FROST

draft-irtf-cfrg-frost

Connolly, Komlo, Goldberg, Wood - IETF 114 - CFRG

A Flexible
Round-Optimized
Schnorr
Threshold

signature scheme

A Flexible
Round-Optimized
Schnorr
Threshold

signature scheme

A Flexible
Round-Optimized
Schnorr
Threshold

signature scheme

A Flexible

RO u n d = O pti m ized 2 rounds (not including keygen)
Schnorr
Threshold

signature scheme

A Flexible
Round-Optimized
Schnorr
Threshold

signature scheme

A Flexible

Round-Optimized

Schnorr Only Schnorr, o ECDSA here
Threshold

signature scheme

A Flexible
Round-Optimized
Schnorr
Threshold

signature scheme

A Flexible
Round-Optimized
Schnorr
Threshold

signature scheme

t-of-n signers

A Flexible
Round-Optimized
Schnorr
Threshold

signature scheme

A Flexible
Round-Optimized
Schnorr
Threshold

Signatu re SCheme Indistinguishable from single

signer

Two-Round FROST Signing Protocol

Keygen is done prior.

Round 1: generating nonces & commitments, publishing commitments

Round 2: signature share generation & publication

Coordinator aggregates signature shares into the final signature

FROST Overview

(group info) (group info, (group info,
| signing key share) signing key share)
I I
v % %
Coordinator Signer-1 ce Signer-n
message

____________ >

I
== Round 1 (Commitment) ==
| signer commitment |
[<-=mmmmmm e + |
I . I
| signer commitment
[<mmmm +
== Round 2 (Signature Share Generation) ==

I
| signer input | |
R >
| signature share | |
[<-=mmmmmm e + |
| e |
| signer input |
B T T >
| signature share |
R e T P +

== Aggregation ==

signature |

FROST Ove rvieW B (group info) (group info, (group info,
. | signing key share) signing key share)
: I

... Seordinator Slgner-1 ... slgner-n
. . Gessmm
0. Key generation and configuration - |>

| signer input |

== Aggregation ==
I

signature |

--

FROST Ove rvieW B (group info) (group info, (group info,
. | signing key share) signing key share)
: |

... Soordinavor |, Signer-l ... Slgner-n .
. . Geeeme
0. Key generation and configuration - |>

Round 1: nonce and commitment ..o tener comitment . : |
c c |
generation |

== Aggregation ==
I

signature |

FROST Ove rvieW :‘ (group info) (group info, (group info, ;
. | signing key share) signing key share)
: I I

v \% \%
Coordinator Signer-1 boc Signer-n

--

0.Key generation and configuration -+ :

Round 1: nonce and commitment | SiEner comiment : |
. !
generatlon I signer commitment |

== Round 2 (Signature Share Generation) ==

Round 2: signature share generation |
| signer input |

and verification s :

== Aggregation ==

signature |

FROST Overview

0. Key generation and configuration

Round 1: nonce and commitment
generation

Round 2: signature share generation
and verification

3. Share aggregation and final signature
publication

--

(group info) (group info, (group info, .
| signing key share) signing key share)

v \% \%
Coordinator Signer-1 boc Signer-n
message
____________ >

== Round 2 (Signature Share Generation) ==

| signer input |

== Aggregation ==
I

- signature |

Status

Online signing protocol fully specified and stabilized
Four ciphersuites defined (Ristretto, P-256, Ed25519, Ed448)
e FEd25519 and Ed448 are compatible with RFC8032

5+ interoperable implementations in Rust, C, Python (Sage), multiple ciphersuites

Latest updates

Reverted group commitment optimizations per analysis

e Optimization led to inter-round signer malleability
e Non-optimized version requires O(t) scalar operations instead of O(1)

Verification is a per-ciphersuite routine

e RFC8032-style verification stays in RFC8032
e \Verification of signatures over prime-order groups is specified in FROST

https://eprint.iacr.org/2022/833.pdf

Next Steps

Seeking Crypto Panel Review and wider CFRG review, specifically:

e Isthedraft clear and unambiguous?

e Isthere anythingtechnically incorrect, non-secure, or unsafe in the
specification?

e |sthe specification written in a way that makes embedding FROST into
higher-level application protocols straightforward?

More implementations welcome

Interest in one more ciphersuite (secp256k1)

Questions?

https://github.com/cfrg/draft-irtf-cfrg-frost

draft-irtf-cfrg-frost

https://github.com/cfrg/draft-irtf-cfrg-frost

Keygen

We define trusted dealer in the document appendix.

We support distributed key generation (and implement it elsewhere) but do not
define it in this document.

(The protocol requires signers to get public keys and private key shares that meet
certain requirements, but is agnostic as to the algorithm/protocol that generates

them.)

Reverting from FROST 2 to FROST 1

Optimization to make O(t) scalar muls O(1)

Attack' showed malleability of set of signers between rounds, doesn'’t affect
signature malleability

Decided to just back it out to O(t) scalar muls to avoid it

' https://eprint.iacr.org/2022/833.pdf

