

I E T F

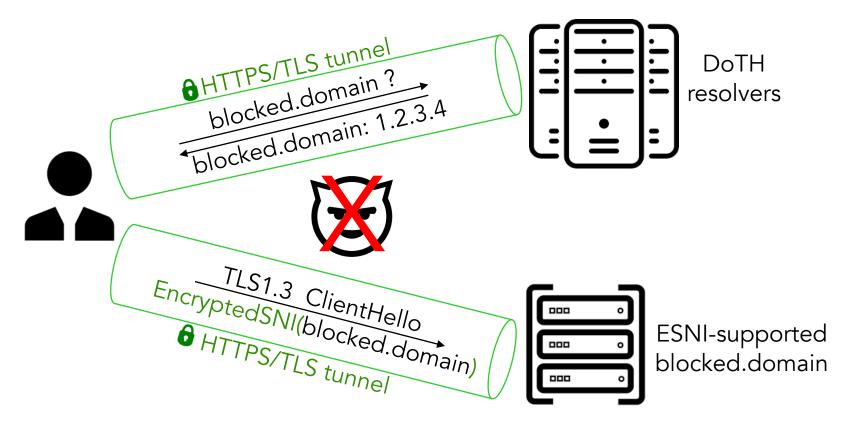
Internet Engineering Task Force 114 Meeting
Measurement and Analysis for Protocols Research Group

Measuring the Accessibility of Domain Name Encryption and its Impact on Internet Filtering

Nguyen Phong Hoang, Michalis Polychronakis, Phillipa Gill

Plaintext domains in network traffic

DNS query/response packets

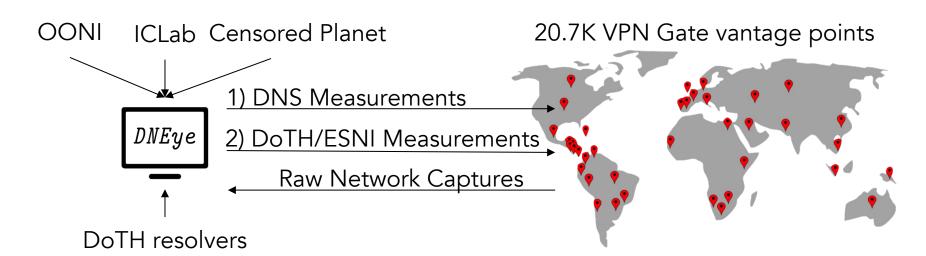

```
192.168.50.194 1.1.1.3
                              DNS
                                    Standard query 0x5ea5 A example.com
1.1.1.3
               192.168.50.194 DNS
                                    Standard query response 0x5ea5 A example.com A 93.184.216.34
192.168.50.194 93.184.216.34
                                    64895 → 443 [SYN] Seg=3552478921 Win=65535 Len=0 MSS=1460 WS=
93.184.216.34 192.168.50.194
                                    443 → 64895 [SYN, ACK] Seg=2027449269 Ack=3552478922 Win=6553
                              TCP
192.168.50.194 93.184.216.34
                                    64895 \rightarrow 443 [ACK] Seq=3552478922 Ack=2027449270 Win=131712 Le
                               TLS... Client Hello
192.168.50.194 93.184.216.34
                                    443 \rightarrow 64895 [ACK] Seq=2027449270 Ack=3552479439 Win=67072 Ler
93.184.216.34 192.168.50.194 TCP
    Compression Methods (1 method)
     Extensions Length: 403
                                                         TLS handshake's Client Hello
    Extension: Reserved (GREASE) (len=0)
    * Extension: server_name (len=16)
                                                         Server Name Indication (SNI)
      Type: server name (0)
      Length: 16
     Server Name Indication extension
        Server Name list length: 14
        Server Name Type: host_name (0)
        Server Name length: 11
        Server Name: example.com
```

- → Security and privacy problems
- → Susceptible to domain-based network filtering

Domain name encryption: DoT/DoH & ESNI

- DoT: DNS queries and responses are sent over a TLS tunnel using port 853 (<u>RFC7858</u>)
- DoH: DNS resolution is performed over HTTPS, inheriting all security benefits of the HTTPS protocol (RFC8484)
- Encrypted SNI: Starting from TLS1.3, the Server Name Indication extension in the Client Hello message during the TLS handshake can be *optionally* encrypted (<u>RFC8744</u>)
 - → being reworked to Encrypted Client Hello (Internet draft)

Domain encryption: DoT/DoH and ESNI


Motivation

Domain name encryption → better security and privacy

How about its impact on Internet filtering?

- Investigate whether domain name encryption technologies are being blocked by Internet filtering systems around the globe
- If not, can domain name encryption help with circumventing Internet censorship based on domain name information

DNEye

	Asia	Africa	America	Europe	Oceania
Countries	32	4	15	32	2
# of ASes	367	9	215	271	16

DNS-based Internet filtering is widespread

Country	Number of confirmed domains censored by DNS tampering		
China	300		
Russia	205		
Iran	147		
Indonesia	134		
India	98		

No major evidence of DNS-based filtering of DoTH at the AS level

- ordns.he.net blocked by China's Great Firewall via DNS poisoning
- cloudflare-dns.com and mozilla.cloudflare.com in Thailand 's AS23969

DoTH accessibility

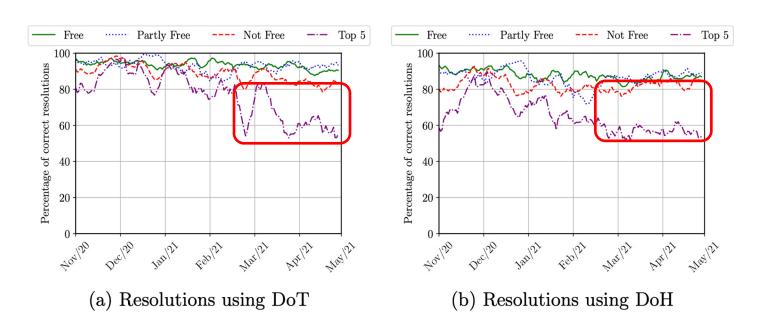


Fig. 2: Percentage of correct DoTH resolutions over time.

China started blocking both DoT and DoH resolutions destined for popular DoTH resolvers from March 2021

Blocking of DoT resolutions in China

Time	Source	Destination	Protocol	Info
22:22:37	10.211.1.25	185.228.168.9	TCP	36395 → 853 [SYN] Seq=1931890697 Win=64240 Len=0 MSS=1460
22:22:38	10.211.1.25	185.228.168.9	TCP	[TCP Retransmission] [TCP Port numbers reused] 36395 → 853
22:22:40	10.211.1.25	185.228.168.9	TCP	[TCP Retransmission] [TCP Port numbers reused] 36395 → 853
22:22:44	10.211.1.25	185.228.168.9	TCP	[TCP Retransmission] [TCP Port numbers reused] 36395 → 853
22:22:52	10.211.1.25	185.228.168.9	TCP	[TCP Retransmission] [TCP Port numbers reused] 36395 → 853
22:23:02	185.228.168.9	10.211.1.25	TCP	853 → 36395 [RST, ACK] Seq=0 Ack=1931890698 Win=0 Len=0

- DNS over TLS is standardized in RFC7858 with 853 being used as the default port
- Port 853 is not used by other popular applications
- → Blocking the IP:853 pair is trivial and sufficient to hinder the use of DNS over TLS

Blocking of DoH resolutions in China

```
Destination
10.211.1.25
                 8.8.8.8
                                     Standard query 0x81d1 A dns.google OPT
                                     Standard query response 0x81d1 A dns.google A 8.8.8.8 A 8.8.4.4 OPT
8.8.8.8
                 10.211.1.25
10.211.1.25
                 8.8.8.8
                               TCP
                                     60915 → 443 [SYN] Seq=773598770 Win=64240 Len=0 MSS=1460 SACK PERM=1 TSval=178
                                     [TCP Retransmission] [TCP Port numbers reused] 60915 → 443 [SYN] Seg=773598770
10.211.1.25
                 8.8.8.8
                               TCP
                                     [TCP Retransmission] [TCP Port numbers reused] 60915 → 443 [SYN] Seg=773598770
10.211.1.25
                 8.8.8.8
                                     [TCP Retransmission] [TCP Port numbers reused] 60915 → 443 [SYN] Seq=773598770
10.211.1.25
                 8.8.8.8
                                     [TCP Retransmission] [TCP Port numbers reused] 60915 → 443 [SYN] Seq=773598770
10.211.1.25
                 8.8.8.8
                               TCP
                 10.211.1.25
                                     443 → 60915 [RST, ACK] Seg=0 Ack=773598771 Win=0 Len=0
8.8.8.8
```

- DNS over HTTPS uses the popular 443 port
- IPs of popular DoH-supported DNS resolvers are widely known
- → Blocking the resolver_IP:443 pair is trivial and sufficient to hinder DNS over HTTPS services deployed by popular public resolvers

Blocking of Cloudflare DoH resolvers in Saudi Arabia

```
Time
                Source
                                    Destination
                                                    Protocol
 86 21:50:28.... 10.211.1.13
                                                                   52285 → 443 [SYN] Seq=1913266662 Win=64240 Len=0 MSS=1460 SACK_PERM=1
                                    104.16.249.249 TCP
190 21:50:28... 104.16.249.249
                                    10.211.1.13
                                                                   443 → 52285 [SYN, ACK] Seq=1788950671 Ack=1913266663 Win=65535 Len=0
191 21:50:28... 10.211.1.13
                                    104.16.249.249 TCP
                                                                   52285 → 443 [ACK] Seq=1913266663 Ack=1788950672 Win=64256 Len=0
192 21:50:28... 10.211.1.13
                                                                   Client Hello
                                    104.16.249.249 TLSv1.2
321 21:50:29... 104.16.249.249
                                    10.211.1.13
                                                                  443 → 52285 [RST, ACK] Seg=1788950672 Ack=1913267044 Win=871424 Len=0
                                                    TCP
322 21:50:29... 104.16.249.249
                                    10.211.1.13
                                                    TCP
                                                                  443 → 52285 [RST, ACK] Seg=1788950672 Ack=1913267044 Win=871424 Len=0
323 21:50:29.... 104.16.249.249
                                                                   443 → 52285 [RST, ACK] Seg=1788950672 Ack=1913267044 Win=871424 Len=0
                                    10.211.1.13
                                                    TCP
 > Extension: signature algorithms (len=34)
 > Extension: application_layer_protocol_negotiation (len=5)
 > Extension: encrypt then mac (len=0)
 > Extension: extended master secret (len=0)
 > Extension: session ticket (len=0)
 > Extension: key share (len=107)
 > Extension: supported versions (len=5)
  Extension: renegotiation_info (len=1)
 v Extension: server_name (len=31)
     Type: server_name (0)
    Lenath: 31
   Server Name Indication extension
       Server Name list length: 29
       Server Name Type: host name (0)
      Server Name length: 26
      Server Name: mozilla.cloudflare-dns.com
```

Centralized blocking of *.cloudflare-dns.com DoH resolvers in Saudi Arabia detected at different network locations

Decentralized blocking of ESNI Blocking in Russia

```
Time
             Source
                               Destination
                                            Protocol
288 18:40:2... 172.17.0.2
                               104.21.86.... TCP
                                                        59808 → 443 [SYN] Seq=1116287061 Win=64240 Len=0 MSS=1460 SACK_PERM=1
293 18:40:2... 104.21.86.223
                              172.17.0.2
                                                        443 → 59808 [SYN, ACK] Seg=2706902954 Ack=1116287062 Win=65535 Len=0
294 18:40:2... 172.17.0.2
                              104.21.86.... TCP
                                                        59808 → 443 [ACK] Seq=1116287062 Ack=2706902955 Win=64256 Len=0
                                                        Client Hello
295 18:40:2... 172.17.0.2
                              104.21.86.... TLSv1
296 18:40:2... 104.21.86.223
                               172.17.0.2
                                                        443 → 59808 [RST, ACK] Seg=2706902955 Ack=1116287755 Win=67584 Len=0
                                                        443 → 59808 [RST, ACK] Seg=2706902955 Ack=1116287755 Win=67584 Len=0
297 18:40:2... 104.21.86.223
                              172.17.0.2
                                                        443 → 59808 [RST, ACK] Seg=2706904284 Ack=1116287755 Win=67584 Len=0
298 18:40:2... 104.21.86.223
                              172.17.0.2
306 18:40:2... 104.21.86.223
                              172.17.0.2
                                                        443 → 59808 [RST, ACK] Seg=2706904284 Ack=1116287755 Win=67584 Len=0
330 18:40:2... 104.21.86.223
                              172.17.0.2
                                                        443 → 59808 [RST, ACK] Seg=2706902955 Ack=1116287755 Win=67584 Len=0
335 18:40:2... 104.21.86.223
                                                        443 → 59808 [RST, ACK] Seg=2706902955 Ack=1116287755 Win=67584 Len=0
                              172.17.0.2 TCP
v Extension: encrypted_server_name (len=366)
    Type: encrypted server name (65486)
    Length: 366
    Cipher Suite: TLS AES 128 GCM SHA256 (0x1301)
   > Key Share Entry: Group: x25519, Key Exchange length: 32
    Record Digest Length: 32
    Record Digest: 6f8b090d384ae806bfdccac2eb71a336e0629802999bf85c6b84c83d9ed0d548
    Encrypted SNI Length: 292
    Encrypted SNI: a3e11c7d9deefed9734ec58aabff904031478a1bf6b4bc1f178c75c238bd672763378326...
 > Extension: record_size_limit (len=2)
  01 02 03 02 01 ff ce 01 6e 13 01 00 1d 00 20 81
  43 e6 a7 9b 23 2d ee 70 bc 75 bd c7 c2 6d cb e7
                                                      C···#--p·u···m··
 cf e1 d1 bd a8 d4 2c c9 14 b0 24 41 e4 04 24 00
                                                      · · · · · , · · · $A · · $ ·
```

Decentralized blocking of ESNI connections in Russia based on the 2-byte signature ff ce of Encrypted SNI protocol

Filtering circumvention with domain name encryption

Country	Circumvented/	Other filtering techniques			
	Total crawled	TCP	HTTP	TLS	SS
China	130/230	11	2	84	3
Russia	53/56	1	1	1	0
Iran	0/49	1	1	47	0
Indonesia	93/98	2	2	0	1
India	20/20	0	0	0	0

- Encrypting DNS can help bypassing DNS-based censorship
- Not all domains support encrypted SNI
 - → still susceptible to SNI-based blocking

Key takeaway

- Domain name encryption can help to partially circumvent Internet censorship based on DNS
- Notorious censors have already taken a step ahead to hinder the deployment of domain name encryption by
 - √ blocking DoTH servers
 - ✓ blocking ESNI connections
 - => Domain name encryption protocols should be designed and deployed in a way such that blocking their traffic is not an option without causing large collateral damage
- SNI-based blocking is still possible as encrypted SNI has not been widely adopted
 - => Encrypted Client Hello should be adopted universally