
Automated Attack Synthesis by Extracting Finite State Machines
from Protocol Specification Documents

Maria L. Pacheco❖, Max von Hippel◍, Ben Weintraub◍, Dan Goldwasser❖, Cristina Nita-Rotaru◍

{pachecog, dgoldwas}@purdue.edu
{vonhippel.m, weintraub.b, c.nitarotaru}@northeastern.edu

❖ Purdue University, ◍ Northeastern University. Image courtesy of WikiMedia. This work was supported by NSF grants CNS-1814105,
CNS-1815219, and GRFP-1938052.

https://commons.wikimedia.org/wiki/File:A_printer%27s_workshop;_on_the_left_a_printing_press,_on_the_r_Wellcome_V0023751.jpg

Automated Protocol Analysis
The internet runs on
protocols, like TCP, UDP,
DCCP, SFTP, etc.

Image courtesy of Scientific American.
2

https://www.scientificamerican.com/gallery/early-sketch-of-arpanets-first-four-nodes/

Automated Protocol Analysis
The internet runs on
protocols, like TCP, UDP,
DCCP, SFTP, etc.

Each protocol peer runs a
finite state machine .

Image courtesy of Scientific American.
3

https://www.scientificamerican.com/gallery/early-sketch-of-arpanets-first-four-nodes/

Automated Protocol Analysis
The internet runs on
protocols, like TCP, UDP,
DCCP, SFTP, etc.

Each protocol peer runs a
finite state machine.

Protocol flaws are found
by analyzing the FSM.

Image courtesy of Scientific American.
4

https://www.scientificamerican.com/gallery/early-sketch-of-arpanets-first-four-nodes/

From Spec to Implementation

● Produced by IETF.
● Written in English prose.

5

RFC Specification

From Spec to Implementation

● Produced by IETF.
● Written in English prose.

6

RFC Specification Implementation

● Written in C, Go,
Rust, etc. by a
programmer.

From Spec to Implementation

7

RFC Specification Implementation

● How does the
programmer interpret
the specification?

Where do Bugs Come From?

8

RFC Specification Implementation

Fundamental issues with the
protocol design.

Where do Bugs Come From?

9

RFC Specification Implementation

Ambiguities and omissions in the
specification.

Fundamental issues with the
protocol design.

Where do Bugs Come From?

10

RFC Specification Implementation

Ambiguities and omissions in the
specification.

Programming mistakes.Fundamental issues with the
protocol design.

Where do Bugs Come From?

11

RFC Specification Implementation

Programming mistakes.

Where do Bugs Come From?

12

RFC Specification Implementation

Programming mistakes.
Property Testers

Fuzzing
Randomized

Testing

Symbolic or
Concolic

Execution Static or Dynamic
Analysis

Heuristic
Algorithms

Protocol
Bake-Offs

… etc.

Where do Bugs Come From?

13

RFC Specification Implementation

Ambiguities and omissions in the
specification.

Fundamental issues with the
protocol design.

This Presentation

14

RFC Specification FSM Interpretation

NLP

This Presentation

15

RFC Specification FSM Interpretation Bugs & Attacks

NLP Attack Synthesis

Extracting FSMs from RFCs

16

RFC Specification FSM Interpretation Bugs & Attacks

NLP Attack Synthesis

● No one-to-one mapping between the text and the canonical FSM

Extracting FSMs from RFCs: Main Challenges

17

Extracting FSMs from RFCs: Main Challenges

● No one-to-one mapping between the text and the canonical FSM

● RFCs contain omissions, mistakes, & ambiguities.

The client leaves the PARTOPEN state
for OPEN when it receives a valid
packet other than DCCP-Response,
DCCP-Reset, or DCCP-Sync from the
server.

Why not [PARTOPEN – DCCP-Close? → OPEN]

18

Extracting FSMs from RFCs: Main Challenges

● There is no canonical FSM.

● RFCs contain omissions, mistakes, & ambiguities.

● Off-the-shelf NLP approaches are not suitable.

v.s.

19

Extracting FSMs from RFCs: Main Challenges

● There is no canonical FSM.

● RFCs contain omissions, mistakes, & ambiguities.

● Off-the-shelf NLP approaches are not suitable.

● There is a lot of variation in the language and structure of different RFCs.

20

Our Approach

21

Our Approach

22

Our Approach

23

Our Approach

24

Step 1. Learning Technical Language Embeddings

● Contextualized representations

The connection is in error
and should be reset vs. Send Reset Code 5

Each word is informed
by all of its surroundings

Trained on 8,858 documents
and approximately 475M
words

25

Step 2. Protocol Information Extraction

REQUEST
A client socket enters this state, from CLOSED, after
sending a
DCCP-Request packet to try to initiate a connection.

26

Step 2. Zero-Shot Protocol Information Extraction: Grammar

● Definition tags, used to define
states, events, etc.;

27

Step 2. Zero-Shot Protocol Information Extraction: Grammar

● Definition tags, used to define
states, events, etc.;

● Reference tags, used to observe
mentions of previously defined data;

28

Step 2. Zero-Shot Protocol Information Extraction: Grammar

● Definition tags, used to define
states, events, etc.;

● Reference tags, used to observe
mentions of previously defined data;

● State Machine tags, used to track
transitions, actions, etc;

29

Step 2. Zero-Shot Protocol Information Extraction: Grammar

● Definition tags, used to define
states, events, etc.;

● Reference tags, used to observe
mentions of previously defined data;

● State Machine tags, used to track
transitions, actions, etc;

● Control flow tags, used to record the
logical structure of the FSM.

30

Step 2. Zero-Shot Protocol Info. Extraction: Intermediate Repr.
<control relevant="true">

<transition>
The client leaves the
<arg_source>

<ref_state id="3">REQUEST</ref_state>
</arg_source>
state for
<arg_target>

<ref_state id="5">PARTOPEN</ref_state>
</arg_target>

</transition>
<trigger>

when it receives a
 <ref_event type="receive" id="2">

DCCP-Response
</ref_event>
from the server.

</trigger>
</control>

Control block scopes search.

31

Step 2. Zero-Shot Protocol Info. Extraction: Intermediate Repr.
<control relevant="true">

<transition>
The client leaves the
<arg_source>

<ref_state id="3">REQUEST</ref_state>
</arg_source>
state for
<arg_target>

<ref_state id="5">PARTOPEN</ref_state>
</arg_target>

</transition>
<trigger>

when it receives a
 <ref_event type="receive" id="2">

DCCP-Response
</ref_event>
from the server.

</trigger>
</control>

Control block scopes search.

Transition block contains a
transition s → s’.

32

Step 2. Zero-Shot Protocol Info. Extraction: Intermediate Repr.
<control relevant="true">

<transition>
The client leaves the
<arg_source>

<ref_state id="3">REQUEST</ref_state>
</arg_source>
state for
<arg_target>

<ref_state id="5">PARTOPEN</ref_state>
</arg_target>

</transition>
<trigger>

when it receives a
 <ref_event type="receive" id="2">

DCCP-Response
</ref_event>
from the server.

</trigger>
</control>

Control block scopes search.

Transition block contains a
transition s → s’.

Source state s is described in arg
source within a state reference.

33

Step 2. Zero-Shot Protocol Info. Extraction: Intermediate Repr.
<control relevant="true">

<transition>
The client leaves the
<arg_source>

<ref_state id="3">REQUEST</ref_state>
</arg_source>
state for
<arg_target>

<ref_state id="5">PARTOPEN</ref_state>
</arg_target>

</transition>
<trigger>

when it receives a
 <ref_event type="receive" id="2">

DCCP-Response
</ref_event>
from the server.

</trigger>
</control>

Control block scopes search.

Transition block contains a
transition s → s’.

Source state s is described in arg
source within a state reference.

34

Step 2. Zero-Shot Protocol Info. Extraction: Intermediate Repr.
<control relevant="true">

<transition>
The client leaves the
<arg_source>

<ref_state id="3">REQUEST</ref_state>
</arg_source>
state for
<arg_target>

<ref_state id="5">PARTOPEN</ref_state>
</arg_target>

</transition>
<trigger>

when it receives a
 <ref_event type="receive" id="2">

DCCP-Response
</ref_event>
from the server.

</trigger>
</control>

Control block scopes search.

Transition block contains a
transition s → s’.

Source state s is described in arg
source within a state reference.

Target state s’ is described in arg
target within a state reference.

35

Step 2. Zero-Shot Protocol Info. Extraction: Intermediate Repr.
<control relevant="true">

<transition>
The client leaves the
<arg_source>

<ref_state id="3">REQUEST</ref_state>
</arg_source>
state for
<arg_target>

<ref_state id="5">PARTOPEN</ref_state>
</arg_target>

</transition>
<trigger>

when it receives a
 <ref_event type="receive" id="2">

DCCP-Response
</ref_event>
from the server.

</trigger>
</control>

Control block scopes search.

Transition block contains a
transition s → s’.

Source state s is described in arg
source within a state reference.

Target state s’ is described in arg
target within a state reference.

The transition is triggered by an
event.

36

Step 2. Zero-Shot Protocol Info. Extraction: Intermediate Repr.
<control relevant="true">

<transition>
The client leaves the
<arg_source>

<ref_state id="3">REQUEST</ref_state>
</arg_source>
state for
<arg_target>

<ref_state id="5">PARTOPEN</ref_state>
</arg_target>

</transition>
<trigger>

when it receives a
 <ref_event type="receive" id="2">

DCCP-Response
</ref_event>
from the server.

</trigger>
</control>

Control block scopes search.

Transition block contains a
transition s → s’.

Source state s is described in arg
source within a state reference.

Target state s’ is described in arg
target within a state reference.

The transition is triggered by an
event.

In the event, the peer receives the
packet DCCP-Response, which we
assign identifier “2”. 37

Step 2. Zero-Shot Protocol Information Extraction: LinearCRF

1. Split text in chunks

38

Step 2. Zero-Shot Protocol Information Extraction: LinearCRF

2. Extract features

39

Step 2. Zero-Shot Protocol Information Extraction: LinearCRF

3. Linear CRF Model

40

Step 2. Zero-Shot Protocol Information Extraction: NeuralCRF

3. BiLSTM-CRF

41

Step 2. Zero-Shot Protocol Information Extraction: Evaluation

Heuristics based on word
usage:

leave/move -> transition
send/receive/issue -> action
if/while -> trigger
…

Step 2. Zero-Shot Protocol Information Extraction: Evaluation

The neural model
outperforms the linear model

Step 3. Protocol State Machine Extraction
<control relevant="true">

<transition>
The client leaves the
<arg_source>

<ref_state id="3">REQUEST</ref_state>
</arg_source>
state for
<arg_target>

<ref_state id="5">PARTOPEN</ref_state>
</arg_target>

</transition>
<trigger>

when it receives a
 <ref_event type="receive" id="2">

DCCP-Response
</ref_event>
from the server.

</trigger>
</control>

Control block scopes search.

Transition block contains a
transition s → s’.

Source state s is described in arg
source within a state reference.

Target state s’ is described in arg
target within a state reference.

The transition is triggered by an
event.

In the event, the peer receives the
packet DCCP-Response, which we
assign identifier “2”. 44

Step 3. Protocol State Machine Extraction
Control block scopes search.

Transition block contains a
transition s → s’.

Source state s is described in arg
source within a state reference.

Target state s’ is described in arg
target within a state reference.

The transition is triggered by an
event.

In the event, the peer receives the
packet DCCP-Response, which we
assign identifier “2”.

<control relevant="true">
<transition>

The client leaves the
<arg_source>

<ref_state id="3">REQUEST</ref_state>
</arg_source>
state for
<arg_target>

<ref_state id="5">PARTOPEN</ref_state>
</arg_target>

</transition>
<trigger>

when it receives a
 <ref_event type="receive" id="2">

DCCP-Response
</ref_event>
from the server.

</trigger>
</control>

45

Step 3. Protocol State Machine Extraction

Heuristic Extraction Alg.

- Search lower for target states
- Search higher for source states
- Search higher (< 7 layers) for

event(s)
- Handle set complement
- Heuristically prune bad transitions

Intermediary Representation Finite State Machine

46

Step 3. Protocol State Machine Extraction - TCP

Step 3. Protocol State Machine Extraction - TCP

Transitions that are good
enough for our FSM

- Correct source state
- Correct target state
- At least one correct

event

Step 3. Protocol State Machine Extraction - TCP

Represents our skyline:

The best we can do with our
gold intermediary rep.

Step 3. Protocol State Machine Extraction - TCP

Linear and Neural FSMs
are identical.

We recover most transitions

50

Step 3. Protocol State Machine Extraction - DCCP

CLOSE_WAIT --- FIN! ---> LAST_ACK

Consider the transition:

Described in the RFC as follows:

Step 3. Protocol State Machine Extraction - Missing Transition

Consider the transition:

CLOSE_WAIT --- FIN! ---> LAST_ACK

Described in the RFC as follows:

Step 3. Protocol State Machine Extraction - Missing Transition

CLOSE_WAIT --- FIN! ---> LAST_ACK

Consider the transition:

Described in the RFC as follows:

Step 3. Protocol State Machine Extraction - Missing Transition

Described in the RFC as follows:

Step 3. Protocol State Machine Extraction - Missing Transition

CLOSE_WAIT --- FIN! ---> LAST_ACK

Consider the transition:

No explicit mention to LAST_ACK

Step 3. Protocol State Machine Extraction - Missing

Step 3. Protocol State Machine Extraction - Missing

We miss very few
transitions for TCP

Step 3. Protocol State Machine Extraction - Missing

DCCP specifications
are significantly
more ambiguous

Step 3. Protocol State Machine Extraction - Missing

Our neural model
yields fewer
prediction errors
than our linear
model

Step 3. Protocol State Machine Extraction - Incorrect

Incorrect transitions
for TCP are
introduced due to
prediction errors

Step 3. Protocol State Machine Extraction - Incorrect

Another indication
that the DCCP
specifications are
ambiguous

Step 3. Protocol State Machine Extraction - Incorrect

Our extraction
method
underperforms on
DCCP

Suggesting that
structure is more
complex

4. Automated Attack Synthesis

63

RFC Specification FSM Interpretation Bugs & Attacks

NLP Attack Synthesis

 KORG

4. Automated Attack Synthesis

Extracted FSM

64

LTL Property φ

4. Automated Attack Synthesis

Extracted FSM KORG

65

LTL Property φ

4. Automated Attack Synthesis

Extracted FSM KORG

Does P0 ‖ vuln. channel ‖ P1 ⊨ φ ?

66

LTL Property φ

4. Automated Attack Synthesis

Extracted FSM

Nope. Here’s a
counterexample.

Does P0 ‖ vuln. channel ‖ P1 ⊨ φ ?
 KORG

67

LTL Property φ

4. Automated Attack Synthesis

Extracted FSM

Nope. Here’s a
counterexample.

● Attacker Program A
● If possible, test results

against Canonical FSM

 KORG

Does P0 ‖ vuln. channel ‖ P1 ⊨ φ ?

68

Case Studies
Transmission Control Protocol (TCP) Datagram Congestion Control Protocol (DCCP)

Case Studies
Transmission Control Protocol (TCP) Datagram Congestion Control Protocol (DCCP)

1. No half-open connections.

2. Passive/active establishment
eventually succeeds.

3. Peers don’t get stuck.

4. SYN_RECEIVED is eventually followed
by ESTABLISHED, FIN_WAIT_1, or
CLOSED.

Case Studies
Transmission Control Protocol (TCP) Datagram Congestion Control Protocol (DCCP)

1. No half-open connections.

2. Passive/active establishment
eventually succeeds.

3. Peers don’t get stuck.

4. SYN_RECEIVED is eventually followed
by ESTABLISHED, FIN_WAIT_1, or
CLOSED.

1. The peers don’t both loop into being
stuck or infinitely looping.

2. The peers are never both in
TIME_WAIT.

3. The first peer doesn’t loop into being
stuck or infinitely looping.

4. The peers are never both in
CLOSE_REQ.

Case Studies
- Few attacks found for TCP but

all true-positives.

- Many attacks found for DCCP
but some are false-positives.

- No novel attacks found.

- Attacks can be thought of as
bugs. (The FSM should be
resilient to attack.)

Case Studies - Example Attacks

Protocol Model Guiding
Property

Violated
Property

Description

TCP NeuralCRF+R 1 1 Injects ACK to peer 1, causing
desynchronization during establishment.

DCCP LinearCRF+R 4 4 Spoofs each peer, guiding the other to
CLOSE_REQ.

DCCP NeuralCRF+R 2 4 Similar to ⬆.

73

Future Directions

● Automatically highlight omissions and ambiguities in RFC text.

● Automatically suggest bug fixes.

● Automatically extract logical properties.

● Support for secure protocols.

● RFC author in-the-loop.

● Aid RFC author in achieving unambiguous translation RFC → canonical
FSM.

74

