

# BBS Scheme



# Privacy Preserving Anonymous Credentials



**The Prover can:**

- Prove only their **name** and **age** to the **Restaurant**
- Prove only their **address** to the **Postal Office**.
- Prove only that they **are a student** to the **Library**.

➤ Only send the information that is relative to each Verifier

➤ The Verifiers cannot conspire to discover more information

(each proof is indistinguishable from random)

# Proof of Possession enabled Security / Access Tokens



## From the signers perspective:

- They can issue a single token that can be used multiple times by the prover.
- Does not require key material supplied by the prover ahead of time to issue.

## From the provers perspective:

- Can prove possession of the security token multiple times to different parties (verifiers).
- Does not require the prover to manage key material.
- Can scope generated proofs via the presentation header (e.g a generated proof is only valid for a particular verifier or has a TTL etc).

## From the verifiers perspective:

- Validates the proof back to the original signer in a way that is inline with existing security tokens (e.g via the signers PK), also provides replay attack detection

# Non-Correlating Security Token Proofs



## During Proof Presentation:

- Each proof **cannot be correlated** to each other, the token or the client.
- Uncorrelatability holds even against **coalition between RPs or RPs and AS**.
- A unique **presentation header** is **NOT required** for un-correlatability to hold.