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Scope
• It specifies the framework for both latency & jitter bounds guarantee in large scale networks 

with dynamic sources with arbitrary input patterns.
• large scale: 

• arbitrary topology, may include loops

• link capacity & propagation delay vary

• dynamic sources: flows join and leave
• arbitrary patterns: aperiodic or random packet arrivals. Only constraint is the TSpec {burst, rate}.
 Similar to the Internet

• Overall framework
• Avoid time-synchronization
• Decouple the latency guarantee problem from the jitter guarantee problem
• Latency guarantee

• Regulators

• Jitter guarantee
• Latency guaranteed network & Time-stamping & Buffering
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Problem statement

• The Internet already has the DiffServ framework for latency guarantee.
• Provided that in every link the total high priority traffic rate does not exceed the link capacity

• Resource reservation & Admission control mandatory

• It works well for lightly utilized networks.

• However, when utilization is medium to high; the burst accumulates.
• Assume n identical flows coming into a switching node, each with {B, r}

• At every node the burst accumulates as much as
• If a shared queue with a FIFO scheduler  Bout ≤ B+(n-1)B*r/C.  (Note that nr/C is the utilization.)

• If queue per flow with a packet-based fair scheduler  Bout ≤ B+(n-1)L*r/C.  (L is the max packet length.)

• The flows are now with {Bout, r}.

• This accumulation continues as flows travel.

• A cycle in network topology acts as a feed-forward loop.  “Burst explosion”
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Solution candidates

• Solutions to mitigate burst accumulation:
• Slotted operation (without strict synchronization)
• Packet metadata based forwarding (e.g. Latency budget, etc.)
• Flow regulation: Forcing a flow into its initial shape {B, r} 

• Their shortcomings
• The slotted operation or the cyclic queuing, strict or loose, can be seen as an example 

of regulation with {B, r, and the start phase}. However,
• it requires the slot planning and the source cooperation, 

• the cycle-time can be as large as the accumulated burst size, because it may have to accommodate all 
the other flows in its path.

• Metadata-based forwarding 
• may not disperse the accumulated burst. 

• requires lookup/decide/queue-reorder/overwrite in line speed.

• Regulation
• requires flow state maintaining. We argue this can be overcome with flow aggregation.
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Latency guarantee framework

• Regulation on Flow aggregate
• ATS 

• At every node
• IR per input port
• IR has only one queue, but still 

requires individual flow states

• FAIR
• PFAR
• Other possible solutions

Implementation practice of ATS
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• Regulation on Flow aggregate
• ATS
• FAIR (Flow aggregate & IR)

• At “aggregation domain (AD)” boundaries
• FA is of flows with same path in AD
• IR per FA 
• Generalized ATS
• Shown to work better than ATS [FAIR]

• PFAR
• Other possible solutions

Latency guarantee framework
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Latency guarantee framework

• Regulation on Flow aggregate
• ATS
• FAIR
• PFAR (Port-based FA regulation)

• At every node or at critical links to break the cycle
• FA is of flows having same input/output port of a 

node
• Regulate FA, not individual flow, with {∑B, ∑r}
• Best scalability: no need to maintain individual 

flow states
• Shown to work almost as well as ATS [ADN].

• Other possible solutions

Implementation practice of PFAR
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Latency guarantee framework

• Regulation on Flow aggregate
• ATS
• FAIR
• PFAR
• Other possible solutions

• More strict regulation than the TSpec (e.g. 
regulate with {L, ∑r} per input port, at every 
node ≈ Slotted operation)

• Using the forwarding metadata (e.g. 
unsynched source timestamp) in the 
packets to reproduce the initial inter-arrival 
process (e.g. at every node)
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Jitter guarantee framework
• Jitter guarantee ≈ Reproducing the inter-

arrival process with the inter-departure 
process of a network.

• With a latency guaranteed network, time-
stamping and buffering at the network 
boundary:

• E2E jitter is upper bounded. 
• It can be set to zero.

• ‘E2E buffered latency’ (ci – ai) is also 
upper bounded.

• Moreover, we can control the jitter 
bound. We can even have zero jitter, with 
E2E buffered latency bound ≈ 2* E2E 
latency bound [BN].
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an : the arrival time of nth packet of a flow



Thank you

• Please take a look at 

https://datatracker.ietf.org/doc/draft-joung-detnet-asynch-detnet-framework/ 

• Comments and Questions are welcome!
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