
Rohan Mahy, IETF 114, 29-July-2022

MLS Content Negotiation
draft-mahy-mls-content-neg-00

Problem

• No way to find out which application formats are supported, and  
which formats are required in a group

• No built-in way in MLS to signal the format of MLS application data

• Makes switching content format in long-lived groups very difficult

• Makes interoperability challenging

Proposed MLS Extensions

• In KeyPackage

• accepted_media_types

• In GroupContext

• required_media_types

• These use the extensive IANA media types registry format (straightforward registration, free vendor namespace)

• Examples: 
 text/plain multipart/alternative 
 text/html text/markdown 
 application/foo-im-protocol+json 
 application/vnd.examplecorp.instantmessage 
 

Application Framing

• Application Data is assumed to use Application Framing if
required_media_types is in the GroupContext extensions for the group

• Application Framing contains the media_type, then the rest of the
application_content

 struct {
 MediaType media_type;
 opaque<V> application_content;
 } ApplicationFraming;

• If the media_type is a zero-length vector, the first media type is assumed

Next Steps

• MLS extensions probably need to happen in the MLS WG

• Can we adopt content negotiation as a WG item? (regardless of approach)

• Is this draft a reasonable approach to the problem?

• If you don’t like the proposed approach, please comment on the mailing list

• Make sure to specify if you have an issue with the semantics or the specific
syntax

Backup: How do clients figure out the format?

• required_media_types is not in the GroupContext

• Application Data (probably) does not using Application Framing. No change in message size.

• required_media_type is in the GroupContext. Assume Application Framing

• if media_type is empty string

• application_content is the first media_type in required_media_types. Message is 3-4 bytes longer.

• if media_type is present

• application_content is the specified media_type.

• specified media_type is multipart/alternative.

• multipart message includes at least one supported type for every member

• each member that receives the message uses the first sent media_type they support

