
Asynchronous Deterministic
Networking (ADN) Framework for

Large scale networks

draft-joung-detnet-asynch-detnet-framework-00
Jinoo Joung, Jeong-dong Ryoo, Tae-sik Cheung, Yizhou Li, Peng Liu

IETF 114

Scope
• It specifies the framework for both latency & jitter bounds guarantee in large scale networks

with dynamic sources with arbitrary input patterns.
• large scale:

• arbitrary topology, may include loops

• link capacity & propagation delay vary

• dynamic sources: flows join and leave
• arbitrary patterns: aperiodic or random packet arrivals. Only constraint is the TSpec {burst, rate}.
 Similar to the Internet

• Overall framework
• Avoid time-synchronization
• Decouple the latency guarantee problem from the jitter guarantee problem
• Latency guarantee

• Regulators

• Jitter guarantee
• Latency guaranteed network & Time-stamping & Buffering

2

Problem statement

• The Internet already has the DiffServ framework for latency guarantee.
• Provided that in every link the total high priority traffic rate does not exceed the link capacity

• Resource reservation & Admission control mandatory

• It works well for lightly utilized networks.

• However, when utilization is medium to high; the burst accumulates.
• Assume n identical flows coming into a switching node, each with {B, r}

• At every node the burst accumulates as much as
• If a shared queue with a FIFO scheduler Bout ≤ B+(n-1)B*r/C. (Note that nr/C is the utilization.)

• If queue per flow with a packet-based fair scheduler Bout ≤ B+(n-1)L*r/C. (L is the max packet length.)

• The flows are now with {Bout, r}.

• This accumulation continues as flows travel.

• A cycle in network topology acts as a feed-forward loop. “Burst explosion”

3

Solution candidates

• Solutions to mitigate burst accumulation:
• Slotted operation (without strict synchronization)
• Packet metadata based forwarding (e.g. Latency budget, etc.)
• Flow regulation: Forcing a flow into its initial shape {B, r}

• Their shortcomings
• The slotted operation or the cyclic queuing, strict or loose, can be seen as an example

of regulation with {B, r, and the start phase}. However,
• it requires the slot planning and the source cooperation,

• the cycle-time can be as large as the accumulated burst size, because it may have to accommodate all
the other flows in its path.

• Metadata-based forwarding
• may not disperse the accumulated burst.

• requires lookup/decide/queue-reorder/overwrite in line speed.

• Regulation
• requires flow state maintaining. We argue this can be overcome with flow aggregation.

4

Latency guarantee framework

• Regulation on Flow aggregate
• ATS

• At every node
• IR per input port
• IR has only one queue, but still

requires individual flow states

• FAIR
• PFAR
• Other possible solutions

Implementation practice of ATS

5

IR per
input
port

output port
module

High
priority

FIFO
queueIR per

input
port Low

priority
queue

Strict
priority

Scheduler

Output
port

IR does not increase
the worst latency of

the FIFO system.

Flows from a same
input port remain

FIFO in a node.

IR architecture

Minimal
IR

Flow
π-regular FIFO

system S

• Regulation on Flow aggregate
• ATS
• FAIR (Flow aggregate & IR)

• At “aggregation domain (AD)” boundaries
• FA is of flows with same path in AD
• IR per FA
• Generalized ATS
• Shown to work better than ATS [FAIR]

• PFAR
• Other possible solutions

Latency guarantee framework

Implementation practice of FAIR
at an AD ingress

IR per
FA

output port
module

High
priority
queueIR per

FA
Low

priority
queue

SP or Fair
Scheduler

Output
port

Generalized
FIFO system

Generalized IR architecture

Latency guarantee framework

• Regulation on Flow aggregate
• ATS
• FAIR
• PFAR (Port-based FA regulation)

• At every node or at critical links to break the cycle
• FA is of flows having same input/output port of a

node
• Regulate FA, not individual flow, with {∑B, ∑r}
• Best scalability: no need to maintain individual

flow states
• Shown to work almost as well as ATS [ADN].

• Other possible solutions

Implementation practice of PFAR

7

PFAR
per

input
port

output port
module

High
priority

FIFO
queue

Low
priority
queue

Strict
priority

Scheduler

Output
port

PFAR
per

input
port

Latency guarantee framework

• Regulation on Flow aggregate
• ATS
• FAIR
• PFAR
• Other possible solutions

• More strict regulation than the TSpec (e.g.
regulate with {L, ∑r} per input port, at every
node ≈ Slotted operation)

• Using the forwarding metadata (e.g.
unsynched source timestamp) in the
packets to reproduce the initial inter-arrival
process (e.g. at every node)

8

Implementation practice of {L, ∑r} regulator

{L, ∑r}
regulator
per port

output port
module

High
priority

FIFO
queue

Low
priority
queue

Strict
priority

Scheduler

Output
port

{L, ∑r}
regulator
per port

Jitter guarantee framework
• Jitter guarantee ≈ Reproducing the inter-

arrival process with the inter-departure
process of a network.

• With a latency guaranteed network, time-
stamping and buffering at the network
boundary:

• E2E jitter is upper bounded.
• It can be set to zero.

• ‘E2E buffered latency’ (ci – ai) is also
upper bounded.

• Moreover, we can control the jitter
bound. We can even have zero jitter, with
E2E buffered latency bound ≈ 2* E2E
latency bound [BN].

Source

Network with E2E latency
upper bound guarantee

DestinationBuffer

an

bn

cn

Time-
stamper

9

an : the arrival time of nth packet of a flow

Thank you

• Please take a look at

https://datatracker.ietf.org/doc/draft-joung-detnet-asynch-detnet-framework/

• Comments and Questions are welcome!

10

