IP-VPN with IP/UDP-payload-transportation

draft-zzhang-bess-ipvpn-payload-only
draft-zzhang-pals-pw-for-ip-udp-payload

Jeffrey Zhang, Keyur Patel
IETF114
Use Case: Mobile User Plane Transportation

• For 5G, user (data) plane is via GTP-U tunneling over an IP VPN
 • Referred to as N3VPN in this document/presentation
 • IP VPN is used so that a converged transport infrastructure can be used for:
 • N3 and other mobile related transportation, and,
 • Non-mobile related transportation (e.g., wireline IP/E-VPN including mobile DN)

• The transport infrastructure is MPLS or SRv6
 • MPLS/SRv6-transporting-GTP
SRv6-replacing-GTP

• Draft-ietf-dmm-srv6-mobile-uplane replaces GTP with SRv6
 • Based on N2/N4-signaled GTP parameters – “under the hood”
 • Between NFs (e.g., gNB/UP), or,
 • Between GWs attached NFs
 • N3VPN PEs are natural GWs
 • GTP traffic reconstructed by the N3VPN PEs
 • <IPv6 header, UDP header, GTP header> replaced with SRv6 header or vice versa
 • This is acceptable to some operators because all elements are under the same operator control

• Advantages
 • Traffic steering for SR-TE, SFC purposes
 • BW savings
 • No <IPv6 header, UDP header, GTP header> needed in the transport infrastructure
- Information in GTP header is moved into SRv6 header
- SRv6 header could be an MPLS label stack as well
 - In this case, GTP header is transported as is
 - For MPLS operators
 - SR-TE, SFC, even more BW savings
MPLS-replacing-GTP

• For the same consideration, GTP-U can be replaced by MPLS tunnels
 • MPLS-replacing-GTP
• A GW removes the <IP header, UDP header> and transport the GTP header (plus its payload) with a label stack
• Inner label has the semantics of “put on <IPv6 hdr, UDP hdr> and route in a VRF”
 • A PW that only transports UDP payload
 • A control word is used to prevent transit routers from mistaking payload as IP
Transport IP/UDP payload-only in IP-VPN

• Generalized from “PW transporting UDP payload”
 • It could be that only IP header is removed (and then re-added)

• Applicable for the following situations
 • Traffic are mostly among certain hosts
 • It’s acceptable for packets to be reconstructed by transit devices

• An IP-VPN can transport traffic in both ways
 • Some traffic transported the traditional way with original IP/UDP header
 • Some traffic transported with just IP header removed
 • Some traffic transported with both IP/UDP header removed
BGP Signaling

• New SAFI
 • NLRI encodes <Label, RD, DST addr, SRC addr, DST UDP, SRC UDP>
 • RD could be the same as the RD for VPN-IP routes
 • Trailing fields of <SRC addr, DST UDP, SRC UDP> can be wildcards
 • Updates carry the same RTs as for VPN-IP routes

• Advertised by egress PEs
 • Egress PEs create forwarding state to reconstruct IP header for incoming traffic with matching label
 • If advertised SRC UDP/addr is wildcard, locally configured SRC UDP/addr is used
 • Ingress PEs create forwarding state to strip the IP/UDP header from matching traffic and send with corresponding label
 • If DSP UDP is wildcard, only IP header is stripped
Next steps

• Comments appreciated!
• Do we want to consider other IP payload types?
 • Not just UDP