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Draft and example implementation

• https://datatracker.ietf.org/doc/html/draft-wallace-rats-concise-ta-
stores-00
• https://github.com/carl-wallace/draft-wallace-rats-concise-ta-stores

• https://github.com/carl-wallace/corim
• Fork of https://github.com/veraison/corim
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Desired path forward

• Accept as working group draft and proceed on standards track
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Why define concise-ta-stores?

• Current RATS work implies use of trust anchors for many different 
purposes, including verification of evidence, endorsements, reference 
values, digital letters of approval, public key certificates, revocation 
information, etc.
• The concise-ta-stores spec provides a means of representing trust 

anchors with limitations on the contexts in which a trust anchor store 
may be used
• Support various combinations of TAs and CAs, i.e., single vendor 

TA/CA, multiple vendor TA/single vendor CA, multiple vendor 
TA/multi-vendor CA
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Why define as an extension of CoRIM?

• Similar general purpose of conveying information to verifiers and 
relying parties
• Why not define as a profile of CoRIM?
• The lifecycle of TAs and CAs is different than the lifecycle of reference data
• The use cases for trust anchors in RATS are broader than CoRIM
• The verification-map in CoRIM is tied to CoMIDs, leaving no easy path to 

support non-CoMID-centric use cases
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Basic structure
concise-ta-store-map = {

? tastore.language => language-type
? tastore.store-identity => tag-identity-map
tastore.environments => environment-group-list
? tastore.purposes => [+ $tas-list-purpose]

? tastore.perm_claims => [+ $$claims-set-claims]
? tastore.excl_claims => [+ $$claims-set-claims]
tastore.keys => cas-and-tas-map
}

• concise-ta-stores are arrays of the concise-ta-store-map, which defines a trust anchor (TA) store
• Each TA store may be defined with optional constraints
• Optional store-identity facilitates linking from other artifacts
• Each TA store contains at least one TA, which may also optionally constrained
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Basic structure: store identity

tag-identity-map = { 

&(tag-id: 0) => $tag-id-type-choice 

? &(tag-version: 1) => tag-version-type 

}

• Defined in CoRIM. 
• Allows for identifying a store using a UUID or textual identifier with an 

optional version value
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Basic structure: environments

environment-group-list-map = {

? tastore.environment_map => environment-map,

? tastore.concise_swid_tag => abbreviated-swid-tag,

? tastore.named_ta_store => named-ta-store,

}

• environment-map is from CoRIM. Features class, instance, and group.
• abbreviated-swid-tag is modified from CoSWID to allow all fields 

except entity to be optional.
• named-ta-store is freeform text name
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Basic structure: constraints
$$tas-list-purpose /= "cots" 

$$tas-list-purpose /= "corim" 

$$tas-list-purpose /= "coswid" 

$$tas-list-purpose /= "eat" 

$$tas-list-purpose /= "key-attestation" 

$$tas-list-purpose /= "certificate" 

$$tas-list-purpose /= "dloa"

• The purpose field is similar to the PKIX extended key usage extension
• Represents constraints as abstract names, i.e., corim, eat, dloa, etc.

• Corresponding EKU values will be defined for use in certificates
• Will propose a registry for purpose values

9



Basic structure: constraints (cont.)

? tastore.perm_claims => [+ $$claims-set-claims]

? tastore.excl_claims => [+ $$claims-set-claims]

• The perm_claims and excl_claims fields can carry EAT claims to 
represent acceptable or unacceptable values for associated TA(s)
• $$claims-set-claims is a group socket defined in EAT
• Claims are registered in the CBOR Web Token (CWT) Claims registry: 

http://www.iana.org/assignments/cwt
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Basic structure: keys
trust-anchor = {

format => $pkix-ta-type

data => bstr

}

cas-and-tas-map = {

tastore.tas => [ + trust-anchor ]

? tastore.cas => [ + pkix-cert-data ]

}

• Provides means to convey trust anchors and, optionally, intermediate CA certificates
• TAs can be represented as bare public key (i.e., SubjectPublicKeyInfo), a Certificate, 

or a TrustAnchorInfo
• TrustAnchorInfo allows for per-trust anchor constraints, which would be in 

addition to any TA store constraints
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Security mechanisms

• Inherits signed structure from CoRIM, which uses from COSE
• Recommend verification to a trust anchor with the CoTS purpose
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Things left to other specifications

• Use of constraints represented in a TA store definition or TA definition 
is not covered in this specification
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Questions

1. Is CoRIM extension the right way forward?
2. Should environment be simplified to focus on some identity 

characteristics shared by CoMID/CoSWID?
3. Do constraints mechanisms adequately cover the TA landscape 

implied by RATS architecture?
4. Other questions…
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