The DECOUPLING Principle

Barath Raghavan USC / INVISV

Thanks to: Paul Schmitt (INVISV), Jana Iyengar (Fastly), Chris Wood (Cloudflare), Tommy Pauly (Apple)

In a Nutshell

For Internet privacy, decouple who you are from what you do
→ Old idea (dates back at least to Chaum), inconsistently applied

→ E.g. split authentication from connectivity

Applying decoupling is protocol / context specific

Context

→ TLS is everywhere, data is encrypted at rest, etc.

What remains is a layered metadata privacy problem→ Many overlapping solutions needed

→ We rely upon others to carry our traffic/process our requests

A Bit of Terminology

Let's define sensitive / non-sensitive information:

- \rightarrow \blacktriangle = sensitive user identity
- \rightarrow Δ = non-sensitive user identity
- → = sensitive user data
- → = non-sensitive user data

Tuples describe knowledge of some party in some context:

→ E.g. (\blacktriangle , \odot) = sensitive user identity + non-sensitive user data

Caveats

Identity and data are always shades of gray

- → Difficult to cleanly categorize as sensitive/non-sensitive
- → Identity and data are sometimes mixed/conflated
- → But: still useful to analyze with generally-understood categories

Example: Mix-nets / Tor

Sender

- → Sending a message (request/data) to some receiver
- → Trying to achieve data/metadata privacy for ID and message

Mixes

 \rightarrow Third parties relaying the data

Receiver

→ Partially trusted party who will receive/respond to the message

Example: Mix-nets / Tor

Sender: $(\blacktriangle, \bullet)$

→ All sensitive info (of course)

Mix 1: (▲,☉), ... Mix N-1:(△,☉)

→ Sensitive/non-sensitive user identity + non-sensitive user data

Receiver/Mix N: (\triangle, \bullet)

→ Non-sensitive user identity + sensitive user data

The DECOUPLING Principle

Third-parties should know at most one of: $\{ \blacktriangle, \bullet \}$

Many Examples

Chaum's designs (blinded payments, mix-nets, etc.) / Tor Privacy Pass / Private Access Tokens **Oblivious DNS** PGPP Private Relay

Private Aggregate Statistics

Why Does This Work?

Users often care about:

- → Hiding their (true) identity from semi-trusted services
- → Hiding the data/metadata of their requests from untrusted parties

Users often don't care about:

- → Whether they reveal they are a user of some public/popular service
- → Whether they can hide a request from the service that responds to it

Cautionary Tale: Security Gateways/VPNs

Sender: (▲,●)

→ All sensitive info

Gateway: (▲,●)

→ All sensitive info (**problematic**)

Receiver: (Δ, \bullet)

→ Non-sensitive user identity + sensitive user data

Other Considerations

Non-collusion:

→ Dividing knowledge between parties requires it

Hardware enclaves / TEEs:

→ Can shift trust and thus who knows what

Side-channels:

→ Still a problem, can change the nature of the analysis