Computing within

Barath Raghavan USC

Where Are We Headed?

What Can Be Done?

What Should Be Done?

HOW DO WE USE ENERGY?

WHAT ARE THE CONSEQUENCES?

Why do we use oil?

Easy to pump, transport, store Stable at useful temperatures Easily refined into numerous forms **High energy density**

"Chemical fertilizers (made from natural gas), pesticides (made from petroleum), farm machinery, modern food processing and packaging and transportation have together transformed a system that in 1940 produced 2.3 calories of food energy for every calorie of fossil-fuel energy it used into one that now takes 10 calories of fossil-fuel energy to produce a single calorie of modern supermarket food."

Farmer in Chief, Pollan

heart valves \bullet asphalt \bullet crayons \bullet parachutes \bullet phones \bullet dishwashing liquid \bullet IV drips • tape • pop tarts • smoke detectors • strollers • candles • chicken nuggets • antiseptics • credit cards • deodorant • tupperware • ziplock bags • panty hose • air conditioners • shower curtains • shoes • volleyballs • floor wax • lipstick • synthetic clothing • coal extraction • bubble $gum \bullet car$ bodies • tires paint • pens • markers • hair dryers • ammonia • eyeglasses • contacts • insect repellent • pesticides • hair coloring • movie film • ice chests • loudspeakers • basketballs • footballs • combs/brushes • linoleum • fishing rods • rubber boots • water pipes • motorcycle helmets • fishing lures • petroleum jelly \bullet lip balm \bullet antihistamines \bullet golf balls \bullet dice \bullet insulation \bullet trash bags • rubber cement • cold cream • umbrellas • ink • hearing aids • CDs/DVDs mops

 bandages

 artificial turf

 cameras

 glue

 shoe polish

 caulking

stereos \bullet flooring \bullet toilet seats \bullet car batteries \bullet refrigerators \bullet carpet \bullet pharmaceuticals • solvents • nail polish • lighters • balloons • artificial flavoring • perfumes • toothpaste • toothbrushes • plastic forks • hair curlers • plastic cups/lids • electric blankets • oil filters • light switches • guitar strings • skis • upholstery • thermoses • plastic chairs • clingwrap • rubber bands • computers • gasoline • diesel • kerosene • heating oil • motor oil • jet fuel • bunker fuel

OIL DEPLETION

EFFICIENCY?

CLIMATE CHANGE

What Do Degrees °C Mean?

1 degree Ice-free arctic summer, polar ecosystem damage; coral reef bleaching; stronger hurricanes; erratic weather

2 degrees Lots of problems; 10-15% species extinction; most coral reefs bleached; permafrost melt begins; limit of no-return

3 degrees 20-80% loss of Amazon rainforest; extinction risk for polar species, 20-30% species extinction; continued permafrost melt; 1.1-3.2 billion more people with water stress; widespread coral loss

4 degrees End of ocean calcification; major global extinctions; decrease in food production; near-total deglaciation

5 degrees

Many unknown impacts

[IPCC]

"The analysis within this paper offers a stark and unremitting assessment of the climate change challenge facing the global community. There is now little to no chance of maintaining the rise in global mean surface temperature at below 2°C, despite repeated high-level statements to the contrary. Moreover, the impacts associated with 2°C have been revised upwards (e.g. [20,21]), sufficiently so that 2°C now more appropriately represents the threshold between dangerous and extremely dangerous climate change."

Beyond 'dangerous' climate change, Anderson and Bows (2011)

Change behavior

(use less)

Change sources

(find more)

	abundance	difficulty	intermittency	demonstrated	electricity	heat	transport	acceptance	backyard?	efficiency	Score
Solar PV						via electric	via electric				5
Solar Thermal			some storage				via electric				5
Solar Heating			some storage								4
Hydroelectric			seasonal flow			via electric	via electric	not universal	micro-hydro		4
Biofuel/Algae		gunk/disease		some R&D	mis-spent				small scale?		4
Geothermal/Electricity	hotspots						via electric				4
Wind						via electric	via electric	noise, birds, eyesore			3
Artificial Photosynth.		catalysts		active devel.	mis-spent				?		3
Tidal			daily/monthly variations			via electric	via electric				3
Conventional Fission		high-tech					via electric	waste/fear			2
Uranium Breeder		high-tech		military			via electric	proliferation			2
Thorium Breeder		high-tech					via electric	waste/fear			2
Geothermal/Depletion		deep drill		rarely?				deep wells	impractical		2
Geothermal/Heating		deep drill		rarely?				deep wells	impractical		1
Biofuel/Crops	food cellulosic	annual harvest	seasonal	ethanol, etc. R&D effort	mis-spent			food/land competition	small beans		1
OceanThermal		access/ maintenance				via electric	via electric				1
Ocean Current		access/ maintenance				via electric	via electric				1
Ocean Waves			storms/lulls	many one-off designs		via electric	via electric	eyesore			1
D-T Fusion	lithium	future-tech					via electric	trit/neutron contamination			1
D-D Fusion		farther future					via electric				1

[Murphy]

	abundance	difficulty	intermittency	demonstrated	electricity	heat	transport	acceptance	backyard?	efficiency	Score
Petroleum	for now	2									8
Natural Cac	for now						buses, trucks			for heat	Q
	IOT HOW	I HOW				via electric			elec/transport	0	
Coal fo	for now						via electric				7
							(and trains?)				

[Murphy]

I was promised a Mr. Fusion

Power Profile for 2030-2035 [Griffith09]

Source (New capacity)	How Much? (New capacity in 2030-2035 mix)	How Fast? (Manufacturing rate required, sustained over 20 years)			
Solar PV	2 TW	100 m² photovoltaic / sec			
Solar Thermal	2 TW	50 m ² mirrors / sec			
Wind	2 TW	12 x 100m turbines / hour			
Nuclear	3 TW	3 x 1GW plants / week			
Geothermal	2 TW	3 x 100MW turbines / day			
Biofuel	0.5 TW	1250 m ³ oil algae / sec			
New Generating Capacity for 2030-2035 [Griffith09]					

Source (New capacity)	How Fast? (Manufacturing rate required, sustained over 20 years)	Capacity (Optimistic estimate of manufacturing potential)
Solar PV	100 m ² PV/sec	35 m² PV/sec
Solar Thermal	50 m ² mirrors/sec	large?
Wind	12 x 100m turbines/hr	5 turbines/hr
Nuclear	3 x 1GW plants/wk	0.5 plants/wk
Geothermal	3 x 100MW turbines/day	3 turbines/month
Biofuel	1250 m ³ oil algae/sec	2 m ³ oil algae/sec

Energy transition: ~20 year crash program required.

Crash program: ~50% short by 2030s.

Limits to Growth Scenario 1: Baseline, resource crisis

Limits to Growth Scenario 2: More resources, pollution crisis

"We are grossly wasting our energy resources and other precious raw materials as though their supply was infinite. We must even face the prospect of changing our basic ways of living. This change will either be made on our own initiative in a planned and rational way, or forced on us with chaos and suffering by the inexorable laws of nature."

Where Are We Headed?

What Can Be Done?

What Should Be Done?

Sustainable Computing

Computing for Sustainability Sustainable Computing

Computing for Sustainability

Agriculture

Transportation

Power Generation

Manufacturing

Consumption

Production

Finance

Governance

Culture

Perspective

Flexibility

Wisdom

"Not: Industry is the cause of all problems, or the cure. Nor: Government is the cause or the cure. Nor: Environmentalists are the cause or the cure. Nor: Any other group [economists come to mind] is the cause or the cure.

But: All people and institutions play their role within the large system structure. In a system that is structured for overshoot, all players deliberately or inadvertently contribute to that overshoot. In a system that is structured for sustainability, industries, governments, environmentalists, and most especially economists will play essential roles in contributing to sustainability."