Bundle Protocol Version 7
Administrative Record Types Registry

IETF 114 DTN WG

Brian Sipos
JHU/APL
Need For this Updating Document

• RFC 7116 created a sub-registry of Administrative Record Types
 - This table is missing the CCSDS Aggregate Custody Signal allocation

• RFC 9171 defines an explicit table of Admin. Record Types
 - Other pre-existing IANA sub-registries with BPv6-7 overlap were updated to include a “Bundle Protocol Version” column, which disambiguates and allows for overlapping registrations

• This proposed document updates the Admin. Record Types sub-registry to be similar to the others with BPv6-7 overlap
 - It makes an explicit reservation of code point zero
 - It adds a high-valued reservation for private or experimental use in the 32-bit-encoded range. This leaves the full 16-bit space available for BPv7 use.

• No change is made to the “Specification Required” registration procedure
 - An existing comment #1 recommends to make this “no change” explicit
What the Changes Look Like

<table>
<thead>
<tr>
<th>Bundle Protocol Version</th>
<th>Value</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,7</td>
<td>0</td>
<td>Reserved</td>
<td>[RFC7116] [This specification]</td>
</tr>
<tr>
<td>6,7</td>
<td>1</td>
<td>Bundle status report</td>
<td>[RFC5050] [RFC9171]</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>Custody signal</td>
<td>[RFC5050]</td>
</tr>
<tr>
<td>6,7</td>
<td>3</td>
<td>Unassigned</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>Aggregate Custody Signal</td>
<td>[CCSDS-BP]</td>
</tr>
<tr>
<td>6,7</td>
<td>5-15</td>
<td>Unassigned</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>16-65535</td>
<td>Unassigned</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>greater than 65535</td>
<td>Reserved for Private or Experimental Use</td>
<td>This specification</td>
</tr>
</tbody>
</table>

Note: The table continues with entries for Bundle Protocol Version 8 and 9, but these are not visible in the image.
Next Steps

• Requesting the DTN WG to adopt this document
• This would eventually be in a cluster with the ACME document registering the new code point
• The BIBE document would also eventually need code points
BPSec COSE Context

IETF 114 DTN WG

Brian Sipos
JHU/APL
Background

• BPSec and its Default Security Context are usable but intentionally limited in scope:
 - A limited number of symmetric-keyed encryption and MAC algorithms.
 - Defines a variable additional authenticated data (AAD) binding to the block/bundle.
 - No explicit key identifiers are available.

• For internet-facing nodes, possibly as subnetwork gateways, there is a need for PKI-integrated security.
 - This was indicated by IETF SECDIR review of BPSec draft and also discussed as a near-future need by NASA DTN planning group.

• Don’t want to reinvent the wheel, and CBOR Object Signing and Encryption (COSE) already provides syntax and semantics for current and future PKI security.
 - Even COSE (with a restricted profile as used here) still provides a lot of variability, in the same sense that TLS or S/MIME does, which must be managed out-of-band (e.g. don’t use ECC algorithms if security acceptors can’t support it).
 - Planning is already underway for hybrid public key encryption (HPKE) and post-quantum cryptography (PQC).
Proposed COSE Context Contents

• One BPSSec context codepoint defined to use in BIB and BCB.

• Parameter and result types defined for each BPSSec block type:
 - AAD scope parameter (same semantics as Default SC)
 - De-duplicated last-layer COSE header parameters.
 - Integrity results (COSE MAC and Signature)
 - Confidentiality results (COSE Encrypt using AEAD)

• Public keys in context parameters to de-duplicate data.
 - Potential future extensions could provide additional supporting data (e.g. OCSP stapling).

• Full COSE messages contained in each target's result.
 - Reuse COSE message tags as result type codes.
 - Allows an application to use any current or future COSE algorithm types (and combinations).
 - Allows multiple recipients for a single security block (both BIB and BCB).
 - Interoperability requirements are defined in a COSE Profile (next slide).
Interoperability Profile

- Required algorithms for AES-GCM-256, AES key-wrap, and HMAC-SHA2-256.
- Recommended algorithms for Elliptic Curve, Edwards Curve, and RSA signing and key-wrap/key-generation.
- Additional public key material can be included in an “additional header map”, applying to all results in the block.

<table>
<thead>
<tr>
<th>BPSeq Block</th>
<th>COSE Layer</th>
<th>Name</th>
<th>Code</th>
<th>Implementation Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrity</td>
<td>1</td>
<td>HMAC 256/256</td>
<td>5</td>
<td>Required</td>
</tr>
<tr>
<td>Integrity</td>
<td>1</td>
<td>ES256</td>
<td>-7</td>
<td>Recommended</td>
</tr>
<tr>
<td>Integrity</td>
<td>1</td>
<td>EdDSA</td>
<td>-8</td>
<td>Recommended</td>
</tr>
<tr>
<td>Integrity</td>
<td>1</td>
<td>PS256</td>
<td>-37</td>
<td>Recommended</td>
</tr>
<tr>
<td>Confidentiality</td>
<td>1</td>
<td>A256GCM</td>
<td>3</td>
<td>Required</td>
</tr>
<tr>
<td>Confidentiality</td>
<td>2</td>
<td>A256KW</td>
<td>-5</td>
<td>Required</td>
</tr>
<tr>
<td>Confidentiality</td>
<td>2</td>
<td>ECDH-ES + A256KW</td>
<td>-31</td>
<td>Recommended</td>
</tr>
<tr>
<td>Confidentiality</td>
<td>2</td>
<td>ECDH-SS + A256KW</td>
<td>-34</td>
<td>Recommended</td>
</tr>
<tr>
<td>Confidentiality</td>
<td>2</td>
<td>RSAES-OAEP w/ SHA-256</td>
<td>-41</td>
<td>Recommended</td>
</tr>
</tbody>
</table>

Table 5: Interoperability Algorithms
Next Steps

• This is not intended to replace or supersede existing symmetric-keyed BP-SEC interoperability contexts in RFC 9173.

• The point here is to allow BP-SEC in a PKIX environment in the very near term.
 - COSE is a known quantity with existing coding and processing tools.
 - Identifying bundle security purpose and validation of a Node ID within a PKIX certificate are already defined in RFC 9174.
 - An extension to ACME to automate validation of a Node ID is under review.

• Known changes needed:
 - #10 Align AAD encoding with RFC 9173 for consistency.

• Some secondary questions remain, for example:
 - How does a security acceptor handle a BIB signed by a key with a certificate for a different Node ID than the security source? Base BP-SEC doesn’t really deal with identity/authentication logic.
 - Is there a more strict minimum COSE header content? S/MIME makes requirements about full certificate presence, while the current draft allows an “x5t” thumbprint as a placeholder for compact encoding.
Neighbor Messaging and Discovery

IETF 114 DTN WG

Brian Sipos
JHU/APL
Background

• Current WG charter includes a “Neighbor/Peer Discovery Protocol” milestone

• Existing IRTF experimental draft for IPND is narrow in scope and not extensible to different transport/network or to have security

• An existing need for authenticated discovery is present in discussions of future automation
 - Use cases in Step 3 and 4 of DNAC presentation (CL#19-7832.pdf)

• Similar concepts already exists in MANET NHDP, which include
 - Abstract messaging over multicast UDP/IP
 - Hello message definition with network address and route TLVs
 - Integrity and group authentication with MAC TLV

• Much of the proposed infrastructure already exists in the BPSec/BPA/CLA stack
Proposed Neighbor Messaging Stack

Neighbor “Hello” Message

- COSE?
- BPSec Integrity (PKIX signing)
- Bundle Protocol (neighbor destination)
- Other CLs
- UDP/IP CL (multicast destination)

Legend:
- Existing
- New work
- Dependency
Neighbor Messaging Details

- A “neighbor” is a one-hop bundle destination
- A “neighbor bundle” is a bundle addressed to a sentinel EID
 - In the same way “dtn:none” is the anonymous source, this proposes “dtn:~neighbor” as an non-specific destination EID
- The payload of a neighbor bundle is a CBOR map with labels defined in a registry, similarly to existing protocols (e.g. COSE, CORECONF)
 - MANET messaging (RFC 5444) also uses similar logic but different encoding
- Allows reuse of existing BP and BPSec tools:
 - Neighbor bundles can be transported over any CLA (or multiple if useful)
 - BPSec allows easily adding security that IPND lacks and other protocols bolted-on later in their design
 - Bundle lifetime, Previous Node, and Hop Count control distribution and retention of the individual message (similar to MANET message parameters)
Neighbor Hello Message

• The Hello message is equivalent to a MANET NHDP or IRTF IPND beacon
 - It is sent unsolicited, based on some long-period timer or link status event
 - It is encoded as a Neighbor Message (CBOR map)

• By definition a bundle with a Hello message has a one-hop limit and a last hop Node ID identical to its source Node ID
 - Other neighbor message types can have similar restrictions

• The Hello identifies aspects of the bundle source which are useful to other members of its “local” one-hop overlay network:
 - Any alias Node IDs of the node (if it has other names)
 - Cryptographic binding of the Node IDs (e.g. PKIX end-entity certificate)
 ▪ Including this in the payload instead of BIB allows bundle fragmentation
 ▪ Multiple certificates can be present, separating signing and encryption keys
 - What CLs are available on the node, and what is their coarse schedule
 ▪ This includes both passive (listening) and active (sending) CLAs
 - Which one-hop neighbors are already known to the sending node
 - Others TBD with private/experimental reservation
 - Could include the concept of an EID pattern for route advertisement
The dtnc:\~neighbor Destination EID

• This well-known scheme specific part (SSP) extends the existing EID definition from “dtnc:none”
 - This EID can have a similar compressed encoding from text “\~neighbor” to integer value

• This well-known EID will be handled
• This SSP conforms to existing URI handlers as a path-only URI
• The tilde conforms to existing “dtnc” scheme logic for multicast service naming
Messaging Security

- The abstract concept requires no specific security context(s) but certain capabilities will constrain what contexts are useful.

- There are currently no defined BPSeq contexts which allow signing with asymmetric keys (e.g. within a PKI)
 - There is a proposal for a COSE Security Context which would allow PKIX signature and reference to end-entity certificate by thumbprint.

- The BIB signing the primary+payload blocks can also function as authentication if tied to an identity (e.g. a PKIX certificate chained to a trusted CA)
 - The CA vouches for the certificate’s subject-alternative-name bundleEID.
 - The public key in the certificate verifies the BIB signature.
 - The BIB covers the primary block and its Source Node ID to authenticate it.
 - Also the BIB covers the payload block to ensure its integrity.
Neighbor-Reaching Convergence Layers

• Unlike IPND, this proposed stack uses bundle framing so can be transported over any CL available to the BPA

• Some link-specific unicast CLs can use neighbor Hello messaging as a handshake or keepalive mechanism
 - For example, in a closed network known to use LTPCL a newly available peer (found via DLEP, NHDP, OLSR, etc.) can be probed with a Hello message over LTP

• Other broadcast/multicast CLs can use Hello messaging for unsolicited node discovery
 - This would make use of a Proposed Standard UDPCL (mentioned to the WG in earlier IETFs) that is compatible with the IRTF Experimental UDPCL but with some aspects constrained for interoperability
Next Steps

• Requesting the DTN WG to consider this concept and related documents:
 - A very boilerplate neighbor messaging draft exists on Github, hasn’t been touched for over a year
 - BPSec COSE Context for PKIX signing and authentication
 - UDPCL standardization for multicast transfers and bundle version detection