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Web Performance Matters!

Increases user 
engagement

Improves 
productivity

Growth in 
revenue
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Performance of digital services have a direct impact on businesses & society.



CDNs and Protocol Configurations at Edge
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Goal: maximize 
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1.1 2.0 3.0

…

RTOSSR ICW
cubic bbr vegas

3

One set of configurations
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Edge POP
Internet

Networking stack
L5-7 (Application)

L4 (Transport)
L1-3

TCPHTTP

Goal: maximize 
delivery performance

HTTP=2.0, #_streams=100, …
TCP=BBR, ICW=10, RTO=1s, …

Two problems:
1. Are users homogeneous?
2. Is “one-size-fits-all” optimal?
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… push# streams
1.1 2.0 3.0

…

RTOSSR ICW
cubic bbr vegas
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One set of configurations



User Heterogeneity & Performance Sensitivity.

CP
U

Connectivity
GSM 3G Wired

Different congestion control 
models (delay/loss/bottleneck-bw)

[Yan et al. ATC’18]
Impact of device capabilities

[Ahmad et al. IMC’16]
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Edge

C1
C2
C3

C1 C2 C3

Protocol
Configurations

Dictate rules for 
data transmission.

Performance Sensitivity of 
protocols for diverse networks



If ”one-size-fits-all” approach is sub-optimal…
How to dynamically tune the networking configurations to 

maximize performance for the diverse connections?
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Traditional Approaches for Selecting Configurations

net.ipv4.tcp_congestion_control = cubic
net.ipv4.tcp_low_latency = 0
net.ipv4.tcp_autocorking = 1

default via IP dev eth0 initcwnd 10
Protocols http/1.1

Default HandPicked Dynamic
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Bayesian optimization, 
RL, domain-specific 

algorithms.

Manual tuning based 
on experimentation 

and analysis.

Used homogeneously 
for the user-base or 
specific workloads.

Black-box optimization 
algorithm. Uses Gaussian 

process to map data samples 
to an objective function.



Are Traditional Approaches Optimal?

• Emulated diverse traces from a CDN in local testbed.
• Brute-force exploration of TCP and HTTP configuration space.
• Oracle: Selects optimal configurations that minimizes page load time (PLT).
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diverse connections.
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• Emulated diverse traces from a CDN in local testbed.
• Brute-force exploration of TCP and HTTP configuration space.
• Oracle: Selects optimal configurations that minimizes page load time (PLT).

Pre-computed configs. 
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convergence, no cross-

connection learning.
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Per-connection optimal 
configs. -> significant 
performance gains.

Motivates dynamic tuning.

Motivates cross-layer tuning.

Motivates better algorithm.



Configanator

Optimizes web performance by systematically reconfiguring
network stack in a principled manner.

Website 
Properties

User’s Network 
Characteristics

User’s Device

Maximize Performance 
by Learning Near-

optimal Configurations 

TCPHTTP

… push# streams
1.1 2.0 3.0

…

RTOSSR ICW
cubic bbr vegas

Configanator
14



Challenges with Configuration Tuning

QoE

$$$
High dimensionality

Connection types, 
devices & websites.

QoE Cost 
Bad configurations 

hurts revenue.

System limitations
Low-overhead, 

fine- grained tuning.

Algorithm design System design
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Network dynamics
Network & performance 

changes over time.

Noise & variability
Inherent noise in 

performance signals.

Network dynamics figure credits: Zahaib Akhtar



Split-plane Architecture

Co
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M

an
ag
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Edge server

ConfigAgent

Web server
GET foo.html

PLT & conn. 
characteristics

Push config. 
mappings
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Da
ta

-p
la

ne
Co

nt
ro

l-p
la

ne Cluster similar 
connections

Update config-
perf models

Context 
decision

Try more configurations 
(explore)

Find patterns across 
connections (explore)

Resample

Kernel module & 
server callbacks

Please see the 
paper for details!



Evaluation
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Performance improvements.
Algorithm design (benefits of 

arms, convergence, NCs) Fairness implications.

System overheads.
Dissection of improvements, 
deployment considerations.



Evaluation Setup
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Trace-driven simulation Live deployment

Traces from multiple regions.
• US (CAIDA, FCC)
• Japan (MAWI)
• Global (CDN trace, Pantheon)

Experiments in-the-wild.
• Servers (Google cloud in US)
• Users (spread across globe)

ConfiganatorDefault

SpeedCheckerGoogle Cloud

Trace

Testbed

NetEm

configs
{N1, W1, C1} = PLT1
{N2, W1, C1} = PLT2

.

.
{NN, WN, CN} = PLTN

PLT-Tensor



Performance Improvements
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15-17% improvement

36-67% improvement.
Low BW, low-high RTT/loss 

networks, content-rich sites. Live deployment
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Conclusion + Future Work
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Customizable or
generalizable protocols Cross-layer protocols Infrastructure support

Transport
loss

Web
priorities

Broader 
configurations 
and flexibility.

System/algorithm to 
tackle diversity.

Contextual MAB



END
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Connection Features
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Context Decision
• Bayesian optimization’s Expected Improvement
• Switch to exploitation arm if IE < threshold
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Algorithmic Design

Tuning and exploration granularity?
Billions of 

connections.

Do I need to find the 
optimal config for every 
connection individually?

Coarse-granularity -> ASN, POP, prefixes?
Amortizes QoE cost.
Fine-grained diversity.
High dimensionality.
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Algorithmic Design

Tuning and exploration granularity?

Groups of 
connections 
with similar 
properties.

Coarse-granularity -> ASN, POP, prefixes?
Amortizes QoE cost.
Fine-grained diversity.
High dimensionality.
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Network Classes (NC) -> connections with 
similar properties.

Amortizes QoE cost. 
Fine-grained diversity.
High dimensionality.



Algorithmic Design
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Exploitation arm
ML techniques (decision trees)

Exploration arm
Bayesian Optimization (Gaussian process)

Build performance models for the high-dimensional web in a low-cost, online manner.

Efficient exploration.
Sub-optimal convergence (measurement noise).
Sub-optimal exploitation (model isolation).
Up to 2X lower median improvement.

Efficient exploitation.
No guided exploration (high QoE-cost).
Up to 40% lower tail improvement.

Contextual Multi-armed Bandit
C1 C2

Resampling
C3 Context decision

Probabilistic gain of exploring a 
new configuration?

Offline approach not 
representative of high 
dimensional Internet.

expected_improvement from GP



Split-plane Architecture

Co
nf

ig
M

an
ag

er

Edge server

ConfigAgent

Web server
GET foo.html

PLT & conn. 
characteristics

clustering

Network
Classes

Model
updates

Context 
decision

Push config. 
mappings
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Convergence
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MAB+NC: Multi-armed bandit with epsilon greedy reward.

Ablation analysis
Only_GP: Guided exploration, no cross-NC exploitation.
Only_DT: Random exploration, DT-based exploitation.



System Design
• Goals:
• Flexible -> Can arbitrarily tune configuration per connection.
• Low-overhead -> Minimal resource (CPU, RAM, Latency etc.) overhead.
• Non-invasive -> Requires minimal changes to applications.
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Flexible Low-overhead Non-invasive
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Flexible Low-overhead Non-invasive

TC
P

Sysctl / ip route X ü ü

VM / containers ü X ü

SetSockopt ü ü X
SetSockopt + LD_Preload ü X ü

eBPF ü ü ü

Kernel module ü ü ü

HT
TP Multiple instances ü X ü

Modify application code ü ü X

tcp_congestion_ops

OpenSSL ALPN callback, 
H2 settings callbacks



Fairness Implications
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Impact of Different Knobs
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TCP Connection Reuse
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Improvements Breakdown
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PLT Improvements Compared to Optimal
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Evaluation
• Trace-driven simulation

• Packet traces from CAIDA, MAWI. 
Network measurements from FCC, 
Pantheon.

• Baseline algorithms.
• Brute-force (Brute). 
• Bayesian Optimization (BO).
• Brute-force with Network Classes 

(Brute+NC).
• Bayesian Optimization with Network Classes 

(BO+NC).
• CherryPick with Network Classes 

(CherryPick+NC).

• Real-world deployment
• Using servers hosted in AWS and clients 

distributed across the globe
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Exploration

• Bayesian optimization.
• Guided exploration.
• Expected improvement.
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Exploitation
• Decision Tree.
• Exploits a good direction.
• Uses what’s learnt from other 

users for a new user.
• Aids in bootstrapping.
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Re-sample
• Random (A/B testing).

• Tests random directions.
• Update past models.

Better than 
previous best 
configuration! 
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Networking stack evolution

1980 1990 2000 2010 2020

Tahoe

Reno NewReno Bic 

Cubic

Compound

Vegas BBR

DCTCPHSTCPICW=1

ICW=2 ICW=4 ICW=10

HTTP1.0 HTTP1.1 SPDY HTTP2.0 HTTP3.0 41



Improving performance for everyone is challenging.

• Diversity of networks across regions.

North America

Sub-Saharan Africa
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Conclusion + Future work

• One-size-fits-all approach to tuning networking stack in sub-ooptimal.
• Tuning network configurations intelligently can improve PLT by as 

much as 20% on median.
• Calls for a re-design of networking stack.
• Time of the day aspect of learning.
• Traffic patterns change across different times of the day.
• Separate model for different time intervals? Time as a feature?

• Understanding why a config is better than others for a network.
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