Management and Operations for Green Networking

Green Networking Metrics
Alex Clemm, Lijun Dong, Greg Mirsky, Laurent Ciavaglia, Jeff Tantsura, Marie-Paule Odini

Challenges and Opportunities in Green Networking
Alex Clemm, Cedric Westphal, Jeff Tantsura, Laurent Ciavaglia, Marie-Paule Odini

Point of contact: Alex Clemm ludwig@clemm.org
Why Green Networking?

- Reducing carbon footprint to “Net Zero” is one of mankind’s “grand challenges”
- Networking applications are a key enabler in this, but is this enough?
 - Substantial footprint enabler for a lot of “green” already
 - But, networks consume lots of energy themselves
 - Net Zero mandates will apply to network providers as well
- Key contributors to network energy efficiency today
 - General hardware advances (e.g. Moore’s law – but slowing)
 - Deployment factors (e.g. Nordic locations for datacenters)
 - Antenna technology
- What about network- and management-specific factors?
 - What are ways in which the IETF can contribute?
 - Even if just a small slice of the pie, everything counts…
Operations a big part of the equation

• Deployment and network optimization
 • Energy usage is a great parameter to optimize, just like utilization, cost, etc
 • VM+VNF placement
 • Planning of routes, segments, paths
 • Moderating tradeoffs: resource consumption versus service levels, utilization versus service levels, caching versus access, etc

• Management involves control loops
 • Visibility as the common enabler for many “green” opportunities
 • Very short time scales may be required as data transmission fluctuates wildly
Structuring the opportunity space

draft-cx-green-ps (Alex Clemm, Cedric Westphal, Jeff Tantsura, Laurent Ciavaglia, Marie-Paule Odini)
Device / equipment level

• Important but mostly outside IETF scope
 • Power-efficient hardware, less heat dissipation
 • Eco-friendly materials, easy recycling at end of life cycle
 • Reduce energy usage of transmission technology (lasers, antennas)

• Getting closer
 • Control knobs to configure energy-saving policies
 (power saving modes common in endpoints, what about equipment)

• Of specific interest here: provide visibility into current energy usage
 • Assess actual efficiency
 • Enable control loops for energy optimization schemes
 • Requires instrumentation for energy metrics
Protocol / network / architecture level

- Protocols:
 - Enabling network energy saving mechanisms
 - Fast discovery, fast state reconvergence to accommodate more rapid power cycles
 - Role of autonomies? of IBN?
 - Network addressing and deployment (e.g. smaller tables to maintain)
 - Data volume reduction (e.g. mgmt. of codings, efficient retransmission schemes)

- Network:
 - Energy-related control protocol extensions – e.g. energy as a cost factor in IGP, in SDN controllers
 - Energy-aware routing & path configuration – assess carbon intensity, steer traffic along “greener” paths
 - Resource weaning schemes – turn resources on/off while mitigating other operational goals
 - Deployment / placement of VNFs
 - Green abstractions, taking into account memory, processing, and transmission

- Architecture level
 - Facilitate organization of applications to minimize energy consumption
 - Examples: content retrieval, compute placement (compare CDN/ICN/COIN but from energy perspective)
Network energy metrics
draft-cx-green-metrics (Alex Clemm, Lijun Dong, Greg Mirsky, Laurent Ciavaglia, Jeff Tantsura, Marie-Paule Odini)

• Enabler for “green” management: visibility
 • Peter Drucker: “You cannot manage what you cannot measure” (or observe)
 • This requires instrumentation, which requires metrics

• Related to equipment
 • Power consumption when idle, at various loads (50,90,99%)
 • Current consumption, consumption since last start, absolute vs normalized (relative to traffic), etc
 • Think “YANG modules” (not part of the draft)

• Related to flows
 • Incremental and amortized energy over flow duration, at a device, across the flow, etc

• Related to paths
 • Path energy ratings, etc

• Related to network-at-large
 • Total energy consumption (MWh), network energy efficiency (MWh/PB)
 • Aggregates by which network providers are “measured”, to be optimized
Next steps

• Raise awareness & gain critical mass as a topic
• Two drafts on this topic have been posted as a starting point
 • Problem statement (Challenges and Opportunities)
 • Metrics (as a first specific work item)
 • Actually, three: draft-eckert-ietf-and-energy-overview
 • Much more (including more drafts) will be needed
• Looking for collaborators (and landing spot)
 • Challenges/opportunities: may be a candidate for IRTF→NMRG (?)
 • Green Networking Metrics → OPSAWG (?)
 • Other topics TBD
• Comments? Questions? Please contact us
 • draft-cx-green-ps@ietf.org
 • draft-cx-green-metrics@ietf.org

THANK YOU!