
Practical Privacy-Preserving
Authentication for SSH

Lawrence Roy
Stanislav Lyakhov
Yeongjin Jang
Mike Rosulek

Oregon State University

To appear at USENIX 2022
ia.cr/2022/740

presentation for IETF 114; 2022-07-25

https://ia.cr/2022/740

SSH client SSH server
should I authenticate

with pub key 6c6c6568...?

no

should I authenticate
with pub key 73616664...?

no

...

yes

signature

problem: server can ngerprint client:
I refuse all advertisements⇒ learn all keys

I can congure client to send only “correct” key

problem: client can probe server:
I oer someone else’s pub key, observe response
I SSH supports pre-emptive signature from client

problem: server sees which key was used:
I and can prove it! ⇒ authentication not deniable
I fundamental to protocol

problem: server can act as honeypot:
I accept any key, even ones never seen before
I fundamental to protocol

SSH client SSH server
should I authenticate

with pub key 6c6c6568...?

no

should I authenticate
with pub key 73616664...?

no

...

yes

signature

problem: server can ngerprint client:
I refuse all advertisements⇒ learn all keys

I can congure client to send only “correct” key

problem: client can probe server:
I oer someone else’s pub key, observe response
I SSH supports pre-emptive signature from client

problem: server sees which key was used:
I and can prove it! ⇒ authentication not deniable
I fundamental to protocol

problem: server can act as honeypot:
I accept any key, even ones never seen before
I fundamental to protocol

SSH client SSH server
should I authenticate

with pub key 6c6c6568...?

no

should I authenticate
with pub key 73616664...?

no

...

yes

signature

problem: server can ngerprint client:
I refuse all advertisements⇒ learn all keys

I can congure client to send only “correct” key

problem: client can probe server:
I oer someone else’s pub key, observe response
I SSH supports pre-emptive signature from client

problem: server sees which key was used:
I and can prove it! ⇒ authentication not deniable
I fundamental to protocol

problem: server can act as honeypot:
I accept any key, even ones never seen before
I fundamental to protocol

SSH client SSH server
should I authenticate

with pub key 6c6c6568...?

no

should I authenticate
with pub key 73616664...?

no

...

yes

signature

problem: server can ngerprint client:
I refuse all advertisements⇒ learn all keys

I can congure client to send only “correct” key

problem: client can probe server:
I oer someone else’s pub key, observe response
I SSH supports pre-emptive signature from client

problem: server sees which key was used:
I and can prove it! ⇒ authentication not deniable
I fundamental to protocol

problem: server can act as honeypot:
I accept any key, even ones never seen before
I fundamental to protocol

SSH client SSH server
should I authenticate

with pub key 6c6c6568...?

no

should I authenticate
with pub key 73616664...?

no

...

yes

signature

problem: server can ngerprint client:
I refuse all advertisements⇒ learn all keys

I can congure client to send only “correct” key

problem: client can probe server:
I oer someone else’s pub key, observe response
I SSH supports pre-emptive signature from client

problem: server sees which key was used:
I and can prove it! ⇒ authentication not deniable
I fundamental to protocol

problem: server can act as honeypot:
I accept any key, even ones never seen before
I fundamental to protocol

SSH client SSH server
should I authenticate

with pub key 6c6c6568...?

no

should I authenticate
with pub key 73616664...?

no

...

yes

signature

problem: server can ngerprint client:
I refuse all advertisements⇒ learn all keys

I can congure client to send only “correct” key

problem: client can probe server:
I oer someone else’s pub key, observe response
I SSH supports pre-emptive signature from client

problem: server sees which key was used:
I and can prove it! ⇒ authentication not deniable
I fundamental to protocol

problem: server can act as honeypot:
I accept any key, even ones never seen before
I fundamental to protocol

Ben Cox https://blog.benjojo.co.uk/p
ost/auditing-github-users-ke

ys

https://blog.benjojo.co.uk/post/auditing-github-users-keys

SSH client SSH server
should I authenticate

with pub key 6c6c6568...?

no

should I authenticate
with pub key 73616664...?

no

...

yes

signature

problem: server can ngerprint client:
I refuse all advertisements⇒ learn all keys

I can congure client to send only “correct” key

problem: client can probe server:
I oer someone else’s pub key, observe response
I SSH supports pre-emptive signature from client

problem: server sees which key was used:
I and can prove it! ⇒ authentication not deniable
I fundamental to protocol

problem: server can act as honeypot:
I accept any key, even ones never seen before
I fundamental to protocol

Ben Cox https://blog.benjojo.co.uk/p
ost/auditing-github-users-ke

ys

https://blog.benjojo.co.uk/post/auditing-github-users-keys

SSH client SSH server
should I authenticate

with pub key 6c6c6568...?

no

should I authenticate
with pub key 73616664...?

no

...

yes

signature

problem: server can ngerprint client:
I refuse all advertisements⇒ learn all keys

I can congure client to send only “correct” key

problem: client can probe server:
I oer someone else’s pub key, observe response
I SSH supports pre-emptive signature from client

problem: server sees which key was used:
I and can prove it! ⇒ authentication not deniable
I fundamental to protocol

problem: server can act as honeypot:
I accept any key, even ones never seen before
I fundamental to protocol

Filippo Valsorda https://words.filippo.io/ssh-who
ami-filippo-io/

https://words.filippo.io/ssh-whoami-filippo-io/

SSH client SSH server
should I authenticate

with pub key 6c6c6568...?

no

should I authenticate
with pub key 73616664...?

no

...

yes

signature

problem: server can ngerprint client:
I refuse all advertisements⇒ learn all keys

I can congure client to send only “correct” key

problem: client can probe server:
I oer someone else’s pub key, observe response
I SSH supports pre-emptive signature from client

problem: server sees which key was used:
I and can prove it! ⇒ authentication not deniable
I fundamental to protocol

problem: server can act as honeypot:
I accept any key, even ones never seen before
I fundamental to protocol

SSH client SSH server
should I authenticate

with pub key 6c6c6568...?

no

should I authenticate
with pub key 73616664...?

no

...

yes

signature

problem: server can ngerprint client:
I refuse all advertisements⇒ learn all keys

I can congure client to send only “correct” key

problem: client can probe server:
I oer someone else’s pub key, observe response
I SSH supports pre-emptive signature from client

problem: server sees which key was used:
I and can prove it! ⇒ authentication not deniable
I fundamental to protocol

problem: server can act as honeypot:
I accept any key, even ones never seen before
I fundamental to protocol

SSH client SSH server
should I authenticate

with pub key 6c6c6568...?

no

should I authenticate
with pub key 73616664...?

no

...

yes

signature

problem: server can ngerprint client:
I refuse all advertisements⇒ learn all keys
I can congure client to send only “correct” key

problem: client can probe server:
I oer someone else’s pub key, observe response
I SSH supports pre-emptive signature from client

problem: server sees which key was used:
I and can prove it! ⇒ authentication not deniable
I fundamental to protocol

problem: server can act as honeypot:
I accept any key, even ones never seen before
I fundamental to protocol

SSH client SSH server
should I authenticate

with pub key 6c6c6568...?

no

should I authenticate
with pub key 73616664...?

no

...

yes

signature

problem: server can ngerprint client:
I refuse all advertisements⇒ learn all keys
I can congure client to send only “correct” key

problem: client can probe server:
I oer someone else’s pub key, observe response
I SSH supports pre-emptive signature from client

problem: server sees which key was used:
I and can prove it! ⇒ authentication not deniable
I fundamental to protocol

problem: server can act as honeypot:
I accept any key, even ones never seen before
I fundamental to protocol

SSH client SSH server
should I authenticate

with pub key 6c6c6568...?

no

should I authenticate
with pub key 73616664...?

no

...

yes

signature

problem: server can ngerprint client:
I refuse all advertisements⇒ learn all keys
I can congure client to send only “correct” key

problem: client can probe server:
I oer someone else’s pub key, observe response
I SSH supports pre-emptive signature from client

problem: server sees which key was used:
I and can prove it! ⇒ authentication not deniable
I fundamental to protocol

problem: server can act as honeypot:
I accept any key, even ones never seen before
I fundamental to protocol

SSH client SSH server
should I authenticate

with pub key 6c6c6568...?

no

should I authenticate
with pub key 73616664...?

no

...

yes

signature

problem: server can ngerprint client:
I refuse all advertisements⇒ learn all keys
I can congure client to send only “correct” key

problem: client can probe server:
I oer someone else’s pub key, observe response
I SSH supports pre-emptive signature from client

problem: server sees which key was used:
I and can prove it! ⇒ authentication not deniable
I fundamental to protocol

problem: server can act as honeypot:
I accept any key, even ones never seen before
I fundamental to protocol

our new authentication method: big picture

client server

our protocol
sk1, sk4, sk9 pk1, pk2, . . . , pk6

server has 6 keys,
including pk1 and pk4

client has 3 keys, including
at least one of {sk1, . . . , sk6}

I can include any mixture of existing RSA, ECDSA, EdDSA keys,
in a single authentication attempt

I does not depend on site-specic conguration;
both parties can just safely use all their keys

I client won’t connect unless server knows and explicitly
includes one of client’s keys

our new authentication method: big picture

client server

our protocol
sk1, sk4, sk9 pk1, pk2, . . . , pk6

server has 6 keys,
including pk1 and pk4

client has 3 keys, including
at least one of {sk1, . . . , sk6}

I can include any mixture of existing RSA, ECDSA, EdDSA keys,
in a single authentication attempt

I does not depend on site-specic conguration;
both parties can just safely use all their keys

I client won’t connect unless server knows and explicitly
includes one of client’s keys

our new authentication method: big picture

client server

our protocol
sk1, sk4, sk9 pk1, pk2, . . . , pk6

server has 6 keys,
including pk1 and pk4

client has 3 keys, including
at least one of {sk1, . . . , sk6}

I can include any mixture of existing RSA, ECDSA, EdDSA keys,
in a single authentication attempt

I does not depend on site-specic conguration;
both parties can just safely use all their keys

I client won’t connect unless server knows and explicitly
includes one of client’s keys

our new authentication method: big picture

client server

our protocol
sk1, sk4, sk9 pk1, pk2, . . . , pk6

server has 6 keys,
including pk1 and pk4

client has 3 keys, including
at least one of {sk1, . . . , sk6}

I can include any mixture of existing RSA, ECDSA, EdDSA keys,
in a single authentication attempt

I does not depend on site-specic conguration;
both parties can just safely use all their keys

I client won’t connect unless server knows and explicitly
includes one of client’s keys

our new authentication method: big picture

client server

our protocol
sk1, sk4, sk9 pk1, pk2, . . . , pk6

server has 6 keys,
including pk1 and pk4

client has 3 keys, including
at least one of {sk1, . . . , sk6}

I can include any mixture of existing RSA, ECDSA, EdDSA keys,
in a single authentication attempt

I does not depend on site-specic conguration;
both parties can just safely use all their keys

I client won’t connect unless server knows and explicitly
includes one of client’s keys

technical overview

& contributions

client (with {ski}i): server (with {pkj}j):

c, {mj}j ← Enc
(
{pkj}j

) address ciphertext to {pkj}j ;
skj decrypts c to mj ;
c hides pkj recipients

1. anonymous multi-KEM

c{
m̂i := Dec(ski, c)

}
i

PSI

{mj}j
{m̂i}i each party has set of items;

client learns intersection;
server learns whether empty

2. private set intersection

{m̂i}i ∩ {mj}j ∩ = ∅?

single MKEM construction sup-

porting RSA, ECDSA, & EdDSA

add “proof of nonempty inter-

section” to [RosulekTrieu21] PSI

+ full UC security analysis

technical overview

& contributions

client (with {ski}i): server (with {pkj}j):

c, {mj}j ← Enc
(
{pkj}j

) address ciphertext to {pkj}j ;
skj decrypts c to mj ;
c hides pkj recipients

1. anonymous multi-KEM

c{
m̂i := Dec(ski, c)

}
i

PSI

{mj}j
{m̂i}i each party has set of items;

client learns intersection;
server learns whether empty

2. private set intersection

{m̂i}i ∩ {mj}j ∩ = ∅?

single MKEM construction sup-

porting RSA, ECDSA, & EdDSA

add “proof of nonempty inter-

section” to [RosulekTrieu21] PSI

+ full UC security analysis

technical overview

& contributions

client (with {ski}i): server (with {pkj}j):

c, {mj}j ← Enc
(
{pkj}j

) address ciphertext to {pkj}j ;
skj decrypts c to mj ;
c hides pkj recipients

1. anonymous multi-KEM

c

{
m̂i := Dec(ski, c)

}
i

PSI

{mj}j
{m̂i}i each party has set of items;

client learns intersection;
server learns whether empty

2. private set intersection

{m̂i}i ∩ {mj}j ∩ = ∅?

single MKEM construction sup-

porting RSA, ECDSA, & EdDSA

add “proof of nonempty inter-

section” to [RosulekTrieu21] PSI

+ full UC security analysis

technical overview

& contributions

client (with {ski}i): server (with {pkj}j):

c, {mj}j ← Enc
(
{pkj}j

) address ciphertext to {pkj}j ;
skj decrypts c to mj ;
c hides pkj recipients

1. anonymous multi-KEM

c{
m̂i := Dec(ski, c)

}
i

PSI

{mj}j
{m̂i}i each party has set of items;

client learns intersection;
server learns whether empty

2. private set intersection

{m̂i}i ∩ {mj}j ∩ = ∅?

single MKEM construction sup-

porting RSA, ECDSA, & EdDSA

add “proof of nonempty inter-

section” to [RosulekTrieu21] PSI

+ full UC security analysis

technical overview

& contributions

client (with {ski}i): server (with {pkj}j):

c, {mj}j ← Enc
(
{pkj}j

) address ciphertext to {pkj}j ;
skj decrypts c to mj ;
c hides pkj recipients

1. anonymous multi-KEM

c{
m̂i := Dec(ski, c)

}
i

PSI

{mj}j
{m̂i}i each party has set of items;

client learns intersection;
server learns whether empty

2. private set intersection

{m̂i}i ∩ {mj}j ∩ = ∅?

single MKEM construction sup-

porting RSA, ECDSA, & EdDSA

add “proof of nonempty inter-

section” to [RosulekTrieu21] PSI

+ full UC security analysis

technical overview

& contributions

client (with {ski}i): server (with {pkj}j):

c, {mj}j ← Enc
(
{pkj}j

) address ciphertext to {pkj}j ;
skj decrypts c to mj ;
c hides pkj recipients

1. anonymous multi-KEM

c{
m̂i := Dec(ski, c)

}
i

PSI

{mj}j
{m̂i}i each party has set of items;

client learns intersection;

server learns whether empty

2. private set intersection

{m̂i}i ∩ {mj}j

∩ = ∅?

single MKEM construction sup-

porting RSA, ECDSA, & EdDSA

add “proof of nonempty inter-

section” to [RosulekTrieu21] PSI

+ full UC security analysis

technical overview

& contributions

client (with {ski}i): server (with {pkj}j):

c, {mj}j ← Enc
(
{pkj}j

) address ciphertext to {pkj}j ;
skj decrypts c to mj ;
c hides pkj recipients

1. anonymous multi-KEM

c{
m̂i := Dec(ski, c)

}
i

PSI

{mj}j
{m̂i}i each party has set of items;

client learns intersection;
server learns whether empty

2. private set intersection

{m̂i}i ∩ {mj}j ∩ = ∅?

single MKEM construction sup-

porting RSA, ECDSA, & EdDSA

add “proof of nonempty inter-

section” to [RosulekTrieu21] PSI

+ full UC security analysis

technical overview & contributions

client (with {ski}i): server (with {pkj}j):

c, {mj}j ← Enc
(
{pkj}j

) address ciphertext to {pkj}j ;
skj decrypts c to mj ;
c hides pkj recipients

1. anonymous multi-KEM

c{
m̂i := Dec(ski, c)

}
i

PSI

{mj}j
{m̂i}i each party has set of items;

client learns intersection;
server learns whether empty

2. private set intersection

{m̂i}i ∩ {mj}j ∩ = ∅?

single MKEM construction sup-

porting RSA, ECDSA, & EdDSA

add “proof of nonempty inter-

section” to [RosulekTrieu21] PSI

+ full UC security analysis

technical overview & contributions

client (with {ski}i): server (with {pkj}j):

c, {mj}j ← Enc
(
{pkj}j

) address ciphertext to {pkj}j ;
skj decrypts c to mj ;
c hides pkj recipients

1. anonymous multi-KEM

c{
m̂i := Dec(ski, c)

}
i

PSI

{mj}j
{m̂i}i each party has set of items;

client learns intersection;
server learns whether empty

2. private set intersection

{m̂i}i ∩ {mj}j ∩ = ∅?

single MKEM construction sup-

porting RSA, ECDSA, & EdDSA

add “proof of nonempty inter-

section” to [RosulekTrieu21] PSI

+ full UC security analysis

technical overview & contributions

client (with {ski}i): server (with {pkj}j):

c, {mj}j ← Enc
(
{pkj}j

) address ciphertext to {pkj}j ;
skj decrypts c to mj ;
c hides pkj recipients

1. anonymous multi-KEM

c{
m̂i := Dec(ski, c)

}
i

PSI

{mj}j
{m̂i}i each party has set of items;

client learns intersection;
server learns whether empty

2. private set intersection

{m̂i}i ∩ {mj}j ∩ = ∅?

single MKEM construction sup-

porting RSA, ECDSA, & EdDSA

add “proof of nonempty inter-

section” to [RosulekTrieu21] PSI

+ full UC security analysis

concrete performance:

of keys RSA keys only EC keys only

client server

5 10 60 ms 9 ms

20 100 320 ms 28 ms

20 1000 1200 ms 214 ms

2 commodity desktop computers on LAN

concrete performance:

of keys RSA keys only EC keys only

client server

5 10 60 ms 9 ms

20 100 320 ms 28 ms

20 1000 1200 ms 214 ms

2 commodity desktop computers on LAN

concrete performance:

of keys RSA keys only EC keys only

client server

5 10 60 ms 9 ms

20 100 320 ms 28 ms

20 1000 1200 ms 214 ms

2 commodity desktop computers on LAN

concrete performance:

of keys RSA keys only EC keys only

client server

5 10 60 ms 9 ms

20 100 320 ms 28 ms

20 1000 1200 ms 214 ms

2 commodity desktop computers on LAN

client server

our protocol
set of secret keys set of “authorized” public keys

of server keys;
identity of authorized keys

of client keys;
were any of them authorized?

ia.cr/2022/740

https://ia.cr/2022/740

