Key Blinding for Signature Schemes

draft-irtf-cfrg-signature-key-blinding

Denis, Eaton, Wood – IETF 114 – CFRG

Setting: Single Prover

produced σ with overwhelming probability? \checkmark

Unforgeability: Given (msg, pk, σ), will the Verifier conclude that the owner of sk

Setting: Single Prover

produced σ with overwhelming probability?

Prover?

- Cryptocurrency private airdrop: Computing public airdrop tokens
- Tor hidden service identity blinding protocol: Signing hidden service descriptor Privacy Pass rate limiting: Signing Privacy Pass token requests

- Unforgeability: Given (msg, pk, σ), will the Verifier conclude that the owner of sk
- ... but what if one wanted the signature or public to reveal nothing about the

Setting: Multiple Provers

Mediator

 $b \leftarrow \{0,1\}^*$

$$(\mathsf{msg},\mathsf{pk}_b,\sigma_b)$$

$$a = Verify(pk_b, msg, \sigma_b)$$

 $b' = ?$

Verifier

Setting: Multiple Provers

- 1. Unforgeability: Given (msg, pk_b, σ_b), will the Verifier conclude that the owner of sk_b produced σ_b with overwhelming probability?
- than 1/2?

2. Unlinkability: Given (msg, pk_b, σ_b), can the Verifier determine b with probability not negligibly better

Setting: Multiple Provers

- 1. Unforgeability: Given (msg, pk_b, σ_b), will the Verifier conclude that the owner of sk_b produced σ_h with overwhelming probability?
- than 1/2?

2. Unlinkability: Given (msg, pk_b, σ_b), can the Verifier determine b with probability not negligibly better

Functional Requirements

Unforgeable signature scheme with the following additional properties:

- 1. Per-message public keys are independently distributed from long-term public keys
- 2. Per-message signatures do not leak any information about the long-term signing keys

Proposed solution: signature schemes with key blinding

Signature Scheme with Key Blinding

Extend digital signature schemes with three functions

- 1. BlindKeyGen: Produce a blinding key
- 2. BlindPublicKey: Given public key and blinding key, produce blinded public key
- 3. BlindKeySign: Sign message with secret key and secret blind

$Verify(BlindPublicKey(pk_S, sk_B), msg, BlindKeySign(sk_S, sk_B, msg)) = 1$

Signature Scheme with Key Blinding

Optionally add one more function for unblinding public keys

unblinded public key

... how is this optionally done in practice?

- 4. UnblindPublicKey: Given blinded public key and blinding key, produce an

UnblindPublicKey(BlindPublicKey(pk_S, sk_B)), sk_B) = pk_S

Generalizing Key Blinding

Generalize BlindPublicKey (and related functions) to support a context string

BlindPublicKey(pk_{S} , sk_{B} , ctx)

where context varies based on application use case, e.g.

- $ctx = \bot$, Rate-limited privacy pass
- $ctx = (pk_R, timestamp)$, Tor hidden services

See https://github.com/cfrg/draft-irtf-cfrg-signature-key-blinding/pull/37

Status and Next Steps

Implementation status:

vectors

Several interoperable implementations exist

Security analysis:

Unlinkability and unforgeability analysis for EdDSA and ECDSA variants complete (under peer review)

Next steps: merge PR#37 and solicit early Crypto Panel reviews

PureEdDSA (RFC8032) and ECDSA key blinding extension support and test

Questions?

Key Blinding for Signature Schemes

draft-irtf-cfrg-signature-key-blinding

Denis, Eaton, Wood – IETF 114 – CFRG