
PING and TIMESTAMP
for MASQUE

IETF 114, July 2022
Ben Schwartz
Slides v00

1

Overview

● Goals
○ Enable improved performance and reliability for MASQUE

○ Develop best practices for Capsule Protocol extensions

● Changes since -01
○ Redesigned to match final HTTP/3 Datagrams draft (mostly)

○ Added the TIMESTAMP extension

● Applicability
○ Works with any Capsule Protocol request that uses Context IDs

■ i.e. CONNECT-UDP and CONNECT-IP

2

PING

3

What is a PING Datagram?

● PING is a Capsule Protocol Extension

● Pings are sent between the HTTP client and origin
○ Can be sent in either direction

○ Opaque to intermediaries

Peer A Peer B

8675308 paddingpaddingpadding

8675309
PING Datagram Context

4

How do I enable PING?

● PING contexts are registered statically in the

request/response.

● New HTTP header field: DG-Ping: <Context ID #>
○ There is only one PING context per request, and it is selected by the

client.

○ The server echoes the header to confirm its support for PING.

5

Why use PING?

● Enables DPLPMTUD for the HTTP Datagram MTU
○ HTTP supports intermediaries, so endpoints can’t determine the

Datagram path characteristics from measurements at a lower layer

● Also good for measuring RTT and loss rates in any

application (e.g. for performance debugging)

6

TIMESTAMP

7

What is a TIMESTAMP datagram?

● Attaches a transmission timestamp to any Datagram
○ e.g. UDP, IP, PING

● Uses NTP’s 4-byte or 8-byte time encoding

8

Peer A Peer B

8675308 padding

8675309
TIMESTAMP+PING Datagram Context

12:00:00

12:00:02

How do I enable TIMESTAMP?

● TIMESTAMP capability is

negotiated by a header:

DG-Timestamp: ?1

● TIMESTAMP contexts are

registered dynamically using

new Capsule types

● Each TIMESTAMP context

corresponds to another

context ID, and wraps its

payload.

9

REGISTER_TIMESTAMP_CONTEXT Capsule
{
 Context ID (i)
 Inner Context ID (i)
 Short Format (1)
}
ACK_TIMESTAMP_CONTEXT Capsule {
 Context ID (i)
 Error Code (i)
}
CLOSE_TIMESTAMP_CONTEXT Capsule {
 Context ID (i)
}

Why use TIMESTAMP?

● Improved congestion control for proxying
○ Allows separation of congestion on the client-proxy and

proxy-target legs.

○ Enables improved interaction between the client-proxy and

end-to-end congestion controllers.

● Debugging latency issues
○ “Which queue is filling up?”

● Jitter reduction in highly interactive applications
○ e.g. gaming, robotics

10

Interesting questions

● Should we agree on a uniform prefix like “DG-” for header

fields that negotiate datagram capabilities?

● If the other party allocates TIMESTAMP context ID X

with Inner Context ID Y, should I always send on X

instead of Y? Do we want a way to request timestamps

on 1% of packets?

● Can I add timestamps to an Inner Context ID that was

allocated by the other peer? What are the rules about

closing contexts in complicated situations like this?

11

Status

● Seeking WG adoption in MASQUE

● May help to address outstanding issues related to MTU in

CONNECT-IP

12

