
EDHOC & Traces

IETF 114, LAKE WG, July 27, 2022

draft-ietf-lake-edhoc-15
draft-ietf-lake-traces-02
https://github.com/lake-wg/edhoc

— edhoc-13 == edhoc12
— edhoc-14, major update, first since Nov. 2021
— edhoc-15, mainly clarifications, same wire format as -14
(overview of changes in the different versions is in the last appendix)

— traces-01, update matching edhoc-14/15
— traces-02, recent bug fix

As always, details in https://github.com/lake-wg/edhoc

Since IETF 113

2

https://github.com/lake-wg/edhoc

LAKE WG interim, Dec. 15, 2021

edhoc-13 à edhoc-14

IETF 113, LAKE WG, March 21, 2022

— Merge of section 1.1 and 1.2
— Connection and key identifiers are byte strings (next slide)
— Rewrite of 3.5

— Clarification of authentication related operations
— Authentication related verifications, including old section 3.5.1, moved to new appendix D

— Rewrite of 3.8
— Move content about use of EAD to new appendix E
— ead_value changed to bstr

— EDHOC-KDF updated
— transcript_hash argument removed
— TH included in ‘context’ argument
— all text string labels are replaced with uints

— Key schedule updated (later slide)
— New salts derived to avoid reuse of same key with Expand and Extract
— PRK_4x3m renamed PRK_4e3m (to indicate its use; does not include export anymore)
— K_4 and IV_4 derived from PRK_4e3m
— New PRK: PRK_out derived from PRK_4e3m and TH_4

— Main output of EDHOC
— New PRK: PRK_exporter derived from PRK_out
— Exporter defined by EDHOC-KDF and PRK_exporter
— Key update defined by Expand instead of Extract

— All applications of EDHOC-KDF collected in one table

edhoc-13 à edhoc-14

4

Revisit of old problem:
— OSCORE identifiers and COSE key identifiers (kid) are byte strings
— CBOR byte strings typically at least two bytes long, i.e., not optimal

— Previous solution attempts in LAKE (bstr_identifier) and COSE (int kid)

New solution:
— Connection and key identifiers are intrinsically byte strings

— Represented as CBOR bstr in the EDHOC message
— Unless the byte string happen to encode a one-byte CBOR int (-24..23)

— In which case they are encoded as that CBOR int (i.e. unchanged)

Examples:
— h'0E' is represented by 0x0E (CBOR encoding of the integer 14)

— not by 0x410E (CBOR encoding of the byte 0x0E)
— h'FF' is represented by 0x41FF

— since it is not the CBOR encoding of an integer in (-24..23)

— Simplifies mapping between EDHOC and OSCORE identifiers (essentially identity mapping)
— No need for int kids to be defined in COSE

Identifier Encoding

5

Y
Salt4e3m Expand

2

Y
Salt3e2m Expand

TH3

3

PRKout

context

Expand

Exporter

Expand

PRKexporter Expand

Expand

TH4

KeyUpdate

Application
key

label
(uint)

1

0

2

3 / 4

5

6

7 / 8

9 11

10 h‘‘

contextKey Schedule
in -14/15

PRK4e3m

— Update of processing
— EAD and ID_CRED passed to application when available
— identity verification and credential retrieval omitted in protocol description
— Transcript hash defined by plaintext messages instead of ciphertext
— Changed order of input to TH_2
— Removed general G_X checking against selfie-attacks

— Support for padding of plaintext
— Updated compliance requirements
— Updated security considerations

— Updated and more clear requirements on MAC length
— Clarification of key confirmation
— Forbid use of same key for signature and static DH

— Updated appendix on message deduplication
— Clarifications of

— connection identifiers
— cipher suites, including negotiation
— EAD
— Error messages

— Updated media types
— ”applicability template” renamed “application profile”
— Editorials

edhoc-13 à edhoc-14

7

LAKE WG interim, Dec. 15, 2021

edhoc-14 à edhoc-15

IETF 113, LAKE WG, March 21, 2022

— EAD update (next slide)

— New section in Appendix D: Unauthenticated Operation

— Clarifications

— Lengths used in EDHOC-KDF

— Key derivation from PRK_out

— EDHOC-KeyUpdate and EDHOC-Exporter

— Padding

— Security considerations

— When a change in a message is detected

— Confidentiality in case of active attacks

— Connection identifiers should be unpredictable

— Maximum length of message_2 (later slide)

— Minor bugs

edhoc-14 à edhoc-15

9

— Defined EAD item = (ead_label, ead_value)

— Each EAD field (EAD_1 .. EAD_4) may contain multiple EAD items

— ead_label > 0 is registered with a specification containing

— formatting details of ead_value

— processing

— security considerations

— An EAD item may be critical or non-critical, specified by the processing

— Using the registered positive value indicates that the EAD item is non-critical.

— The corresponding negative value indicates that the EAD item is critical.

— If an endpoint receives
a critical EAD item it does not recognize, or
a critical EAD item that contains information that it cannot process,
then the EDHOC protocol MUST be discontinued.

— A non-critical EAD item can be ignored.

EAD update proposal

10

— Proposal from ETH to include authentication credential in transcript hash (#317, PR #318)

— Proposal from ENS to include TH_2 as salt in PRK_2e derivation (#299, #323)

— Proposal from ENS to derive K_3 from PRK_4e3m (#324)

— Support for size of message_2 > 8160 bytes with SHA-256 (#303, PR #304)

Open Issues and PRs

11

— HKDF paper states that the counter is fixed length.

— RFC 5869 chose 1 byte.

— message_2 is encrypted with KEYSTREAM2 generated with Expand, which with SHA-256 leads
to HKDF with max output 255 * 32 = 8160 bytes for the keystream.

— Is this a problem we should fix?

— Even if this is not a problem for typical applications, we may want to define a way to handle
larger message_2. Candidates:

1. Replace HKDF-Expand with HKDF-Expand’, which allows larger length of output

2. Use HKDF-Expand for message_2 size < 8160, HKDF-Expand' for larger message_2

3. Replace message_2 encryption with AES-CTR / ChaCha20

4. Use KMAC instead of HKDF

5. Multiple invocations of HKDF, to produce sufficiently long keystream

Using SHA-256, do we need larger message_2
than 8160 bytes? (#303)

12

— Divide PLAINTEXT_2 in fixed size chunks (of 8160 bytes or similar) + last chunk.

— Introduce dependency on chunk number n = 0, 1, 2, 3, ...

— one of the first three arguments of the keystream derivation should depend on n

— KEYSTREAM_2 = EDHOC-KDF(PRK_2e, 0, TH_2, plaintext_length)

— Examples

— PRK_2e(n) = Extract (salt, IKM) = HMAC-SHA-256(n, G_XY)

— replace second argument with non-positive labels: -n for chunk n = 0, 1, 2, 3, … (PR #304)

— replace TH_2 with context = << n, TH_2 >>

5. Multiple invocations of HKDF

13

Y
Salt4e3m Expand

2

Y
Salt3e2m Expand

TH3

3

PRKout

context

Expand

Exporter

Expand

PRKexporter Expand

Expand

TH4

KeyUpdate

Application
key

label
(uint)

1

0

2

3 / 4

5

6

7 / 8

9 11

10 h‘‘

contextNew Proposed
Key Schedule

PRK4e3m

TH2

LAKE WG interim, Dec. 15, 2021

-traces

IETF 113, LAKE WG, March 21, 2022

— Same two traces as in -00:

— Method 0 (signature), cipher suite 0 (EdDSA), X.509 certificate identified by ‘x5t’ (hash of cert)

— Method 3 (static DH), cipher suite 2 (P-256), RPK encoded as CCS identified by ‘kid’ (key id)

— Cipher suite negotiation (error with SUITES_R)

— Explicit ‘y’ coordinate of public keys

— New printouts matching the new key schedule and other changes in edhoc-14

— Marco provided first instance of values for -01, added as author

— Stefan verified the trace and found a few bugs

— All known bugs fixed in -02

-traces-01/02

16

Next steps

— Address review comments

— Submit updated versions of –edhoc and –traces

— WGLC?

17

