
CArDS: Traffic Steering at L3 for Reducing Service 

Request Completion Times

Karima Saif Khandaker, Dirk Trossen, Ramin Khalili, Zoran Despotovic, Artur Hecker, 

Georg Carle



Problem of Runtime Scheduling

Consider execution of services in distributed (e.g., virtualized) service environments:

• A service, realized through a service instance, available in one or possibly more 
network locations

• Service transaction requires affinity to a service instance after the initial service request 
due to possible ephemeral state created

Problem: Find the ‘best’ service instance to serve the client’s transaction at runtime, while 
preserving the affinity after the decision has been made

Our Contribution: Compute-Aware Distributed Scheduling (CArDS), where ‘best’ is utilizing 
knowledge of the compute capabilities of individual service instances

1



System Overview

SR7

Client

Client

SR1

SR2

SR3

SR4
SR5

SR6

Client

• Geographically distributed sites
at which service instances (SIs) 
for a given service are deployed

• Clients issue service requests 
destined to a service identifier

• The incoming semantic router 
forwards service requests 
towards a suitable destination, 
e.g., one of the possibly many 
service instances.

• Performs an on-path 
forwarding decision 
compared to existing DNS+IP 
off-path systems

• Affinity is ensured by using IP 
locator for subsequent requests 
within same service transaction

Semantic 
Router

Forwarding
Node

Service instance 
for foo.com/bar

2



Compute-Aware Distributed Scheduling (CArDS)

SR7

Client

Client

SR1

SR2

SR3

SR4
SR5

SR6

Client

1 2

1

4

2

Semantic 
Router

Forwarding
Node

Service instance 
for foo.com/bar n # of compute units 

per service instance

1
2
3

5
6
7
8
9

10
Routing 
Identifier 
Interval

4

• Each service instance 
assigned (during 
orchestration) a normalized 
compute (resource) unit
(e.g., # cores, # threads)

• All compute units are 
flattened and joined in an 
identifier-specific routing 
identifier interval

• Distributed to all routers 
only once after placement

• Scheduling is now distributed 
(i.e., within each ingress 
router) round robin over the 
interval for each incoming 
service request

• Implementable at link speed, 
e.g., in P4

3



Implementation & Evaluation Setup

• Event-based simulator using custom Python libraries

• 5 sites with 4 servers each and 1 service instance per 
server

• Compute units assignment of instances defined at start

• 5 ingress semantic routers

• All service requests are to one service function only, 
sent as single packet requests (all requests of one 
service identifier)

• The network load is varied by configuring the total 
number of clients, distributed equally across 5 ingress 
semantic routers

• 100% workload is simulated using 1550 clients

• Main metric is mean request completion time (RCT) of 
service requests

4



Scenario 1a - Centralized vs Scaled Distributed Scheduling

• Aim: Observe the effects of distribution as well as scaling the number of distributed 
ingress semantic routers

• Idealized, centralized scheduler vs increasing # of distributed schedulers

• Observations: 
• Negligible effect of distribution on mean RCTs, which stays within reasonable bounds. 

• Only when load approaches maximum capacity, an increase in mean RCT observed

• This deterioration grows with the scheduling distribution scale, i.e. a 11% increase for 5
schedulers and 29% increase in RCT for 50 schedulers is observed

5



Scenario 1b - Scheduling to Instances vs Via Site-Local Load Balancer

• Aim: Observe effect of scheduling to a DC-ingress load balancer, compared to 
scheduling directly to instances

• Certain deployment scenarios may not want to expose the instances directly to network-
level routing but use DC-internal mechanisms instead

• In our evaluation, represented by simple, ‘random’ load balancer at each site ingress

• Observations: 
• Lack of compute awareness at the load balancers has significant impact on the mean RCT

• The impact increases with an increased network load

• With a network load as low as 30%, the mean RCT of scheduling to sites is almost double 
than that of directly scheduling to instances, while when the load is 80% of the compute 
resources, this grows to more than 100 times higher. 

6



Aim: Compare CArDS performance against other distributed scheduling mechanisms with respect to:
• factoring compute capabilities into scheduling decision

• performing scheduling at ingress nodes vs at sites

• the impact of the compute unit distribution across sites and instances within sites

Compared against:

• Random scheduler –
• positioned at ingress nodes

• compute-unaware

• performs random load balancing across sites: selects an instance uniformly at random from all the instances of 
the network 

• STEAM [1] –
• positioned at site-ingress; ingress nodes forward requests to sites uniformly at random

• compute-unaware

• uses load estimation and local instance state information in scheduling decision

Scenario 2 - Comparisons with Existing Network-level Solutions7

[1] M. Blocher, R. Khalili, L. Wang, and P. Eugster, “Letting off STEAM: ¨Distributed runtime traffic scheduling for service function 
chaining,”in IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 824–833, 2020.



• CArDS significantly reduces RCT in high load settings, i.e. > 80%

• CDF at 80% network load (1245 clients) shows:
• Random Scheduler - tail is very heavy, STEAM - comparatively lighter, but 

CArDS – very small tail 

CArDS able to improve on the average performance in terms of 
latency as well as significantly reduce the variance

Scenario 2a – Uniform CU Distribution Across and Within Sites8



Scenarios 2b & 2c – Imbalance of CU Distribution Across/Within Sites

2b - Imbalance across sites, uniform within site

• STEAM and Random Scheduler both performing very poorly compared 
to CArDS

• Lack of compute awareness + site selected uniformly at random by both

2c - Uniform across sites, imbalance within site

• STEAM able to handle resulting contention within a site performing 
better than 2b

• Random Scheduler performs as badly as in 2b, unaware of compute 
capabilities (selecting instance uniformly at random)

• CArDS able to improve on both and maintains performance at a much 
lower request completion time, even at high loads

9



Scenario 3 – Use-Case Driven Analysis

Aim: Evaluate performance of CArDS in applications that would benefit 
from improved RCTs of individual service requests, e.g., content retrieval, 
compared against existing long-lived approaches

Observations:

• Cases where transactions maintain longer affinities (as in application 
level solutions), result in high contention and very high RCTs

• Bringing scheduling decision down to packet-level allows for a 
significant improvement in RCT 

• Improvement in overall system utilization, based on assumption of 1.5s 
as upper bound latency

• Random Scheduler already able to improve on maximum number of 
clients that can be served within bound by compared to 1-minute affinity -
by 12.5% (almost 2000 more clients) 

• CArDS able to further improve by serving almost 24000 more clients 
(~133%) with the same service completion time compared to the random 
packet level scheduling

• CArDS can serve 162% more clients within bounded latency compared to 
the long-lived affinity scheduling

10



Conclusion

• CArDS is a solution to integrate compute awareness with the steering of service 
requests at the data plane level

• This compute-awareness in the scheduling decision leads to significant performance 
improvements in RCT over both network-level and application solutions

• CArDS improves on system utilization by supporting more than 160% more clients in a 
use case with bounded request times, significantly lowering costs for service delivery



Follow-up Work

• IFIP Networking paper compared CArDS against two other mechanisms (at L3)
-> horizontal comparison

• What about using CArDS at different layers of the system, e.g., L3 vs L7?
-> vertical comparison

Approach:

• Identify defining difference between an L7 and L3 system
• On-path traffic steering vs off-path (indirection) resolution

• This compares system in slide 3 (and similar efforts) against, e.g., DNS, GSLB, QUIC_LB, …

Our findings on this vertical comparison will be presented at the upcoming ACM 
SIGCOMM FIRA workshop



Thank you.


