
Key Consistency for 
Oblivious HTTP by 
Double-Checking

Benjamin Schwartz, OHAI @ IETF 114

1



Example: Platform telemetry

● My OS installation image came configured to report telemetry to a default telemetry 

service that supports OHTTP.

● I believe my OS image is the same as everyone else’s, and I trust the code running locally, 

but I want to prevent the telemetry service from linking my reports together.
○ Otherwise the OHTTP Relay is unnecessary!

● I have configured my OS with an OHTTP Relay that I trust not to collude with the 

telemetry service, but I don’t trust the Relay with the contents of my telemetry reports.
○ Otherwise the OHTTP Gateway is unnecessary!

● Problem: How do I ensure that the Gateway URL, KeyConfig, and Target URL are 

authentic and the same as everyone else’s?

2



Easy answer: Hardcode everything!

● Bake the Gateway URL, Target URL, and KeyConfig right into the OS image
○ or in general distribute them through a trusted, consistent “bootstrap channel”.

● Problem: This prevents key rotation and other operational adjustments.

3



This proposal: Bootstrap through the Relay

● Store the Gateway URL, KeyConfig, and Target URL(s) in a config file at a fixed URL.
○ This URL’s origin is the “Service Description Host”

● Fetch this config URL through the Relay, acting as a caching forward proxy
○ Guarantees consistency but not authenticity

● Fetch it again directly from the Service Description Host
○ Guarantees authenticity but not consistency

○ Do this using CONNECT-UDP through the Relay to conceal the client IP

● Check that they match!

Client Relay Service 
Description Host

cache

CONNECT-UDP
4



Many details

● Stitched together from standard HTTP cache and proxy components
○ Headers used: Cache-Control, ETag, If-Match, Age

○ Some additional requirements beyond general HTTP compliance.

● Defenses against different attackers
○ Malicious Relays (KeyConfig forgery)

○ Malicious Service Description Hosts (cache wiping, fetch timing correlation)

○ Colluding malicious Clients (cache wiping, cache eviction)

● Performance considerations
○ Various recommended optimizations

○ Overall latency is generally 2 RTT through the proxy

5



Seeking eventual 
adoption in OHAI

6


