IPv6 Options for Cyclic Queuing and Forwarding Variants

draft-yizhou-detnet-ipv6-options-for-cqf-variant-00

Yizhou Li (Presenter)

Shoushou Ren Guangpeng Li Fan Yang Jeong-dong Ryoo Peng Liu

Fundamental CQF has attractive "simplicity" features for wider deployments

- 2-buffer per port. Input and output swap once every cycle interval Tc.
- E2e time taken: Min: (h-1) Tc +DT* Max: (h+1) Tc
 - (*): DT = dead time (revisit later). very small in fundamental CQF
- Attractive "simplicity" features:
 - Simple calculable latency bound: only relevant to Tc and h, ≈ h*Tc
 - Simple maintenance: no perstream per-hop state maintenance

0 - Tc

CQF has potentials for wider deployments - 1

- Wider deployment requires supporting one or combination of the followings:
 - Smaller e2e latency bound (1)
 - Larger number of hops (2)
 - Longer links (3)
 - Larger processing time variance as node type diversity increases (4)
- Recall that CQF latency bound \approx h*Tc
- Higher speed link provides the potential to reduce Tc, even with greater value of h
 - allow at least one 1500B/max size packet to be sent within Tc
 - With increasing of link speed, the same amount of data can be transmitted within a smaller cycle time
 - Counteract larger h

Cycle Time (µs)	Buffer Size per Cycle (Byte)				
	Link bandwidth				
	100Mbps	1Gbps	10Gbps		
1	12.5	125	1250		
<mark>1.2</mark>	15	150	<mark>1500</mark>		
2	25	250	2500		
4	50	500	5000		
10	125	1250	12500		
<mark>12</mark>	150	<mark>1500</mark>	15000		
<mark>120</mark>	<mark>1500</mark>	15000	150000		

Cycle time decreasing: 100x μs -> 10x μs -> few μs

• Potentials for item (1) and (2), next page for item (3) & (4)

Fundamental CQF support req (3) &(4) but with low utilization

- Revisit DT (dead time): the last byte sent by node A in cycle (i-1) has to be ready for sending at node B before the start of cycle i.
- DT is at least: max propagation delay + max processing delay at the next node + max other time variations.
- The longer the propagation or processing delay, the larger the DT.
- DT eats up cycle interval Tc when Tc is small (both values < 1ms): result in low utilization or impractical in extreme case (consider prop delay > Tc)
- Hard for fundamental CQF:
 - Shorter Tc for lower e2e latency bound
 - Larger DT for longer link and/or processing time
 - Smaller ratio of DT/Tc for better utilization

Figure 2: Fundamental Two Buffer CQF

CQF Variant (>2 buffer) has the potential to support (3) & (4)

- A straightforward variant to fundamental 2-buffer CQF:
 - Configuration is similar
 - Can easily deduce from fundamental CQF without the rigid requirement to produce new standard
- More than 3 buffer is required when the receiving time spans over two cycle interval boundaries.
- In general, it is feasible.

Figure 3: Three Buffer CQF

A closer look at the CQF variant: a time ambiguity window exists

- Keep DT small
- Time ambiguity window exists for two consecutive cycles
- The larger the time variance and/or the smaller the DT, the larger the ambiguity window
- So setting the time demarcation to differentiate pkts from two consecutive cycles is impractical (see left)
- Way out: pkt carry cycle id metadata at output to help the downstream node determine the correct buffer to put it in

Summary

- CQF has attractive features and potentials for wider deployments
- CQF variant is a straightforward extension from fundamental CQF:
 - use more than two buffers
 - some extra configurations would be required
 - Other variants may exist
- A missing part in current CQF variant: remove the ambiguity when identifying the packets from the upstream's two consecutive cycles
- IPv6 options to carry cycle id metadata is proposed.

++
DetNet IP Packet
++
other EHs
++
IPv6 Hop-by-Hop Ex Hdr
(CQF-Variant Option)
++
IPv6 Header
++
Data-Link
++
Physical
++

++		
DetNet IP Packet		
other EHs including RH		
IPv6 Destination Ex Hdr (CQF-Variant Option)		
IPv6 Header		
 Data-Link		
Physical		
++		

0	1	2	3		
01234567	8 9 0 1 2 3 4 5 6 7 8 9	0123456789	01		
+-					
Option Type Opt Data Len E Flags Cycle Id					
+-+-+++++++++++++++++++++++++++++++++++					
 • 					
~ (64-bit	extension if flag E-bi	t is 1)	~		
 • 					
+-+-+++++++++++++++++++++++++++++++++++					
Figure	5: CQF-Variant Option	Format Example			

Solicit feedback

- Is it a good way to address the "ambiguity" issue in order to facilitate the increasing demand to use CQF and its variants in the wider scenarios?
- IPv6 options, whether and/or how to collaborate with other WG (6man)