BGP Blockchain

draft-mcbride-rtgwg-bgp-blockchain
Background

• DLT proposals happening in IETF (SCITT, SATP).
• Inquiries about DLT in Networking and what’s going on in the IEEE/IETF/etc.
• Held a side meeting at 113 to discuss DLT in Networking.
• This bgp blockchain draft is informational and not an endorsement.
• Asks: “Is it possible to use a distributed consensus system, like blockchain, to further secure BGP?”
Overview

- Smart contracts are programs executed within a DCS.
 - A BGP DCS could use smart contracts for BGP capabilities.

- N miners, which implement the distributed consensus for a desired smart contract.
 - A DCS may implement more than one smart contract.

- DCS could be permissioned (e.g., AS owners) or permissionless, while client transactions could be separately secured by authorizing any clients (through RPKI).

- ROA entries could be added to the DCS as secure transactions and those transactions would be relied upon by route validators as authoritative.
Potential BGP Opportunities

- Preventing fraudulent BGP origin announcements
- Validating incoming BGP updates
- Providing routing policy such as QoS
- Protecting BGP config files
- Providing path validation
- Securing BGP Controllers
- Securing Blockchain compromised by BGP vulnerabilities
- BGP functional resilience and reliability
The DLT Network – if time permits

• Crypto currencies and DLTs don’t much care about the underlying provider network.
• They have a P2P network with a pool of transport layer (TCP, UDP) connections.
 • Important to understand the impact of pool management mechanisms on provider network costs, see for instance https://datatracker.ietf.org/doc/draft-trossen-rtgwg-impact-of-dlts/
• They have done a good job securing their application.
The Network

P2P Network (nodes that verify transactions, execute smart contracts, boot/seed nodes to bootstrap clients/new nodes, process new blocks, full nodes, lightweight nodes...)

TCP/IP Network
Opportunities

• Trust packet capture data
• Network mgmt moves to a decentralized, smart contract-based system. Web 3.0.
• Signing routing advertisements, proof of transit.
• BGP/RPKI. ROA’s in a blockchain.
• Overlays such as LISP
DLT Layering Architecture

<table>
<thead>
<tr>
<th>Layer</th>
<th>User Interface</th>
<th>DLT Wallet</th>
<th>DLT Explorer</th>
<th>DLT Analytics</th>
<th>Decentralized Finance</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application Protocol Layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contract Layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consensus Layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Session Layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport Layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network Layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resource Layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer</th>
<th>Token Management</th>
<th>Identity Management</th>
<th>Storage Management</th>
<th>Decentralized Governance</th>
<th>DLT Oracle</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Protocol Layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contract Layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consensus Layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Session Layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer</th>
<th>Transaction Engine</th>
<th>Smart Contract</th>
<th>PoW/PoS/DPoS/PBFT/Raft/etc.</th>
<th>Account</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application Protocol Layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contract Layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consensus Layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Session Layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer</th>
<th>TCP</th>
<th>QUIC</th>
<th>TLS</th>
<th>Publish/Subscribe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport Layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer</th>
<th>DNS+IP</th>
<th>Overlay</th>
<th>Service Routing</th>
<th>Pub/sub</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Layer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Layer	CPU	Storage	Transport Network	
----------------------------	-------------------	----------------	----------------------------	
Resource Layer				