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Web Performance Matters!

Performance of digital services have a direct impact on businesses & society.

Increases user Growth in Improves
engagement revenue productivity



CDNs and Protocol Configurations at Edge
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One set of configurations



CDNs and Protocol Configurations at Edge
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Goal: maximize
delivery performance Two problems:

1. Are users homogeneous?
2. Is “one-size-fits-all” optimal?

TCP=BBR, ICW=10, RTO=1s, ...

HTTP=2.0, #_streams=100, ... ]

One set of configurations



User Heterogeneity & Performance Sensitivity.

0/
170 ©
see vee O/O/O
b11e t11 7
N
:
s
H
:
:
:
:
.

GSM 3G Wired
Connectivity
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Dictate rules for
data transmission.

Performance Sensitivity of
protocols for diverse networks
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If “one-size-fits-all” approach is sub-optimal...

How to dynamically tune the networking configurations to
maximize performance for the diverse connections?



Traditional Approaches for Selecting Configurations
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Are Traditional Approaches Optimal?

* Emulated diverse traces from a CDN in local testbed.
* Brute-force exploration of TCP and HTTP configuration space.
* Oracle: Selects optimal configurations that minimizes page load time (PLT).
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PLT improvement over Default [%]
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Are Traditional Approaches Optimal?
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Are Traditional Approaches Optimal?

* Emulated diverse traces from a CDN in local testbed.
* Brute-force exploration of TCP and HTTP configuration space.
* Oracle: Selects optimal configurations that minimizes page load time (PLT).
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Are Traditional Approaches Optimal?
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Are Traditional Approaches Optimal?

* Emulated diverse traces from a CDN in local testbed.
* Brute-force exploration of TCP and HTTP configuration space.
* Oracle: Selects optimal configurations that minimizes page load time (PLT).
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Configanator

Optimizes web performance by systematically reconfiguring
network stack in a principled manner.
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Challenges with Configuration Tuning
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Split-plane Architecture

Control-plane
ConfigManager

PLT & conn. Push config.
characteristics - mappings
@ ConfigAgent
A
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Edge server
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Split-plane Architecture

Control-plane
ConfigManager
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Split-plane Architecture

Control-plane

ConfigManager

Please see the
paper for details!
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Evaluation

Configanator: A Data-driven Approach to Improving CDN
Performance.

Authors:
Usama Naseer and Theophilus A. Benson, Brown University

Algorithm design (benefits of
arms, convergence, NCs) Performance improvements. Fairness implications.

Dissection of improvements,
System overheads. deployment considerations.




Evaluation Setup

Trace-driven simulation

Traces from multiple regions.
e US (CAIDA, FCC)

Japan (MAWI)
* Global (CDN trace, Pantheon)
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Live deployment

Experiments in-the-wild.
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Performance Improvements
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Conclusion + Future Work

Customizable or
generalizable protocols

System/algorithm to
tackle diversity.

Cross-layer protocols

Infrastructure support
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Connection Features
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Context Decision

* Bayesian optimization’s Expected Improvement
* Switch to exploitation arm if IE < threshold

User connection

> Default config.
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Algorithmic Design Dol need to find the

optimal config for every

connection individually? Billions of
Tuning and exploration granularity? A connections.

Coarse-granularity -> ASN, POP, prefixes?

Amortizes QoE cost. —
Fine-grained diversity. E .
High dimensionality. o
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Algorithmic Design

Tuning and exploration granularity?

Coarse-granularity -> ASN, POP, prefixes?

Amortizes QoE cost.

=
Ll-n(;—itjamed-dlvel-rflty. == ~
igh dimensionality. o Groups of
connections
with similar

-> connections with properties.

similar properties.

Amortizes QoE cost.
Fine-grained diversity.
High dimensionality.
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Offline approach not
representative of high
dimensional Internet.

Algorithmic Design

Build performance models for the high-dimensional web in a low-cost, online manner.

Exploration arm Exploitation arm
Bayesian Optimization (Gaussian process) ML techniques (decision trees)

Efficient exploitation.
No guided exploration (high QoE-cost).
Up to 40% lower tail improvement.

Efficient exploration.
Sub-optimal convergence (measurement noise).

Sub-optimal exploitation (model isolation).
Up to 2X lower median improvement.

C1
Contextual Multi-armed Bandit

Context decision

Resacnipling Probabilistic ga.in of gxploring a
new configuration?

expected _improvement from GP
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Split-plane Architecture

Network Model Context

Classes updates decision
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Convergence

% distance to optimal
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System Design

* Goals:
* Flexible -> Can arbitrarily tune configuration per connection.
* Low-overhead -> Minimal resource (CPU, RAM, Latency etc.) overhead.
* Non-invasive -> Requires minimal changes to applications.

Flexible Low-overhead | Non-invasive
Sysctl / ip route X v v
VM / containers v X v
a SetSockopt v v X
= SetSockopt + LD _Preload v X v
eBPF v v v
Kernel module tcp_congestion_ops
o Multiple instances v X v
T Modify application code Oﬁinsseitiﬁ;:?aﬁiizk’




Fairness Implications

CDF across networks
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Impact of Different Knobs

% improvement in PLT
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TCP Connection Reuse
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Improvements Breakdown
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Network condition breakdown

- 30

35



PLT Improvements Compared to Optimal
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Evaluation

 Trace-driven simulation

* Packet traces from CAIDA, MAWI.
Network measurements from FCC,
Pantheon.

* Baseline algorithms.

Brute-force (Brute).

Bayesian Optimization (BO).

Brute-force with Network Classes
(Brute+NC).

Bayesian Optimization with Network Clas
(BO+NC).

CherryPick with Network Classes
(CherryPick+NC).

e Real-world deployment

* Using servers hosted in AWS and client:
distributed across the globe

% improvement in PLT over default

60

40

20

-20

-40

1

pul®  BQ eNC % NGice g optin?

Learning algorithms



Exploration

* Bayesian optimization.
* Guided exploration.
* Expected improvement.
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Exploitation

* Decision Tree.
* Exploits a good direction.

e Uses what’s learnt from other
users for a new user.

* Aids in bootstrapping.
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Re-sample

 Random (A/B testing).

e Tests random directions.
e Update past models.

Better than
previous best
configuration!
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Networking stack evolution
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Improving performance for everyone is challenging.

* Diversity of networks across regions.

North America

® 2G @ 3G

4G @ 5G

2022 2023

2024
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.

Adoption
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- |
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12% 28%
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Conclusion + Future work

* One-size-fits-all approach to tuning networking stack in sub-ooptimal.

* Tuning network configurations intelligently can improve PLT by as
much as 20% on median.

e Calls for a re-design of networking stack.

* Time of the day aspect of learning.
 Traffic patterns change across different times of the day.
* Separate model for different time intervals? Time as a feature?

e Understanding why a config is better than others for a network.



