
Key Update for OSCORE (KUDOS)

draft-ietf-core-oscore-key-update-02

Rikard Höglund, RISE
Marco Tiloca, RISE

IETF 114, CoRE WG, July 26th, 2022

IETF 114 | CoRE WG | 2022-07-26 | Page 2

› OSCORE (RFC8613) uses AEAD algorithms to provide security

– Need to follow limits in number of encryptions and failed decryptions, before rekeying

– Excessive use of the same key can enable breaking security properties of the AEAD algorithm*

› (1) Defined Key Update for OSCORE (KUDOS) FOCUS OF TODAY

– Loosely inspired by Appendix B.2 of OSCORE

– Goal: Renew the Master Secret and Master Salt; derive new Sender/Recipient keys from those

– Can achieve Perfect Forward Secrecy

› (2) AEAD Key Usage Limits in OSCORE

– Defining appropriate limits for OSCORE, for a variety of algorithms

– Defining counters for key usage; message processing details; steps when limits are reached

Content Recap

*See also draft-irtf-cfrg-aead-limits

IETF 114 | CoRE WG | 2022-07-26 | Page 3

› Method for rekeying OSCORE

– Key Update for OSCORE (KUDOS)

– Client and server exchange nonces N1 and N2

– UpdateCtx() function for deriving new OSCORE Security

Context using the nonces

– Extended OSCORE Option

› IANA: can bits "1" and "15" be "1 (suggested)" and "15

(suggested)"? --> We do need and prefer exactly "1" and "15"

› 'id detail' renamed to 'nonce'

Key Update Recap

Client-initiated rekeying

'x' byte enriched with

additional signaling flags

IETF 114 | CoRE WG | 2022-07-26 | Page 4

› Alternative KUDOS mode without Forward Secrecy

– Text moved from old Appendix to document body and improved (Section 4.4)

– Stateless key update; needed for devices that cannot store to persistent memory

› Signaling through a new 'p' bit in the 'x' byte of the OSCORE Option

– 'p' set to 0 ==> sender's wish to run KUDOS in FS mode (original mode)

– 'p' set to 1 ==> sender's wish to run KUDOS in no-FS mode

– If p = 0 in both KUDOS messages ==> use the FS mode

– If p = 1 in both KUDOS messages ==> use the no-FS mode

› When using the FS-mode

– The latest Security Context CTX_OLD is used as is, and FS is preserved

– Devices capable of writing to persistent memory should initiate the procedure with 'p' set to 0

Key Update without FS (1/2)

IETF 114 | CoRE WG | 2022-07-26 | Page 5

› When using the no-FS mode

– FS is sacrificed due to at least one peer unable to write to persistent memory

– Before starting KUDOS, the CTX_OLD is modified to ensure that:

› Master Secret = Bootstrap Master Secret, and Master Salt = Bootstrap Master Salt.

– Every execution of KUDOS between these peers will consider this same Secret/Salt pair

› Agreed downgrading to no-FS mode

– If the initiator sets 'p' to 0, the responder might not follow-up (if unable to write to disk)

› Server responder: return a protected 5.03 error response, with 'p' set to 1

› Client responder: send a protected request, with 'p' set to 1

› In either case, abort KUDOS

– Then, the initiator may retry with 'p' set to 1

› Section 4.4.1 has an extensive discussion on handling keying material and reboot

Key Update without FS (2/2)

Comments? Questions?

Bootstrap material

Pre-provisioned

during manufacturing

or (re-)commissioning

IETF 114 | CoRE WG | 2022-07-26 | Page 6

› Content moved from old appendix to document body and extended (Section 4.5)

› Problem recap:

1. The client starts an observation Obs1 by sending a request Req1 with req_piv X

2. The two peers run KUDOS, and reset their Sender Sequence Number (SSN) to 0.

3. Later on, while Obs1 is still ongoing, the client sends a new request Req2 also with req_piv X.

This is not necessarily an observation request.

4. A notification sent by the server for Obs1 and a response to Req2 would both cryptographically

match against Req1 and Req2 by OSCORE external_aad.

› Solution: "Long-jumping” of OSCORE Sender Sequence Numbers (SSNs)

– After completing KUDOS, a peer determines PIV* as the highest req_piv among all the ongoing

observations where it is client.

– The peer updates its SSN to be (PIV* + 1)

Preserving Observations (1/2)

IETF 114 | CoRE WG | 2022-07-26 | Page 7

› Signaling through a new 'b' bit in the 'x' byte of the OSCORE Option

– 'p' set to 0 ==> sender's wish to cancel all common observations beyond key update

– 'p' set to 1 ==> sender's wish to keep all common observations beyond key update

› Simple "all-or-nothing" approach

– If p = 1 in both KUDOS messages, peers keep their observations, otherwise they are cancelled

› A client ever wishing to preserve its observations:

– MUST NOT silently forget them

– Has to use cancellation requests (Observe:1)

› Observations are purged only if receiving a confirmation from the server

› Even though key update is not of interest at the present moment ...

– A peer might run KUDOS to quickly cancel the ongoing observations with the other peer!

Preserving Observations (2/2)

Comments? Questions?

IETF 114 | CoRE WG | 2022-07-26 | Page 8

› Method for updating peers' OSCORE Sender/Recipient IDs

– Based on earlier discussions on the mailing list [1][2] and on [3]

– This procedure can be embedded in a KUDOS execution or run standalone

– This procedure can be initiated by a client or by a server

– Content moved from old appendix to document body and improved (Section 5)

› Properties

– The sender indicates its new wished Recipient ID in the new Recipient-ID Option (class E)

– Both peers have to opt-in and agree in order for the IDs to be updated

– Changing IDs practically triggers derivation of new OSCORE Security Context

– Must not be done immediately following a reboot (e.g., KUDOS must be run first)

– Offered Recipient ID must be not used yet under (Master Secret, Master Salt, ID Context)

– Received Recipient ID must not be used yet as own Sender ID under the same triple

› Examples are provided in Sections 5.1.1 and 5.1.2

Update of Sender/Recipient IDs

[1] https://mailarchive.ietf.org/arch/msg/core/GXsKO4wKdt3RTZnQZxOzRdIG9QI/

[2] https://mailarchive.ietf.org/arch/msg/core/ClwcSF0BUVxDas8BpgT0WY1yQrY/

[3] https://github.com/core-wg/oscore/issues/263#issue-946989659

https://mailarchive.ietf.org/arch/msg/core/GXsKO4wKdt3RTZnQZxOzRdIG9QI/
https://mailarchive.ietf.org/arch/msg/core/ClwcSF0BUVxDas8BpgT0WY1yQrY/
https://github.com/core-wg/oscore/issues/263#issue-946989659
https://github.com/core-wg/oscore/issues/263#issue-946989659
https://github.com/core-wg/oscore/issues/263#issue-946989659
https://github.com/core-wg/oscore/issues/263#issue-946989659
https://github.com/core-wg/oscore/issues/263#issue-946989659

IETF 114 | CoRE WG | 2022-07-26 | Page 9

› Defined signaling bits present in the 'x' byte

– Four least significant bits encode the 'nonce' length in bytes minus 1 (length indication for 'nonce')

– Fifth least significant bit is the "No Forward Secrecy" 'p' bit (controls using FS or no-FS mode)

– Sixth least significant bit is the "Preserve Observations" 'b' bit (controls preserving observations or not)

– The two most significant bits are reserved for now

› Redesigned the updateCtx() function

– updateCtx(N, CTX_IN) --> updateCtx(X, N, CTX_IN)

› 'x' bytes also as input --> Covered by key derivation --> Integrity protected

– Still two available methods

› METHOD 1: use EDHOC-KeyUpdate, if EDHOC was used to derive the first Ctx

› METHOD 2: a simple plain use of HKDF-Expand(), if EDHOC was not used

– When using METHOD 1

› Aligned with the new EDHOC-KeyUpdate(), with input a CBOR byte string

› Defined rules about when replacing the old EDHOC keys PRK_out and PRK_exporter

Further Updates (1/2)

IETF 114 | CoRE WG | 2022-07-26 | Page 10

› X1 and X2: raw value of 'x' in the OSCORE Option of 1st/2nd KUDOS message

› N1 and N2: raw value of 'nonce' in the OSCORE Option of 1st/2nd KUDOS message

› Before updateCtx(), blends the Xs and Ns into X and N

– Message 1: X = X1 and N = N1

– Message 2: X = bstr .cbor X1 | bstr .cbor X2 , N = bstr .cbor N1 | bstr .cbor N2

› Invoke updateCtx(X, N, ...), which blends X and N into a single CBOR byte string X_N
– X_cbor = bstr .cbor X

– N_cbor = bstr .cbor N

– X_N = bstr .cbor (X_cbor | N_cbor)

– X_N is used as input to EDHOC-KeyUpdate() or to HKDF-Expand()

Further Updates (2/2)

Comments? Questions?

IETF 114 | CoRE WG | 2022-07-26 | Page 11

› Continue addressing the issues on the Github repo [1]

› Proposal: reorganize/split updateCtx() into

– A preamble to compute X_N and then invoke ...

– … METHOD 1, based on EDHOC-KeyUpdate() or ...

– … METHOD 2, based on HKDF-based

› Proposal: agreed fallback to METHOD 2

– E.g., an EDHOC session is not valid anymore

– New signaling bit in the 'x' byte to use when running KUDOS; same as when agreeing on no-FS

› Implementation built on existing implementation of OSCORE in Java based on Californium

› Comments and reviews are welcome!

Open points & Next steps

[1] https://github.com/core-wg/oscore-key-update/issues

https://github.com/core-wg/oscore-key-update/issues
https://github.com/core-wg/oscore-key-update/issues
https://github.com/core-wg/oscore-key-update/issues
https://github.com/core-wg/oscore-key-update/issues
https://github.com/core-wg/oscore-key-update/issues
https://github.com/core-wg/oscore-key-update/issues
https://github.com/core-wg/oscore-key-update/issues

Thank you!

Comments/questions?

https://github.com/core-wg/oscore-key-update

https://github.com/core-wg/oscore-key-update
https://github.com/core-wg/oscore-key-update
https://github.com/core-wg/oscore-key-update
https://github.com/core-wg/oscore-key-update
https://github.com/core-wg/oscore-key-update
https://github.com/core-wg/oscore-key-update
https://github.com/core-wg/oscore-key-update

IETF 114 | CoRE WG | 2022-07-26 | Page 13

› OSCORE Option: defined the use of flag bit 1 to signal presence of flag bits 8-15

› Defined flag bit 15 -- 'd' -- to indicate:
– This is a OSCORE key update message

– "nonce" is specified (length + value); used to transport a nonce for the key update

OSCORE Option update

'b' = Preserve Observations

'p' = No Forward Secrecy

'm' = Length of nonce -1

IETF 114 | CoRE WG | 2022-07-26 | Page 14

› Recap on AEAD limits

– Discussed in draft-irtf-cfrg-aead-limits-03

– Limits key use for encryption (q) and invalid decryptions (v)

– This draft defines fixed values for ‘q’, ‘v’, and ‘l’ and from those calculate CA & IA probabilities

› IA & CA probabilities must be acceptably low

› Now explicit size limit of protected data to be sent in a new OSCORE message

– The probabilities are influenced by ‘l’, i.e., maximum message size in cipher blocks

– Implementations should not exceed 'l', and it has to be easy to avoid doing so

– New text: the total size of the COSE plaintext, authentication Tag, and possible cipher padding

for a message may not exceed the block size for the selected algorithm multiplied with 'l‘

› New table (Figure 3) showing values of ‘l’ not just in cipher blocks but actual bytes

Key limits (1/3)
Confidentiality Advantage (CA):

Probability of breaking

confidentiality properties

Integrity Advantage (IA):

Probability of breaking

integrity properties

IETF 114 | CoRE WG | 2022-07-26 | Page 15

› Increased value of ‘l’ (message size in blocks) for algos except AES_128_CCM_8

– Increasing ‘l’ from 2^8 to 2^10 should maintain secure CA and IA probabilities

– draft-irtf-cfrg-aead-limits mentions aiming for CA & IA lower than to 2^-50

› They have added a table in that document with calculated ‘q’ and ‘v’ values

› Intent is to increase 'q', 'v' and/or 'l' further. Should we?

– Since we are well below 2^-50 for CA & IA currently

Key limits (2/3)

q = 2^20, v = 2^20, and l = 2^10

IETF 114 | CoRE WG | 2022-07-26 | Page 16

› Updated table of ‘q’, ‘v’ and ‘l’ for AES_128_CCM_8

– Added new value for ‘v’, still leaving CA and IA less than 2^-50

– Is it ideal to aim for CA & IA close to 2^-50 as defined in the CRFG document?

Key limits (3/3)

IETF 114 | CoRE WG | 2022-07-26 | Page 17

› Defined a new method for rekeying OSCORE

– Key Update for OSCORE (KUDOS)

– Client and server exchange nonces N1 and N2

– UpdateCtx() function for deriving new OSCORE Security

Context using the nonces

› Properties
› Can be initiated by either the client or server

› Completes in one round-trip (after that, the new

Security Context can be used)

› Only one intermediate Security Context is derived

› The ID Context does not change

› Robust and secure against peer rebooting

› Compatible with prior key establishment using the

EDHOC protocol

› Mode with FS (stateful) and without FS (stateless)

› Possibility to preserve ongoing observations

› Possibility to update Recipient/Sender IDs

Key update overview

Client-initiated rekeying

NEW

NEW

NEW

IETF 114 | CoRE WG | 2022-07-26 | Page 18

“Long-Jumping”

