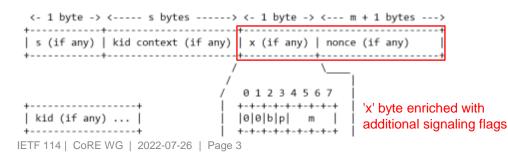
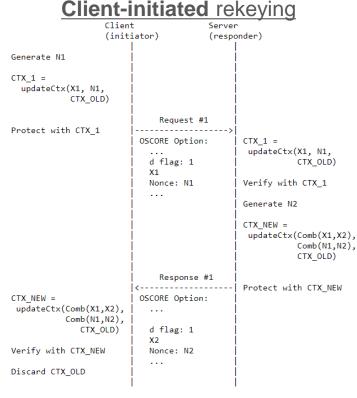
Key Update for OSCORE (KUDOS)

draft-ietf-core-oscore-key-update-02

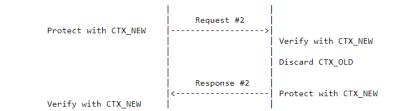
Rikard Höglund, RISE Marco Tiloca, RISE


IETF 114, CoRE WG, July 26th, 2022


Content Recap

- > OSCORE (RFC8613) uses AEAD algorithms to provide security
 - Need to follow limits in number of encryptions and failed decryptions, before rekeying
 - Excessive use of the same key can enable breaking security properties of the AEAD algorithm*
- > (1) Defined Key Update for OSCORE (KUDOS) ← FOCUS OF TODAY
 - Loosely inspired by Appendix B.2 of OSCORE
 - Goal: Renew the Master Secret and Master Salt; derive new Sender/Recipient keys from those
 - Can achieve Perfect Forward Secrecy
- > (2) AEAD Key Usage Limits in OSCORE
 - Defining appropriate limits for OSCORE, for a variety of algorithms
 - Defining counters for key usage; message processing details; steps when limits are reached

Key Update Recap


- > Method for rekeying OSCORE
 - Key Update for OSCORE (KUDOS)
 - Client and server exchange nonces N1 and N2
 - UpdateCtx() function for deriving new OSCORE Security Context using the nonces
 - Extended OSCORE Option
 - IANA: can bits "1" and "15" be "1 (suggested)" and "15 (suggested)"? --> We do need and prefer exactly "1" and "15"
 - > 'id detail' renamed to 'nonce'

// The actual key update process ends here.

// The two peers can use the new Security Context CTX_NEW.

Key Update without FS (1/2)

- > Alternative KUDOS mode without Forward Secrecy
 - Text moved from old Appendix to document body and improved (Section 4.4)
 - Stateless key update; needed for devices that cannot store to persistent memory
- > Signaling through a new 'p' bit in the 'x' byte of the OSCORE Option
 - 'p' set to 0 ==> sender's wish to run KUDOS in FS mode (original mode)
 - 'p' set to 1 ==> sender's wish to run KUDOS in no-FS mode
 - If p = 0 in both KUDOS messages ==> use the FS mode
 - If p = 1 in both KUDOS messages ==> use the no-FS mode

- > When using the FS-mode
 - The latest Security Context CTX_OLD is used as is, and FS is preserved
 - Devices capable of writing to persistent memory should initiate the procedure with 'p' set to 0

Key Update without FS (2/2)

- > When using the no-FS mode
 - FS is sacrificed due to at least one peer unable to write to persistent memory
 - Before starting KUDOS, the CTX_OLD is modified to ensure that:
 - Master Secret = Bootstrap Master Secret, and Master Salt = Bootstrap Master Salt.
 - Every execution of KUDOS between these peers will consider this same Secret/Salt pair
- Agreed downgrading to no-FS mode
 - If the initiator sets 'p' to 0, the responder might not follow-up (if unable to write to disk)
 - > Server responder: return a protected 5.03 error response, with 'p' set to 1
 - > Client responder: send a protected request, with 'p' set to 1
 - > In either case, abort KUDOS
 - Then, the initiator may retry with 'p' set to 1

> Section 4.4.1 has an extensive discussion on handling keying material and reboot

Comments? Questions?

Bootstrap material Pre-provisioned during manufacturing or (re-)commissioning

Preserving Observations (1/2)

- > Content moved from old appendix to document body and extended (Section 4.5)
- > Problem recap:
- 1. The client starts an observation Obs1 by sending a request Req1 with req_piv X
- 2. The two peers run KUDOS, and reset their Sender Sequence Number (SSN) to 0.
- 3. Later on, while Obs1 is still ongoing, the client sends a new request Req2 also with req_piv X. This is not necessarily an observation request.
- 4. A notification sent by the server for Obs1 and a response to Req2 would both cryptographically match against Req1 and Req2 by OSCORE external_aad.
- > Solution: "Long-jumping" of OSCORE Sender Sequence Numbers (SSNs)
 - After completing KUDOS, a peer determines PIV* as the highest req_piv among all the ongoing observations where it is client.
 - The peer updates its SSN to be ($PIV^* + 1$)

Preserving Observations (2/2)

- > Signaling through a new 'b' bit in the 'x' byte of the OSCORE Option
 - 'p' set to 0 ==> sender's wish to cancel all common observations beyond key update
 - 'p' set to 1 ==> sender's wish to keep all common observations beyond key update
- > Simple "all-or-nothing" approach
 - If p = 1 in both KUDOS messages, peers keep their observations, otherwise they are cancelled
- > A client ever wishing to preserve its observations:
 - MUST NOT silently forget them
 - Has to use cancellation requests (Observe:1)
 - > Observations are purged only if receiving a confirmation from the server
- > Even though key update is not of interest at the present moment ...
 - A peer might run KUDOS to quickly cancel the ongoing observations with the other peer!

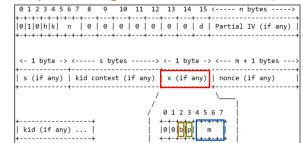
Comments? Questions?

IETF 114 | CoRE WG | 2022-07-26 | Page 7

Update of Sender/Recipient IDs

- > Method for updating peers' OSCORE Sender/Recipient IDs
 - Based on earlier discussions on the mailing list [1][2] and on [3]
 - This procedure can be embedded in a KUDOS execution or run standalone
 - This procedure can be initiated by a client or by a server
 - Content moved from old appendix to document body and improved (Section 5)
- > Properties
 - The sender indicates its new wished Recipient ID in the new Recipient-ID Option (class E)
 - Both peers have to opt-in and agree in order for the IDs to be updated
 - Changing IDs practically triggers derivation of new OSCORE Security Context
 - Must not be done immediately following a reboot (e.g., KUDOS must be run first)
 - Offered Recipient ID must be not used yet under (Master Secret, Master Salt, ID Context)
 - Received Recipient ID must not be used yet as own Sender ID under the same triple
- > Examples are provided in Sections 5.1.1 and 5.1.2

[1] https://mailarchive.ietf.org/arch/msg/core/GXsKO4wKdt3RTZnQZxOzRdIG9QI/


- [2] https://mailarchive.ietf.org/arch/msg/core/ClwcSF0BUVxDas8BpgT0WY1yQrY/
- [3] https://github.com/core-wg/oscore/issues/263#issue-946989659

No.	c	U N	+	Name	Format	Length	Default
TBD1				 Recipient-ID	opaque	0-7	(none)
<pre>+++++++++</pre>							

Further Updates (1/2)

- > Defined signaling bits present in the 'x' byte
 - Four least significant bits encode the 'nonce' length in bytes minus 1 (length indication for 'nonce')
 - Fifth least significant bit is the "No Forward Secrecy" 'p' bit (controls using FS or no-FS mode)
 - Sixth least significant bit is the "Preserve Observations" 'b' bit (controls preserving observations or not)
 - The two most significant bits are reserved for now

- > Redesigned the updateCtx() function
 - updateCtx(N, CTX_IN) --> updateCtx(X, N, CTX_IN)
 - > 'x' bytes also as input --> Covered by key derivation --> Integrity protected
 - Still two available methods
 - > METHOD 1: use EDHOC-KeyUpdate, if EDHOC was used to derive the first Ctx
 - > METHOD 2: a simple plain use of HKDF-Expand(), if EDHOC was not used
 - When using METHOD 1
 - > Aligned with the new EDHOC-KeyUpdate(), with input a CBOR byte string
 - > Defined rules about when replacing the old EDHOC keys PRK_out and PRK_exporter

Further Updates (2/2)

- > X1 and X2: raw value of 'x' in the OSCORE Option of 1st/2nd KUDOS message
- > N1 and N2: raw value of 'nonce' in the OSCORE Option of 1st/2nd KUDOS message
- > Before updateCtx(), blends the Xs and Ns into X and N
 - Message 1: X = X1 and N = N1
 - Message 2: X = bstr .cbor X1 | bstr .cbor X2 , N = bstr .cbor N1 | bstr .cbor N2
- > Invoke updateCtx(X, N, ...), which blends X and N into a single CBOR byte string X_N
 - $X_cbor = bstr.cbor X$
 - N_cbor = bstr .cbor N
 - X_N = bstr .cbor (X_cbor | N_cbor)
 - X_N is used as input to EDHOC-KeyUpdate() or to HKDF-Expand()

Comments? Questions?

Open points & Next steps

> Continue addressing the issues on the Github repo [1]

> Proposal: reorganize/split updateCtx() into

- A preamble to compute X_N and then invoke ...
- ... METHOD 1, based on EDHOC-KeyUpdate() or ...
- ... METHOD 2, based on HKDF-based

> Proposal: agreed fallback to METHOD 2

- E.g., an EDHOC session is not valid anymore
- New signaling bit in the 'x' byte to use when running KUDOS; same as when agreeing on no-FS
- > Implementation built on existing implementation of OSCORE in Java based on Californium
- > Comments and reviews are welcome!

// Update the EDHOC key PRK_out, and use the // new one to update the EDHOC key PRK_exporter (new PRK_out, new PRK_exporter) = EDHOC-KeyUpdate(X_N)

```
MSECRET_NEW = EDHOC-Exporter(0, h'', oscore_key_length)
= EDHOC-KDF(new PRK_exporter, 0, h'', oscore_key_length)
```

oscore_salt_length = < Size of CTX_IN.MasterSalt in bytes >

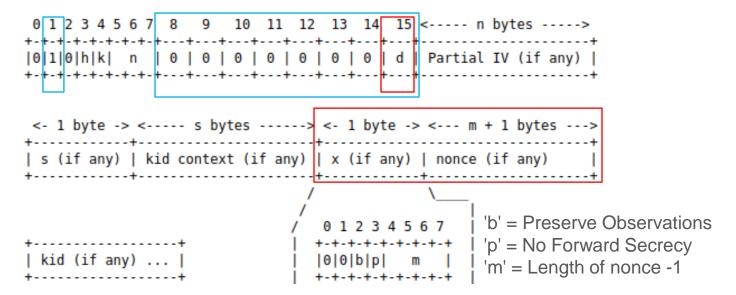
```
MSALT_NEW = EDHOC-Exporter(1, h'', oscore_salt_length)
= EDHOC-KDF(new PRK_exporter, 1, h'', oscore_salt_length)
```

```
else {
// METHOD 2
```

```
Label = "key update"
```

MSALT_NEW = N;

Thank you!


Comments/questions?

https://github.com/core-wg/oscore-key-update

OSCORE Option update

> OSCORE Option: defined the use of flag bit 1 to signal presence of flag bits 8-15

- > Defined flag bit 15 -- 'd' -- to indicate:
 - This is a OSCORE key update message
 - "nonce" is specified (length + value); used to transport a nonce for the key update

Key limits (1/3)

- > Recap on AEAD limits
 - Discussed in draft-irtf-cfrg-aead-limits-03
 - Limits key use for encryption (q) and invalid decryptions (v)
 - This draft defines fixed values for 'q', 'v', and 'l' and from those calculate CA & IA probabilities
 - > IA & CA probabilities must be acceptably low
- > Now explicit size limit of protected data to be sent in a new OSCORE message
 - The probabilities are influenced by 'l', i.e., maximum message size in cipher blocks
 - Implementations should not exceed 'I', and it has to be easy to avoid doing so
 - New text: the total size of the COSE plaintext, authentication Tag, and possible cipher padding for a message may not exceed the block size for the selected algorithm multiplied with 'l'
- > New table (Figure 3) showing values of 'I' not just in cipher blocks but actual bytes

<u>Confidentiality Advantage (CA)</u>: Probability of breaking confidentiality properties

Integrity Advantage (IA): Probability of breaking integrity properties

Key limits (2/3)

 $a = 2^{20} v = 2^{20}$ and $l = 2^{10}$

> Increased value of 'l' (message size in blocks) for algos except AES_128_CCM_8

- Increasing 'l' from 2^8 to 2^10 should maintain secure CA and IA probabilities
- draft-irtf-cfrg-aead-limits mentions aiming for CA & IA lower than to 2^-50
 - > They have added a table in that document with calculated 'q' and 'v' values

q = 2 20, $v = 2 20$, and $r = 2 10$.
Algorithm name	IA probability	CA probability
AEAD_AES_128_CCM AEAD_AES_128_GCM AEAD_AES_256_GCM AEAD_CHACHA20_POLY1305	2^-64 2^-97 2^-97 2^-73	2^-66 2^-89 2^-89 -

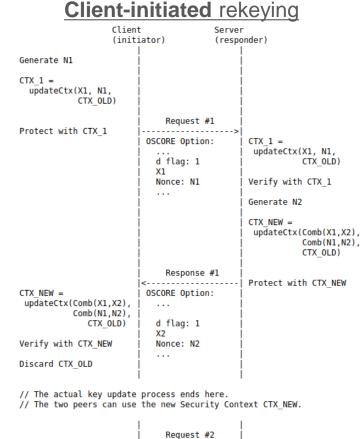
> Intent is to increase 'q', 'v' and/or 'l' further. Should we?

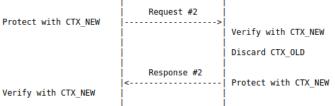
- Since we are well below 2^-50 for CA & IA currently

IETF 114 | CoRE WG | 2022-07-26 | Page 15

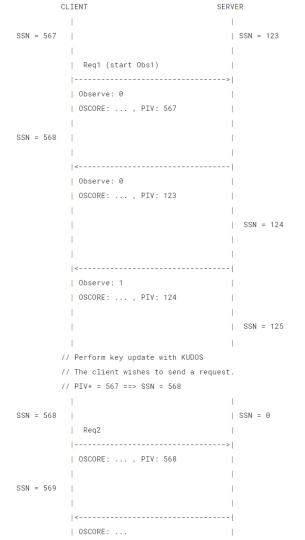
Key limits (3/3)

- > Updated table of 'q', 'v' and 'l' for AES_128_CCM_8
 - Added new value for 'v', still leaving CA and IA less than 2^-50
 - Is it ideal to aim for CA & IA close to 2^-50 as defined in the CRFG document?


+	+		+		+
'q', 'v' and 'l'	IA probability	CA probability	'q', 'v' and 'l'	IA probability	CA probability
q=2^20, v=2^20, l=2^8 q=2^15, v=2^20, l=2^8 q=2^10, v=2^20, l=2^8 q=2^20, v=2^15, l=2^8 q=2^15, v=2^15, l=2^8 q=2^10, v=2^14, l=2^8 q=2^15, v=2^14, l=2^8 q=2^20, v=2^14, l=2^8 q=2^15, v=2^10, l=2^8 q=2^15, v=2^10, l=2^8 q=2^10, v=2^10, l=2^8 q=2^10, v=2^10, l=2^8 q=2^10, v=2^10, l=2^8	2^-44 2^-49 2^-49 2^-49 2^-50 2^-50 2^-50 2^-50 2^-54	2^-70 2^-80 2^-90 2^-70 2^-80 2^-90 2^-70 2^-80 2^-90 2^-70 2^-80 2^-80 2^-90	q=2^20, v=2^20, l=2^6 q=2^15, v=2^20, l=2^6 q=2^10, v=2^20, l=2^6 q=2^20, v=2^15, l=2^6 q=2^15, v=2^15, l=2^6 q=2^10, v=2^14, l=2^6 q=2^10, v=2^14, l=2^6 q=2^20, v=2^10, l=2^6 q=2^15, v=2^10, l=2^6 q=2^10, v=2^10, l=2^6 q=2^10, v=2^10, l=2^6	2^-44 2^-44 2^-49 2^-49 2^-49 2^-50 2^-50 2^-50 2^-50 2^-54 2^-54 2^-54	2^-74 2^-84 2^-94 2^-74 2^-84 2^-94 2^-74 2^-84 2^-94 2^-74 2^-84 2^-74 2^-84 2^-94
	T		+		


Key update overview

- Defined a new method for rekeying OSCORE
 - Key Update for OSCORE (KUDOS)
 - Client and server exchange nonces N1 and N2
 - UpdateCtx() function for deriving new OSCORE Security Context using the nonces


> Properties

- > Can be initiated by either the client or server
- Completes in one round-trip (after that, the new Security Context can be used)
- > Only one intermediate Security Context is derived
- > The ID Context does not change
- > Robust and secure against peer rebooting
- Compatible with prior key establishment using the EDHOC protocol
- **NEW** > Mode with FS (stateful) and without FS (stateless)
- NEW > Possibility to preserve ongoing observations
- NEW IETF 714 Possibility to update Recipient/Sender IDs

"Long-Jumping"

IETF 114 | CoRE WG | 2022-07-26 | Page 18