
Denis, Eaton, Wood — IETF 114 — CFRG

Key Blinding for Signature
Schemes
draft-irtf-cfrg-signature-key-blinding

Verifier

Setting: Single Prover

2

Prover

σ = 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) a = 𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄, 𝗆𝗌𝗀, σ)(𝗆𝗌𝗀, 𝗉𝗄, σ)

(𝗌𝗄, 𝗉𝗄)

𝗆𝗌𝗀
a

Unforgeability: Given , will the Verifier conclude that the owner of
produced with overwhelming probability?

(𝗆𝗌𝗀, 𝗉𝗄, σ) 𝗌𝗄
σ

Verifier

Setting: Single Prover

3

Prover

σ = 𝖲𝗂𝗀𝗇(𝗌𝗄, 𝗆𝗌𝗀) a = 𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄, 𝗆𝗌𝗀, σ)(𝗆𝗌𝗀, 𝗉𝗄, σ)

(𝗌𝗄, 𝗉𝗄)

𝗆𝗌𝗀
a

Unforgeability: Given , will the Verifier conclude that the owner of
produced with overwhelming probability?

… but what if one wanted the signature or public to reveal nothing about the
Prover?

• Tor hidden service identity blinding protocol: Signing hidden service descriptor

• Privacy Pass rate limiting: Signing Privacy Pass token requests

• Cryptocurrency private airdrop: Computing public airdrop tokens

(𝗆𝗌𝗀, 𝗉𝗄, σ) 𝗌𝗄
σ

Verifier

Setting: Multiple Provers

4

Prover 0

σ0 = 𝖲𝗂𝗀𝗇(𝗌𝗄0, 𝗆𝗌𝗀)

a = 𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄b, 𝗆𝗌𝗀, σb)

(𝗆𝗌𝗀, 𝗉𝗄b, σb)

(𝗌𝗄0, 𝗉𝗄0)

𝗆𝗌𝗀

a, b′

Prover 1

Mediator

σ1 = 𝖲𝗂𝗀𝗇(𝗌𝗄1, 𝗆𝗌𝗀)

(𝗌𝗄1, 𝗉𝗄1)

𝗆𝗌𝗀

b ← {0,1}*

(𝗆𝗌𝗀, 𝗉𝗄0, σ0)

(𝗆𝗌𝗀, 𝗉𝗄1, σ1)
b′ = ?

(𝗉𝗄0, 𝗉𝗄1)

Verifier

Setting: Multiple Provers

5

Prover 0

σ0 = 𝖲𝗂𝗀𝗇(𝗌𝗄0, 𝗆𝗌𝗀)

a = 𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄b, 𝗆𝗌𝗀, σb)

(𝗆𝗌𝗀, 𝗉𝗄b, σb)

(𝗌𝗄0, 𝗉𝗄0)

𝗆𝗌𝗀

a, b′

Prover 1

Mediator

σ1 = 𝖲𝗂𝗀𝗇(𝗌𝗄1, 𝗆𝗌𝗀)

(𝗌𝗄1, 𝗉𝗄1)

𝗆𝗌𝗀

b ← {0,1}*

(𝗆𝗌𝗀, 𝗉𝗄0, σ0)

(𝗆𝗌𝗀, 𝗉𝗄1, σ1)
b′ = ?

(𝗉𝗄0, 𝗉𝗄1)

2. Unlinkability: Given , can the Verifier determine with probability not negligibly better
than 1/2?

(𝗆𝗌𝗀, 𝗉𝗄b, σb) b

1. Unforgeability: Given , will the Verifier conclude that the owner of
produced with overwhelming probability?

(𝗆𝗌𝗀, 𝗉𝗄b, σb) 𝗌𝗄b
σb

 is the output
of a secure

algorithm

σb
𝖲𝗂𝗀𝗇

Verifier

Setting: Multiple Provers

6

Prover 0

σ0 = 𝖲𝗂𝗀𝗇(𝗌𝗄0, 𝗆𝗌𝗀)

a = 𝖵𝖾𝗋𝗂𝖿𝗒(𝗉𝗄b, 𝗆𝗌𝗀, σb)

(𝗆𝗌𝗀, 𝗉𝗄b, σb)

(𝗌𝗄0, 𝗉𝗄0)

𝗆𝗌𝗀

a, b′

Prover 1

Mediator

σ1 = 𝖲𝗂𝗀𝗇(𝗌𝗄1, 𝗆𝗌𝗀)

(𝗌𝗄1, 𝗉𝗄1)

𝗆𝗌𝗀

b ← {0,1}*

(𝗆𝗌𝗀, 𝗉𝗄0, σ0)

(𝗆𝗌𝗀, 𝗉𝗄1, σ1)
b′ = ?

(𝗉𝗄0, 𝗉𝗄1)
or

𝗉𝗄b = 𝗉𝗄0

𝗉𝗄b = 𝗉𝗄1

2. Unlinkability: Given , can the Verifier determine with probability not negligibly better
than 1/2?

(𝗆𝗌𝗀, 𝗉𝗄b, σb) b

1. Unforgeability: Given , will the Verifier conclude that the owner of
produced with overwhelming probability?

(𝗆𝗌𝗀, 𝗉𝗄b, σb) 𝗌𝗄b
σb

Functional Requirements

Unforgeable signature scheme with the following additional properties:

1. Per-message public keys are independently distributed from long-term
public keys

2. Per-message signatures do not leak any information about the long-term
signing keys

Proposed solution: signature schemes with key blinding

7

Signature Scheme with Key Blinding

Extend digital signature schemes with three functions

1. : Produce a blinding key

2. : Given public key and blinding key, produce blinded public
key

3. : Sign message with secret key and secret blind

𝖡𝗅𝗂𝗇𝖽𝖪𝖾𝗒𝖦𝖾𝗇

𝖡𝗅𝗂𝗇𝖽𝖯𝗎𝖻𝗅𝗂𝖼𝖪𝖾𝗒

𝖡𝗅𝗂𝗇𝖽𝖪𝖾𝗒𝖲𝗂𝗀𝗇

8

𝖵𝖾𝗋𝗂𝖿𝗒(𝖡𝗅𝗂𝗇𝖽𝖯𝗎𝖻𝗅𝗂𝖼𝖪𝖾𝗒(𝗉𝗄S, 𝗌𝗄𝖡), 𝗆𝗌𝗀, 𝖡𝗅𝗂𝗇𝖽𝖪𝖾𝗒𝖲𝗂𝗀𝗇(𝗌𝗄S, 𝗌𝗄B, 𝗆𝗌𝗀)) = 1

Signature Scheme with Key Blinding

Optionally add one more function for unblinding public keys

4. : Given blinded public key and blinding key, produce an
unblinded public key

… how is this optionally done in practice?

𝖴𝗇𝖻𝗅𝗂𝗇𝖽𝖯𝗎𝖻𝗅𝗂𝖼𝖪𝖾𝗒

9

𝖴𝗇𝖻𝗅𝗂𝗇𝖽𝖯𝗎𝖻𝗅𝗂𝖼𝖪𝖾𝗒(𝖡𝗅𝗂𝗇𝖽𝖯𝗎𝖻𝗅𝗂𝖼𝖪𝖾𝗒(𝗉𝗄S, 𝗌𝗄B)), 𝗌𝗄𝖡) = 𝗉𝗄𝖲

Generalizing Key Blinding

Generalize (and related functions) to support a context string

where varies based on application use case, e.g.

, Rate-limited privacy pass

, Tor hidden services

See https://github.com/cfrg/draft-irtf-cfrg-signature-key-blinding/pull/37

𝖡𝗅𝗂𝗇𝖽𝖯𝗎𝖻𝗅𝗂𝖼𝖪𝖾𝗒

𝖡𝗅𝗂𝗇𝖽𝖯𝗎𝖻𝗅𝗂𝖼𝖪𝖾𝗒(𝗉𝗄S, 𝗌𝗄𝖡, 𝖼𝗍𝗑)

𝖼𝗈𝗇𝗍𝖾𝗑𝗍

𝖼𝗍𝗑 = ⊥

𝖼𝗍𝗑 = (𝗉𝗄𝖱, 𝗍𝗂𝗆𝖾𝗌𝗍𝖺𝗆𝗉)

10

http://www.apple.com

Status and Next Steps

Implementation status:

PureEdDSA (RFC8032) and ECDSA key blinding extension support and test
vectors

Several interoperable implementations exist

Security analysis:

Unlinkability and unforgeability analysis for EdDSA and ECDSA variants
complete (under peer review)

Next steps: merge PR#37 and solicit early Crypto Panel reviews
11

https://github.com/chris-wood/draft-dew-cfrg-signature-key-blinding#existing-implementations

Questions?

Denis, Eaton, Wood — IETF 114 — CFRG

Key Blinding for Signature
Schemes
draft-irtf-cfrg-signature-key-blinding

