LEO satellite networking-An Infrastructure for Future Internet

For IETF114-HotRFC

Lin Han Futurewei Technologies, Inc., USA

NTN Integration – Future Internet, Global Access with higher bandwidth and shorter latency

LEO satellite network (with ISL) is key infra due to its lowest altitude

- Shorter Latency
- Higher Bandwidth
- Lower global coverage cost
- Lower Launching cost
- Lower Operation/management cost
- Lower power requirement for communication for both satellite and ground
- Lower Ground station and UE cost

As of 2021, 37% population cannot access Internet ITU: https://www.itu.int/en/ITU-D/Statistics/Pages/facts/default.aspx

Shorter latency from LEO satellite network: Mark Handley, University College London, "Delay is Not an Option: Low Latency Routing in Space"

Jiajia Liu, Yongpeng Shi, Zubair Md. Fadlullah, and Nei Kato. 2018. Space-Air-Ground Integrated Network: A Survey. IEEE Communica-tions Surveys & Tutorials 20 (2018), 2714–2741

LEO satellite dynamics – Challenging the current IP networking technologies

- LEO satellites move at ~7.x km/s with ~100min period
- 50% satellites move on different direction with another 50% satellites and form a dynamic interleaved network
- Earth is self-rotating at ~463m/s

- links between satellites and ground station (GS) will flip every ~5min for LEO satellites (~550 km altitude), distance keeps changing
- One satellite has multiple GS connected
- One GS has multiple satellites connected
- Huge number of Sat-GS links (> million)

- ISL distance for satellites on adjacent orbits keep changing
- ISL direction swaps on polar areas

Simulation is by savi: https://savi.sourceforge.io/

IETF works for Satellite

History and Current Work

- IP over Satellite Links (ipsat) WG: IP over GEO, closed for unknown reason, and no output.
- Delay/Disruption Tolerant Networking (DTN WG): for GEO and interplanetary communication, not fitting for LEO (due to short delay, less tolerance for disruption)
- L4 work
 - TCP Over Satellite (TCPSAT WG)
 - ➢ RFC2488, RFC2760,
- Network Coding for Satellite System: RFC8975
- SATCOM side meeting on IETF111
- Current drafts related to satellite network not belonging to any existing WG:
 - draft-li-istn-addressing-requirement
 - draft-jliu-istn-savi-requirement
 - draft-lai-bmwg-istn-methodology
 - draft-lhan-problems-requirements-satellite-net
 - draft-retana-lsr-ospf-monitor-node
 - draft-lhan-satellite-semantic-addressing
 - draft-lhan-satellite-instructive-routing
 - draft-kw-rtgwg-satellite-rtg-add-challanges-00

IP networking for LEO?

- Why L3 networking is needed (more to see back up slides)
 - Large scale network with over 10k nodes and million links
 - Interworking with other networks in Internet
 - 3GPP expected satellite network as part of wireless access or back haul, must support IP and 5G functions (i.e, UPF distribution in satellites)
- Problems for current IP networking for LEO
 - Addressing
 - Routing
 - Traffic Engineering
 - Multi-path
 - Mobility
 -

What next

- We will have side meeting at IETF 115 (London)
- Reach out to me lin.han@futurewei.com or send to etosat@ietf.org, if you want to present something in the side meeting; or want to discuss details; or want to collaborate.

Thanks

Backup Slides

- LEO satellite network evolution
- Examples of LEO satellite network in service or in research
- 3GPP works for satellite network, IP networking is fundamental for the perspective of 3GPP NTN integration.

LEO Satellite network evolution

۲

•

•

۲

۲

•

- LEO Satellite network integrated with terrestrial network, HAPS, MEO, GSO
- Vertical applications on satellites

Example: StarLink

- Private technologies
- IP-less, pack overhead and complexity, (https://www.alphr.com/space/1008632/Elon-Musk-SpaceX-Starlinkinternet)
- Started to test ISL for polar area users (https://www.connectivity.technology/2022/02/laser-inter-satellitelinks-lisls-in.html)

Example: Tiansuan Constellation (天算星座)

- <u>http://www.tiansuan.org.cn/index.html</u>
- <u>http://sguangwang.com/PDF/TiansuanFinal1203.pdf</u>
- open satellite research platform, total 330 LEO satellites (two launched)
- Experiment the advanced technologies for 5G and beyond

Fig. 2: Cognitive Service Architecture of 6G Core Network.

Figures are from above paper

Example: Application for LEO satellites – Edge Computing in Space

https://www.mdpi.com/1424-8220/19/20/4375

3GPP: Historical and current works

Rel	TR/TS number	TSG	Title	Status
15	TR.38.811	RAN	Study on NR to support NTN	Completed
16	TR 22.822	SA	Study on using satellite access in 5G	Completed
	TR 23.737	SA	Study on architecture aspects for using	Completed
	(phase-1)		satellite access in 5G	
	TR 23.737	SA	Integration of satellite components in the	Completed
17	(phase-2)		5G architecture	
	TR 28.808	SA	Study on management and orchestration aspects with integrated satellite components in a 5G network	Completed
	TR 38.821	RAN	Solutions for NR to support NTN	Completed
18	5GSATB	SA	5G system with satellite backhaul	In progress
	5GSAT_Ph2	SA	5G Satellite Access Phase 2	In progress

3GPP: Two typical use case and variations for LEO satellite network

LEO satellite network as 5G Access Network

- gNB on satellite
- DU and CU can be separated on satellite and ground respectively
- CN can be completely or partially (i.e, UPF) on satellite
- Radio: Based on 5G NR for Ku, Ka band
- Architecture: SBA with enhancements
- Satellite network:
 - IP network to support 5G functions and interworking with other network in Internet

LEO satellite network as 5G Back haul

- gNB on ground
- CN can be completely or partially (i.e, UPF) on satellite
- Radio: 5G NR or other technologies
- Satellite network:
 - If want to support 5G functions and interworking with other networks in Internet, must be IP network

3GPP (TR38.821) : Satellite-based NG-RAN architectures, gNB on satellite

3GPP (TR38.821) :

Satellite-based NG-RAN architectures, gNB-DU and gNB-CU separated

• Satellite with regenerative payload (gNB-DU on board, gNB-CU on ground)

- IP networking is key requirements for infrastructure
- Higher requirement for IP in bandwidth and latency

3GPP(TR 23.700): Study on 5G System with Satellite Backhaul (Release 18, in progress)

Three Key Items KI#1: QoS control enhancements for dynamic satellite backhauling KI#2: Support of Satellite Edge Computing via UPF on board KI#3: Support of Local Data Switching via UPF on board

• IP networking is the fundament requirements for above support