CArDS: Traffic Steering at L3 for Reducing Service

Request Completion Times

Karima Saif Khandaker, Dirk Trossen, Ramin Khalili, Zoran Despotovic, Artur Hecker,

Georg Carle

TN 2 HUAWEI

Problem of Runtime Scheduling

Consider execution of services in distributed (e.g., virtualized) service environments:

« Aservice, realized through a service instance, available in one or possibly more
network locations

« Service transaction requires affinity to a service instance after the initial service request
due to possible ephemeral state created

Problem: Find the ‘best’ service instance to serve the client’s transaction at runtime, while
preserving the affinity after the decision has been made

Our Contribution: Compute-Aware Distributed Scheduling (CArDS), where ‘best’ is utilizing
knowledge of the compute capabilities of individual service instances

A HUAWEI

N

System Overview

* Geographically distributed sites
at which service instances (Sls)
for a given service are deployed

* Clients issue service requests
destined to a service identifier

* The incoming semantic router
forwards service requests @
towards a suitable destination, D 4
e.g., one of the possibly many Client
service instances.

* Performs an on-path
forwarding decision
compared to existing DNS+IP

off-path systems
« Affinity is ensured by using IP D
locator for subsequent requests _
within same service transaction Client Client

Semantic @ Forwarding Service instance
- Router Node for foo.com/bar &"A HUAWEI

Tum

3 Compute-Aware Distributed Scheduling (CArDS)

* Each service instance
assigned (during
orchestration) a normalized
compute (resource) unit
(e.g., # cores, # threads)

* All compute units are
flattened and joined in an
identifier-specific routing

identifier interval @
Tk

» Distributed to all routers
only once after placement (Client

« Scheduling is now distributed Routing
(i.e., within each ingress Identifier
Interval

router) round robin over the
interval for each incoming
service request

Q)

* Implementable at link speed, D
e.g., in P4 Client Client D

Tum

Service instance # of compute units

.. | Semantic Forwarding
A" Router @ Node for foo.com/bar 8 per service instance g'é HUAWEI

4 Implementation & Evaluation Setup

* Event-based simulator using custom Python libraries

5 sites with 4 servers each and 1 service instance per = Client1121
server
== Semantic Semantic
« Compute units assignment of instances defined at start ¢ W Routerd | Router 4 Y
. . Scheduler Scheduler —j
* 5ingress semantic routers

« All service requests are to one service function only, | | e
sent as single packet requests (all requests of one
service identifier) s e
« The network load is varied by configuring the total '
number of clients, distributed equally across 5 ingress n
SemantIC rOUterS Serverd Server3 Serverl6 Serverl9
* 100% workload is simulated using 1550 clients S0 s4

* Main metric is mean request completion time (RCT) of
service requests

UM 2 HUAWEI

5 Scenario 1a - Centralized vs Scaled Distributed Scheduling

« Aim: Observe the effects of distribution as well as scaling the number of distributed
ingress semantic routers

» l|dealized, centralized scheduler vs increasing # of distributed schedulers

» Observations:
* Negligible effect of distribution on mean RCTs, which stays within reasonable bounds.
* Only when load approaches maximum capacity, an increase in mean RCT observed

« This deterioration grows with the scheduling distribution scale, i.e. a 11% increase for 5
schedulers and 29% increase in RCT for 50 schedulers is observed

UM 2 HUAWEI

6 Scenario 1b - Scheduling to Instances vs Via Site-Local Load Balancer

« Aim: Observe effect of scheduling to a DC-ingress load balancer, compared to
scheduling directly to instances

« Certain deployment scenarios may not want to expose the instances directly to network-
level routing but use DC-internal mechanisms instead

* In our evaluation, represented by simple, ‘random’ load balancer at each site ingress

* Observations:
« Lack of compute awareness at the load balancers has significant impact on the mean RCT
* The impact increases with an increased network load

« With a network load as low as 30%, the mean RCT of scheduling to sites is almost double
than that of directly scheduling to instances, while when the load is 80% of the compute
resources, this grows to more than 100 times higher.

UM 2 HUAWEI

7 Scenario 2 - Comparisons with Existing Network-level Solutions

Aim: Compare CArDS performance against other distributed scheduling mechanisms with respect to:
» factoring compute capabilities into scheduling decision

performing scheduling at ingress nodes vs at sites

the impact of the compute unit distribution across sites and instances within sites
Compared against:

« Random scheduler —

* positioned at ingress nodes
* compute-unaware

performs random load balancing across sites: selects an instance uniformly at random from all the instances of
the network

e STEAM 11—
* positioned at site-ingress; ingress nodes forward requests to sites uniformly at random
* compute-unaware

uses load estimation and local instance state information in scheduling decision

“m [1] M. Blocher, R. Khalili, L. Wang, and P. Eugster, “Letting off STEAM: "Distributed runtime traffic scheduling for service function
chaining,” in IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, pp. 824-833, 2020.

A HUAWEI

8 Scenario 2a — Uniform CU Distribution Across and Within Sites

+ CArDS significantly reduces RCT in high load settings, i.e. > 80%

« CDF at 80% network load (1245 clients) shows:

* Random Scheduler - tail is very heavy, STEAM - comparatively lighter, but
CArDS - very small tail

CArDS able to improve on the average performance in terms of
latency as well as significantly reduce the variance

{55
~
w

e
w
=]

Request Completion Time [s]
o
<
w

o
wn
=]

0.25

0.00

1.0 1

0.8

0.6

0.4 1

0.2 1

0.0 4

1 —e— CArDS

{ —¢ Random Scheduler

1.25

o
[=3
o

—i— STEAM

1
T T T
500 1000 1500
Number of Clients

—— CArDS
—— STEAM

—— Random Scheduler

104 10° 10°
Request Completion Latency [ps]

A HUAWEI

Scenarios 2b & 2c — Imbalance of CU Distribution Across/Within Sites

2b - Imbalance across sites, uniform within site

e [s]

« STEAM and Random Scheduler both performing very poorly compared
to CArDS

» Lack of compute awareness + site selected uniformly at random by both

Number of Clients

2c¢ - Uniform across sites, imbalance within site

64 — Random Scheduler

« STEAM able to handle resulting contention within a site performing
better than 2b

 Random Scheduler performs as badly as in 2b, unaware of compute
capabilities (selecting instance uniformly at random)

» CArDS able to improve on both and maintains performance at a much
lower request completion time, even at high loads

UM 2 HUAWEI

10

Scenario 3 — Use-Case Driven Analysis

Aim: Evaluate performance of CArDS in applications that would benefit
from improved RCTs of individual service requests, e.g., content retrieval,
compared against existing long-lived approaches

—8— CArDS, Packet-Level Request
400 1 e Random, Packet-Level Request

Observat|0ns —&— Random, 1-min Transaction i
:

300 A

» Cases where transactions maintain longer affinities (as in application
level solutions), result in high contention and very high RCTs

« Bringing scheduling decision down to packet-level allows for a 2001

significant improvement in RCT

Request Completion Time [s]

» Improvement in overall system utilization, based on assumption of 1.5s
as upper bound latency

* Random Scheduler already able to improve on maximum number of - ; : : .
clients that can be served within bound by compared to 1-minute affinity - 10000 20000 30000 40000 50000
by 12.5% (almost 2000 more clients) Hmichat liene

+ CArDS able to further improve by serving almost 24000 more clients
(~133%) with the same service completion time compared to the random
packet level scheduling

* CArDS can serve 162% more clients within bounded latency compared to
the long-lived affinity scheduling

UM 2 HUAWEI

Conclusion

« CArDS is a solution to integrate compute awareness with the steering of service
requests at the data plane level

« This compute-awareness in the scheduling decision leads to significant performance
improvements in RCT over both network-level and application solutions

« CArDS improves on system utilization by supporting more than 160% more clients in a
use case with bounded request times, significantly lowering costs for service delivery

A HUAWEI

Follow-up Work

» |IFIP Networking paper compared CArDS against two other mechanisms (at L3)
-> horizontal comparison

« What about using CArDS at different layers of the system, e.g., L3 vs L7?

-> vertical comparison

Approach:

« ldentify defining difference between an L7 and L3 system

On-path traffic steering vs off-path (indirection) resolution
This compares system in slide 3 (and similar efforts) against, e.g., DNS, GSLB, QUIC_LB, ...

Our findings on this vertical comparison will be presented at the upcoming ACM
SIGCOMM FIRA workshop

UM 2 HUAWEI

Thank you.

TUT 2 HUAWEI

