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Problem of Runtime Scheduling

Consider execution of services in distributed (e.g., virtualized) service environments:

• A service, realized through a service instance, available in one or possibly more 
network locations

• Service transaction requires affinity to a service instance after the initial service request 
due to possible ephemeral state created

Problem: Find the ‘best’ service instance to serve the client’s transaction at runtime, while 
preserving the affinity after the decision has been made

Our Contribution: Compute-Aware Distributed Scheduling (CArDS), where ‘best’ is utilizing 
knowledge of the compute capabilities of individual service instances
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System Overview
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Compute-Aware Distributed Scheduling (CArDS)
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• Each service instance 
assigned (during 
orchestration) a normalized 
compute (resource) unit
(e.g., # cores, # threads)

• All compute units are 
flattened and joined in an 
identifier-specific routing 
identifier interval

• Distributed to all routers 
only once after placement

• Scheduling is now distributed 
(i.e., within each ingress 
router) round robin over the 
interval for each incoming 
service request

• Implementable at link speed, 
e.g., in P4
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Implementation & Evaluation Setup

• Event-based simulator using custom Python libraries

• 5 sites with 4 servers each and 1 service instance per 
server

• Compute units assignment of instances defined at start

• 5 ingress semantic routers

• All service requests are to one service function only, 
sent as single packet requests (all requests of one 
service identifier)

• The network load is varied by configuring the total 
number of clients, distributed equally across 5 ingress 
semantic routers

• 100% workload is simulated using 1550 clients

• Main metric is mean request completion time (RCT) of 
service requests

4



Scenario 1a - Centralized vs Scaled Distributed Scheduling

• Aim: Observe the effects of distribution as well as scaling the number of distributed 
ingress semantic routers

• Idealized, centralized scheduler vs increasing # of distributed schedulers

• Observations: 
• Negligible effect of distribution on mean RCTs, which stays within reasonable bounds. 

• Only when load approaches maximum capacity, an increase in mean RCT observed

• This deterioration grows with the scheduling distribution scale, i.e. a 11% increase for 5
schedulers and 29% increase in RCT for 50 schedulers is observed
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Scenario 1b - Scheduling to Instances vs Via Site-Local Load Balancer

• Aim: Observe effect of scheduling to a DC-ingress load balancer, compared to 
scheduling directly to instances

• Certain deployment scenarios may not want to expose the instances directly to network-
level routing but use DC-internal mechanisms instead

• In our evaluation, represented by simple, ‘random’ load balancer at each site ingress

• Observations: 
• Lack of compute awareness at the load balancers has significant impact on the mean RCT

• The impact increases with an increased network load

• With a network load as low as 30%, the mean RCT of scheduling to sites is almost double 
than that of directly scheduling to instances, while when the load is 80% of the compute 
resources, this grows to more than 100 times higher. 
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Aim: Compare CArDS performance against other distributed scheduling mechanisms with respect to:
• factoring compute capabilities into scheduling decision

• performing scheduling at ingress nodes vs at sites

• the impact of the compute unit distribution across sites and instances within sites

Compared against:

• Random scheduler –
• positioned at ingress nodes

• compute-unaware

• performs random load balancing across sites: selects an instance uniformly at random from all the instances of 
the network 

• STEAM [1] –
• positioned at site-ingress; ingress nodes forward requests to sites uniformly at random

• compute-unaware

• uses load estimation and local instance state information in scheduling decision

Scenario 2 - Comparisons with Existing Network-level Solutions7

[1] M. Blocher, R. Khalili, L. Wang, and P. Eugster, “Letting off STEAM: ¨Distributed runtime traffic scheduling for service function 
chaining,”in IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 824–833, 2020.



• CArDS significantly reduces RCT in high load settings, i.e. > 80%

• CDF at 80% network load (1245 clients) shows:
• Random Scheduler - tail is very heavy, STEAM - comparatively lighter, but 

CArDS – very small tail 

CArDS able to improve on the average performance in terms of 
latency as well as significantly reduce the variance

Scenario 2a – Uniform CU Distribution Across and Within Sites8



Scenarios 2b & 2c – Imbalance of CU Distribution Across/Within Sites

2b - Imbalance across sites, uniform within site

• STEAM and Random Scheduler both performing very poorly compared 
to CArDS

• Lack of compute awareness + site selected uniformly at random by both

2c - Uniform across sites, imbalance within site

• STEAM able to handle resulting contention within a site performing 
better than 2b

• Random Scheduler performs as badly as in 2b, unaware of compute 
capabilities (selecting instance uniformly at random)

• CArDS able to improve on both and maintains performance at a much 
lower request completion time, even at high loads
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Scenario 3 – Use-Case Driven Analysis

Aim: Evaluate performance of CArDS in applications that would benefit 
from improved RCTs of individual service requests, e.g., content retrieval, 
compared against existing long-lived approaches

Observations:

• Cases where transactions maintain longer affinities (as in application 
level solutions), result in high contention and very high RCTs

• Bringing scheduling decision down to packet-level allows for a 
significant improvement in RCT 

• Improvement in overall system utilization, based on assumption of 1.5s 
as upper bound latency

• Random Scheduler already able to improve on maximum number of 
clients that can be served within bound by compared to 1-minute affinity -
by 12.5% (almost 2000 more clients) 

• CArDS able to further improve by serving almost 24000 more clients 
(~133%) with the same service completion time compared to the random 
packet level scheduling

• CArDS can serve 162% more clients within bounded latency compared to 
the long-lived affinity scheduling
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Conclusion

• CArDS is a solution to integrate compute awareness with the steering of service 
requests at the data plane level

• This compute-awareness in the scheduling decision leads to significant performance 
improvements in RCT over both network-level and application solutions

• CArDS improves on system utilization by supporting more than 160% more clients in a 
use case with bounded request times, significantly lowering costs for service delivery



Follow-up Work

• IFIP Networking paper compared CArDS against two other mechanisms (at L3)
-> horizontal comparison

• What about using CArDS at different layers of the system, e.g., L3 vs L7?
-> vertical comparison

Approach:

• Identify defining difference between an L7 and L3 system
• On-path traffic steering vs off-path (indirection) resolution

• This compares system in slide 3 (and similar efforts) against, e.g., DNS, GSLB, QUIC_LB, …

Our findings on this vertical comparison will be presented at the upcoming ACM 
SIGCOMM FIRA workshop



Thank you.


