered by an

</ref_event>

Step 3. Protocol State Machine Extraction

Heuristic Extraction Alg.

REQUEST

- Search lower for target states

- Search higher for source states

- Search higher (< 7 layers) for
event(s)

- Handle set complement

- Heuristically prune bad transitions

PARTOPEN

receive
DCCP-Response

Intermediary Representation

DCCP_DATAACK?|

DCCP_CLOSE?

DCCP_REQUEST?
DCCP_RESPONSE!

DCCP_RESET!

ccccccccccc

&
DCCP_RESPONSE? 7
T
i &
DCCP_ACK §r

Finite State Machine

46

Step 3. Protocol State Machine Extraction - TCP

TCP FSM: Extracted Transitions

20 Expected
20
—>{ CLOSED
/* active open
15 /* passive open :/@&B& %SYN!
S %
LISTEN SYN_SENT
e SYNV (SYN? ACK? or ACK? SYN?)
ACK!
1 O ACK?
SYN_RECEIVED ESTABLISHED
FIN! w‘? ACK!
5 FIN_WAIT_1 CLOSE_WAIT
FIN? AC’JV lACK? FIN!
FIN_WAIT_2
CLOSING LAST_ACK
0 ——— FIN? ACK!
Gold LinearCRF+R NeuralCRF+R AcK? AcK?
TIME_WAIT

B Incorrect

Step 3. Protocol State Machine Extraction - TCP

TCP FSM: Extracted Transitions
20

15

10

LinearCRF+R NeuralCRF+R

B Incorrect

Expected
20

Transitions that are good
enough for our FSM
- Correct source state
- Correct target state
- Atleast one correct
event

Step 3. Protocol State Machine Extraction - TCP

20

15

10

TCP FSM: Extracted Transitions

I ~Correct

LinearCRF+R NeuralCRF+R

B Incorrect

Expected

20

Represents our skyline:

The best we can do with our
gold intermediary rep.

Step 3. Protocol State Machine Extraction - TCP

20

TCP FSM: Extracted Transitions

Gold

I ~Correct

LinearCRF+R

NeuralCRF+R

B Incorrect

We recover most transitions

Linear and Neural FSMs
are identical.

50

Step 3. Protocol State Machine Extraction - DCCP

DCCP FSM: Extracted Transitions
Expected
34

34
26
17
| I I I
0 I I I

Gold LinearCRF+R NeuralCRF+R

I ~Correct B Incorrect

ctive:=False

LISTEN

DCCP_DATA! C

—>| CLOSED

9

@ @

\

o

DCCP_REQUEST? \'Qﬁ 5
w, O
DCCP_RESPONSE ! @ 0w
5

RESPOND

DCCP_ACK? or
DCCP_DATAACK?|

DCCP_DATA! or
DCCP_DATAACK! or
DCCP_ACK? or
DCCP_DATA? or
DCCP_DATAACK?

| opeN

active==true;

Q!

DCCP_CLOSERE

(DCCP_CLOSE?

:
g

DCCP_RESET!) or, as

en e-transition.

timeout, then optionally
DCCP_RESET!

(active==true;
DCCP_CLOSE!) or
(DCCP_CLOSEREQ?,
DCCP_CLOSE!)

DCCP_REQUEST!

DCCP_RESET?

active:=True; | or

(DCCP_SYNC?
DCCP_RESET!)

or timeout

REQUEST

&
DCCP_RESPONSE? ‘?‘y
DCCP_ACK! 5?

o
&
PARTOPEN :) Q

)& | DCCP_CLOSEREQ?
DCCP_CLOSE!
CLOSING

DCCP_RESET?

TIMEWAIT

Step 3. Protocol State Machine Extraction - Missing Transition

Consider the transition:
CLOSE_WAIT --- FIN! ---> LAST_ACK
Described in the RFC as follows:

CLOSE-WAIT STATE

Since the remote side has already sent FIN, RECEIVEs must be
satisfied by text already on hand, but not yet delivered to the
user. If no text is awaiting delivery, the RECEIVE will get a
"error: connection closing" response. Otherwise, any remaining
text can be used to satisfy the RECEIVE.

Step 3. Protocol State Machine Extraction - Missing Transition

Consider the transition:

CLOSE_WAIT --- |FIN!|---> LAST_ACK

Described in the RFC as follows:

CLOSE-WAIT STATE

Since the remote side lhas already sent FIN,| RECEIVEs must be
satisfied by text already on hand, but not yet delivered to the
user. If no text is awaiting delivery, the RECEIVE will get a
"error: connection closing" response. Otherwise, any remaining
text can be used to satisfy the RECEIVE.

Step 3. Protocol State Machine Extraction - Missing Transition

Consider the transition:

CLOSE_WAIT

FIN!

---> LAST_ACK

Described in the RFC as follows:

CLOSE-WAIT STATE

Since the remote side has already sent FIN
satisfied by text already on hand, but not yet delivered to the
If no text is awaiting delivery, the RECEIVE will get a

user.

"error:
text can be used to satisfy the RECEIVE.

connection closing" response.

, RECEIVEs must be

Otherwise, any remaining

Step 3. Protocol State Machine Extraction - Missing Transition

Consider the transition:

CLOSE_WAIT

FIN!

-——

LAST_ACK

Described in the RFC as follows:

CLOSE-WAIT STATE

No explicit m

ention to LAST _ACK

Since the remote side has already sent FIN
satisfied by text already on hand, but not yet delivered to the
If no text is awaiting delivery, the RECEIVE will get a

user.

"error:
text can be used to satisfy the RECEIVE.

connection closing" response.

, RECEIVEs must be

Otherwise, any remaining

Step 3. Protocol State Machine Extraction - Missing

Missing Transitions TCP Missing Transitions DCCP
2 16
2 12
1 8
| I | I
: , B | |
Gold LinearCRF+R NeuralCRF+R Gold LinearCRF+R NeuralCRF+R

B Text omission or ambiguity I Extraction error I Prediction error

Step 3. Protocol State Machine Extraction - Missing

Missing Transitions TCP Missing Transitions DCCP
2 16
z 12
1 8 We miss very few
transitions for TCP
1 s I
i . N N
Gold LinearCRF+R NeuralCRF+R Gold LinearCRF+R NeuralCRF+R

B Text omission or ambiguity [Extraction error I Prediction error

Step 3. Protocol State Machine Extraction - Missing

Missing Transitions TCP Missing Transitions DCCP

2 16

2 12
DCCP specifications

! 8 are significantly
more ambiguous

1 4

0 , | N | |

Gold LinearCRF+R NeuralCRF+R Gold LinearCRF+R NeuralCRF+R

B Text omission or ambiguity [Extraction error I Prediction error

Step 3. Protocol State Machine Extraction - Missing

Missing Transitions TCP Missing Transitions DCCP
16

Our neural model
yields fewer
prediction errors
than our linear
model

o — — N N
e
» oo} N

Gold LinearCRF+R NeuralCRF+R Gold LinearCRF+R NeuralCRF+R

B Text omission or ambiguity | Extraction error I Prediction error

Step 3. Protocol State Machine Extraction - Incorrect

Incorrect Transitions TCP Incorrect Transitions DCCP
10 6
8 5
5 3 Incorrect transitions
for TCP are
:) introduced due to
I I I prediction errors
: 0 1 1
Gold LinearCRF+R NeuralCRF+R Gold LinearCRF+R NeuralCRF+R

B Text omission or ambiguity Extraction error Prediction error Post-processing error

Step 3. Protocol State Machine Extraction - Incorrect

Incorrect Transitions TCP Incorrect Transitions DCCP

10 6

8 5

5 3 Another indication

that the DCCP
3 specifications are
2
I I I ambiguous
: 0 1 1
Gold LinearCRF+R NeuralCRF+R Gold LinearCRF+R NeuralCRF+R

B Text omission or ambiguity Extraction error Prediction error Post-processing error

Step 3. Protocol State Machine Extraction - Incorrect

10

[Text omission or ambiguity

Incorrect Transitions TCP

LinearCRF+R

NeuralCRF+R

| Extraction error

Gold

u

Incorrect Transitions DCCP

LinearCRF+R NeuralCRF+R

Our extraction
method

underperforms on
DCCP

Suggesting that
structure is more
complex

Prediction error Post-processing error

4. Automated Attack Synthesis

RFC Specification FSM Interpretation Bugs & Attacks

The nine possible states are as follows. They are listed in
increasing order, so that "state >= CLOSEREQ" means the same as

/+ active open

"state = CLOSEREQ or state = CLOSING or state = TIMEWAIT". Section 8 Pt

describes the states in more detail. /+ passive open */ ,
sender attacker receiver

CLOSED

Represents nonexistent connections.

DATA 1
2 ACK? 2 SYN?

LISTEN SYN? SYN! ACK! (SY"" BEE3 GRRCEE ORI D,

Represents server sockets in the passive listening state. LISTEN ACKk ATA 2 DATA 1

and CLOSED are not associated with any particular DCCP connection.

REQUEST
A client socket enters this state, from CLOSED, after sending a
DCCP-Request packet to try to initiate a connection.

RESPOND \(2
A server socket enters this state, from LISTEN, after receiving a P‘C
DCCP-Request from a client.
PARTOPEN
A client socket enters this state, from REQUEST, after receiving a
DCCP-Response from the server. This state represents the third
phase of the three-way handshake. The client may send application
data in this state, but it MUST include an Acknowledgement Number
on all of its packets.
\ J \ J

Y h4

NLP Attack Synthesis

4. Automated Attack Synthesis

1 = fufoft

=
| —
 —
| —
| (—

Fi |

64

4. Automated Attack Synthesis

= st

=y
| —
e
"
| p—

T |

LTL Property ¢

4. Automated Attack Synthesis

Extracted FSM

LTL Property ¢

Does P || vuln. channel || P, E ¢ ?

5 EhL!I‘(ed

66

4. Automated Attack Synthesis

e Does P || vuln. channel || P, F ¢ ?

Extracted FSM \ KORG

' Nope. Here's a
counterexample.

LTL Property ¢

EhL[I‘(ed

67

4. Automated Attack Synthesis

e Does P || vuln. channel || P, F ¢ ?

Extracted FSM KORG

QhLQed

Nope. Here's a
counterexample.

LTL Property ¢

e Attacker Program A
e If possible, test results
against Canonical FSM

Case Studies

Transmission Control Protocol (TCP)

/* pass

SYN? SYN!

—>| CLOSED

/* active open

ive open %/ %
?“%/
LISTEN SYN_SENT
(SYN? ACK? or ACK? SYN?)
ACK! SYN? ACK!
ACK!
ACK?
SYN_RECEIVED ESTABLISHED
FIN! FIN? ACK!
FIN_WAIT_1 CLOSE_WAIT
l ACK?
FIN? ACK! FIN!
FIN_WAIT_2
CLOSING LAST_ACK
FIN? ACK!
ACK? ACK?
TIME_WAIT

ctive:=False

DCCP_DATA! C

Datagram Congestion Control Protocol (DCCP)

—>{ CLOSED

DCCP_ACK? or
DCCP_DATAACK?|

DCCP_DATA! or
DCCP_DATAACK! or
DCCP_ACK? or
DCCP_DATA? or
DCCP_DATAACK?

LISTEN P REQUEST
& %
W\ &
DCCP_REQUEST? Vg, @ DCCP_RESPONSE? <
] ? @ % — 4 v?‘
Y,
DCCP_RESPONSE! L3N DCCP_ACK! é‘
> 9
&
RESPOND PARTOPEN D §
timeout, then optionally
ot
DCCP_RESET! ») of | DCCP_CLOSEREQ?
e
/’B DCCP_CLOSE!
o
20
C L
(OPEN @ o> CLOSING
2 a
© ot
_ o7
- O
- ive== R
f, & (active==true;
s DCCP_CLOSE!) or DCCP_RESET?
29 (DCCP_CLOSEREQ?
-
5 9 DCCP_CLOSE!)
° Qo
CLOSEREQ TIMEWAIT

(DCCP_CLOSE?

DCCP_RESET!) or, as

en e-transition.

DCCP_RESET?

active:=True; | or

DCCP_REQUEST! | (DCCP_SYNC?

DCCP_RESET!)

or timeout

Case Studies

1.

Transmission Control Protocol (TCP)

No half-open connections.

Passive/active establishment
eventually succeeds.

Peers don't get stuck.

SYN_RECEIVED is eventually followed
by ESTABLISHED, FIN_WAIT_1, or
CLOSED.

ctive:=False

Datagram Congestion Control Protocol (DCCP)

—>{ CLOSED

«

LISTEN

DCCP_REQUEST?
DCCP_RESPONSE!

DCCP_DATA! C RESPOND
timeout, then optionally

DCCP_ACK? or
DCCP_DATAACK?|

DCCP_RESET!

| o

DCCP_DATA! or

EN

DCCP_DATAACK! or

Q!

DCCP_ACK? or o @
2 E (active==true;
DCCP_DATA? or § &
I Q DCCP_CLOSE!) or
DCCP_DATAACK? b o
5 (DCCP_CLOSEREQ?,
5 o DCCP_CLOSE!)
° Qo
CLOSEREQ
(DCCP_CLOSE?

DCCP_RESET!) or, as

en e-transition.

DCCP_RESET?

active:=True; | or

DCCP_REQUEST! | (DCCP_SYNC?
DCCP_RESET!)
or timeout

k-5
S REQUEST

DCCP_RESPONSE?
DCCP_ACK!

2,
&
PARTOPEN D §

o | DCCP_CLOSEREQ?

DCCP_CLOSE!

CLOSING

DCCP_RESET?

TIMEWAIT

Case Studies

Transmission Control Protocol (TCP)

1. No half-open connections.

2. Passive/active establishment
eventually succeeds.

3. Peers don’t get stuck.

4. SYN_RECEIVED is eventually followed
by ESTABLISHED, FIN_WAIT_1, or
CLOSED.

Datagram Congestion Control Protocol (DCCP)

1.

The peers don’t both loop into being
stuck or infinitely looping.

The peers are never both in
TIME_WAIT.

The first peer doesn’t loop into being
stuck or infinitely looping.

The peers are never both in
CLOSE_REQ.

Case Studies

Candidates Unconfirmed
Guided by . Candidates
Guided by ¢.

TCP PROMELA program | ¢1 ¢2 ¢3 ¢4| P1 ¢2 ¢3 ¢4
Canonical 1 9 36 17/0 0 0 O
Gold 2 0 0 0|0 O 0 O
LINEARCRF+R 1 0 0 0|0 O O O
NEURALCRF+R 1 0 0 0|0 O O O
DCCP PROMELA program | 01 62 63 64|01 02 603 604
Canonical O 12 0 1 (0 O O O
Gold O 1 0 1|0 O 0 O
LINEARCRF+R 8 2 131 |2 0 13 O
NEURALCRF+R 52 9 112 0 9 0

Few attacks found for TCP but
all true-positives.

Many attacks found for DCCP
but some are false-positives.

No novel attacks found.
Attacks can be thought of as

bugs. (The FSM should be
resilient to attack.)

Case Studies - Example Attacks

Protocol | Model Guiding | Violated
Property | Property

TCP NeuralCRF+R | 1 1

DCCP LinearCRF+R | 4 4

DCCP NeuralCRF+R | 2 4

Description

Injects ACK to peer 1, causing
desynchronization during establishment.

Spoofs each peer, guiding the other to
CLOSE_REQ.

Similar to 1.

73

Future Directions

Automatically highlight omissions and ambiguities in RFC text.
Automatically suggest bug fixes.

Automatically extract logical properties.

Support for secure protocols.

RFC author in-the-loop.

Aid RFC author in achieving unambiguous translation RFC — canonical
FSM.

74

