
concise-ta-stores (CoTS)
IETF 114 – Philadelphia – July 2022 – RATS Working Group

Russ Housley
Carl Wallace

Draft and example implementation

• https://datatracker.ietf.org/doc/html/draft-wallace-rats-concise-ta-
stores-00
• https://github.com/carl-wallace/draft-wallace-rats-concise-ta-stores

• https://github.com/carl-wallace/corim
• Fork of https://github.com/veraison/corim

2

https://datatracker.ietf.org/doc/html/draft-wallace-rats-concise-ta-stores-00
https://github.com/carl-wallace/draft-wallace-rats-concise-ta-stores
https://github.com/carl-wallace/corim
https://github.com/veraison/corim

Desired path forward

• Accept as working group draft and proceed on standards track

3

Why define concise-ta-stores?

• Current RATS work implies use of trust anchors for many different
purposes, including verification of evidence, endorsements, reference
values, digital letters of approval, public key certificates, revocation
information, etc.
• The concise-ta-stores spec provides a means of representing trust

anchors with limitations on the contexts in which a trust anchor store
may be used
• Support various combinations of TAs and CAs, i.e., single vendor

TA/CA, multiple vendor TA/single vendor CA, multiple vendor
TA/multi-vendor CA

4

Why define as an extension of CoRIM?

• Similar general purpose of conveying information to verifiers and
relying parties
• Why not define as a profile of CoRIM?
• The lifecycle of TAs and CAs is different than the lifecycle of reference data
• The use cases for trust anchors in RATS are broader than CoRIM
• The verification-map in CoRIM is tied to CoMIDs, leaving no easy path to

support non-CoMID-centric use cases

5

Basic structure
concise-ta-store-map = {

? tastore.language => language-type
? tastore.store-identity => tag-identity-map
tastore.environments => environment-group-list
? tastore.purposes => [+ $tas-list-purpose]

? tastore.perm_claims => [+ $$claims-set-claims]
? tastore.excl_claims => [+ $$claims-set-claims]
tastore.keys => cas-and-tas-map
}

• concise-ta-stores are arrays of the concise-ta-store-map, which defines a trust anchor (TA) store
• Each TA store may be defined with optional constraints
• Optional store-identity facilitates linking from other artifacts
• Each TA store contains at least one TA, which may also optionally constrained

6

Basic structure: store identity

tag-identity-map = {

&(tag-id: 0) => $tag-id-type-choice

? &(tag-version: 1) => tag-version-type

}

• Defined in CoRIM.
• Allows for identifying a store using a UUID or textual identifier with an

optional version value

7

Basic structure: environments

environment-group-list-map = {

? tastore.environment_map => environment-map,

? tastore.concise_swid_tag => abbreviated-swid-tag,

? tastore.named_ta_store => named-ta-store,

}

• environment-map is from CoRIM. Features class, instance, and group.
• abbreviated-swid-tag is modified from CoSWID to allow all fields

except entity to be optional.
• named-ta-store is freeform text name

8

Basic structure: constraints
$$tas-list-purpose /= "cots"

$$tas-list-purpose /= "corim"

$$tas-list-purpose /= "coswid"

$$tas-list-purpose /= "eat"

$$tas-list-purpose /= "key-attestation"

$$tas-list-purpose /= "certificate"

$$tas-list-purpose /= "dloa"

• The purpose field is similar to the PKIX extended key usage extension
• Represents constraints as abstract names, i.e., corim, eat, dloa, etc.

• Corresponding EKU values will be defined for use in certificates
• Will propose a registry for purpose values

9

Basic structure: constraints (cont.)

? tastore.perm_claims => [+ $$claims-set-claims]

? tastore.excl_claims => [+ $$claims-set-claims]

• The perm_claims and excl_claims fields can carry EAT claims to
represent acceptable or unacceptable values for associated TA(s)
• $$claims-set-claims is a group socket defined in EAT
• Claims are registered in the CBOR Web Token (CWT) Claims registry:

http://www.iana.org/assignments/cwt

10

https://www.iana.org/assignments/cwt

Basic structure: keys
trust-anchor = {

format => $pkix-ta-type

data => bstr

}

cas-and-tas-map = {

tastore.tas => [+ trust-anchor]

? tastore.cas => [+ pkix-cert-data]

}

• Provides means to convey trust anchors and, optionally, intermediate CA certificates
• TAs can be represented as bare public key (i.e., SubjectPublicKeyInfo), a Certificate,

or a TrustAnchorInfo
• TrustAnchorInfo allows for per-trust anchor constraints, which would be in

addition to any TA store constraints

11

Security mechanisms

• Inherits signed structure from CoRIM, which uses from COSE
• Recommend verification to a trust anchor with the CoTS purpose

12

Things left to other specifications

• Use of constraints represented in a TA store definition or TA definition
is not covered in this specification

13

Questions

1. Is CoRIM extension the right way forward?
2. Should environment be simplified to focus on some identity

characteristics shared by CoMID/CoSWID?
3. Do constraints mechanisms adequately cover the TA landscape

implied by RATS architecture?
4. Other questions…

14

