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Automated Protocol Analysis
The internet runs on 
protocols, like TCP, UDP, 
DCCP, SFTP, etc.

Image courtesy of Scientific American.
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Automated Protocol Analysis
The internet runs on 
protocols, like TCP, UDP, 
DCCP, SFTP, etc.

Each protocol peer runs a 
finite state machine.

Protocol flaws are found 
by analyzing the FSM. 

Image courtesy of Scientific American.
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From Spec to Implementation

● Produced by IETF.
● Written in English prose.
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RFC Specification Implementation

● Written in C, Go, 
Rust, etc. by a 
programmer.



From Spec to Implementation
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RFC Specification Implementation

● How does the 
programmer interpret 
the specification?



Where do Bugs Come From?
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RFC Specification Implementation

Programming mistakes.
Property Testers

Fuzzing
Randomized 

Testing

Symbolic or 
Concolic 

Execution Static or Dynamic 
Analysis

Heuristic 
Algorithms

Protocol 
Bake-Offs

… etc.
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RFC Specification Implementation

Ambiguities and omissions in the 
specification.

Fundamental issues with the 
protocol design.
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● No one-to-one mapping between the text and the canonical FSM 

Extracting FSMs from RFCs: Main Challenges
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Extracting FSMs from RFCs: Main Challenges

● No one-to-one mapping between the text and the canonical FSM 

● RFCs contain omissions, mistakes, & ambiguities.

The client leaves the PARTOPEN state 
for OPEN when it receives a valid 
packet other than DCCP-Response, 
DCCP-Reset, or DCCP-Sync from the 
server.

Why not [PARTOPEN – DCCP-Close? → OPEN]
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Extracting FSMs from RFCs: Main Challenges

● There is no canonical FSM.

● RFCs contain omissions, mistakes, & ambiguities.

● Off-the-shelf NLP approaches are not suitable.

v.s.
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Extracting FSMs from RFCs: Main Challenges

● There is no canonical FSM.

● RFCs contain omissions, mistakes, & ambiguities.

● Off-the-shelf NLP approaches are not suitable.

● There is a lot of variation in the language and structure of different RFCs.
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Step 1. Learning Technical Language Embeddings

● Contextualized representations

The connection is in error 
and should be reset vs. Send Reset Code 5

Each word is informed
by all of its surroundings

Trained on 8,858 documents 
and approximately 475M 
words
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Step 2. Protocol Information Extraction

REQUEST
A client socket enters this state, from CLOSED, after 
sending a
DCCP-Request packet to try to initiate a connection.
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Step 2. Zero-Shot Protocol Information Extraction: Grammar

● Definition tags, used to define 
states, events, etc.;
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Step 2. Zero-Shot Protocol Information Extraction: Grammar

● Definition tags, used to define 
states, events, etc.;

● Reference tags, used to observe 
mentions of previously defined data;

● State Machine tags, used to track 
transitions, actions, etc;

● Control flow tags, used to record the 
logical structure of the FSM. 
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Step 2. Zero-Shot Protocol Info. Extraction: Intermediate Repr.
<control relevant="true">

<transition>
The client leaves the 
<arg_source>

<ref_state id="3">REQUEST</ref_state>
</arg_source> 
state for 
<arg_target>

<ref_state id="5">PARTOPEN</ref_state>
</arg_target>

</transition> 
<trigger>

when it receives a
   <ref_event type="receive" id="2">

DCCP-Response
</ref_event> 
from the server.

</trigger>
</control>

Control block scopes search.
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Step 2. Zero-Shot Protocol Information Extraction: LinearCRF

1.     Split text in chunks
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Step 2. Zero-Shot Protocol Information Extraction: LinearCRF

2.     Extract features
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Step 2. Zero-Shot Protocol Information Extraction: LinearCRF

3.     Linear CRF Model
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Step 2. Zero-Shot Protocol Information Extraction: NeuralCRF

3.     BiLSTM-CRF
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Step 2. Zero-Shot Protocol Information Extraction: Evaluation

Heuristics based on word 
usage:

leave/move -> transition
send/receive/issue -> action
if/while -> trigger
…



Step 2. Zero-Shot Protocol Information Extraction: Evaluation

The neural model 
outperforms the linear model



Step 3. Protocol State Machine Extraction
<control relevant="true">

<transition>
The client leaves the 
<arg_source>

<ref_state id="3">REQUEST</ref_state>
</arg_source> 
state for 
<arg_target>
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</trigger>
</control>
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Step 3. Protocol State Machine Extraction
Control block scopes search.

Transition block contains a 
transition s → s’.

Source state s is described in arg 
source within a state reference.

Target state s’ is described in arg 
target within a state reference.

The transition is triggered by an 
event.

In the event, the peer receives the 
packet DCCP-Response, which we 
assign identifier “2”.

<control relevant="true">
<transition>

The client leaves the 
<arg_source>

<ref_state id="3">REQUEST</ref_state>
</arg_source> 
state for 
<arg_target>

<ref_state id="5">PARTOPEN</ref_state>
</arg_target>

</transition> 
<trigger>

when it receives a
   <ref_event type="receive" id="2">

DCCP-Response
</ref_event> 
from the server.

</trigger>
</control>
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Step 3. Protocol State Machine Extraction

Heuristic Extraction Alg.

- Search lower for target states
- Search higher for source states
- Search higher (< 7 layers) for 

event(s)
- Handle set complement
- Heuristically prune bad transitions

Intermediary Representation Finite State Machine

46



Step 3. Protocol State Machine Extraction - TCP 



Step 3. Protocol State Machine Extraction - TCP 

Transitions that are good 
enough for our FSM

- Correct source state
- Correct target state
- At least one correct 

event



Step 3. Protocol State Machine Extraction - TCP

Represents our skyline:

The best we can do with our
gold intermediary rep.



Step 3. Protocol State Machine Extraction - TCP

Linear and Neural FSMs 
are identical.

We recover most transitions
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Step 3. Protocol State Machine Extraction - DCCP



CLOSE_WAIT --- FIN! ---> LAST_ACK

Consider the transition:

Described in the RFC as follows:

Step 3. Protocol State Machine Extraction - Missing Transition
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Described in the RFC as follows:

Step 3. Protocol State Machine Extraction - Missing Transition

CLOSE_WAIT --- FIN! ---> LAST_ACK

Consider the transition:

No explicit mention to LAST_ACK



Step 3. Protocol State Machine Extraction - Missing 



Step 3. Protocol State Machine Extraction - Missing

We miss very few 
transitions for TCP



Step 3. Protocol State Machine Extraction - Missing

DCCP specifications 
are significantly 
more ambiguous



Step 3. Protocol State Machine Extraction - Missing

Our neural model 
yields fewer 
prediction errors 
than our linear 
model



Step 3. Protocol State Machine Extraction - Incorrect

Incorrect transitions 
for TCP are 
introduced due to 
prediction errors



Step 3. Protocol State Machine Extraction - Incorrect

Another indication 
that the DCCP 
specifications are 
ambiguous



Step 3. Protocol State Machine Extraction - Incorrect

Our extraction 
method 
underperforms on 
DCCP

Suggesting that 
structure is more 
complex



4. Automated Attack Synthesis
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RFC Specification FSM Interpretation Bugs & Attacks

NLP Attack Synthesis



 KORG

4. Automated Attack Synthesis

Extracted FSM
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LTL Property φ

4. Automated Attack Synthesis

Extracted FSM  KORG
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LTL Property φ

4. Automated Attack Synthesis

Extracted FSM  KORG

Does P0 ‖ vuln. channel ‖ P1 ⊨ φ ?
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LTL Property φ

4. Automated Attack Synthesis

Extracted FSM

Nope.  Here’s a 
counterexample.

Does P0 ‖ vuln. channel ‖ P1 ⊨ φ ?
 KORG
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LTL Property φ

4. Automated Attack Synthesis

Extracted FSM

Nope.  Here’s a 
counterexample.

● Attacker Program A
● If possible, test results 

against Canonical FSM 

 KORG

Does P0 ‖ vuln. channel ‖ P1 ⊨ φ ?

68
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4. SYN_RECEIVED is eventually followed 
by ESTABLISHED, FIN_WAIT_1, or 
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Case Studies
Transmission Control Protocol (TCP) Datagram Congestion Control Protocol (DCCP)

1. No half-open connections.

2. Passive/active establishment 
eventually succeeds.

3. Peers don’t get stuck.

4. SYN_RECEIVED is eventually followed 
by ESTABLISHED, FIN_WAIT_1, or 
CLOSED.

1. The peers don’t both loop into being 
stuck or infinitely looping.

2. The peers are never both in 
TIME_WAIT.

3. The first peer doesn’t loop into being 
stuck or infinitely looping.

4. The peers are never both in 
CLOSE_REQ.



Case Studies
- Few attacks found for TCP but 

all true-positives.

- Many attacks found for DCCP 
but some are false-positives.

- No novel attacks found.

- Attacks can be thought of as 
bugs.  (The FSM should be 
resilient to attack.)



Case Studies - Example Attacks

Protocol Model Guiding 
Property

Violated 
Property

Description

TCP NeuralCRF+R 1 1 Injects ACK to peer 1, causing 
desynchronization during establishment.

DCCP LinearCRF+R 4 4 Spoofs each peer, guiding the other to 
CLOSE_REQ.

DCCP NeuralCRF+R 2 4 Similar to ⬆.
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Future Directions

● Automatically highlight omissions and ambiguities in RFC text. 

● Automatically suggest bug fixes.

● Automatically extract logical properties.

● Support for secure protocols.

● RFC author in-the-loop.

● Aid RFC author in achieving unambiguous translation RFC → canonical 
FSM.
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