Stub Network
AutoConfiguration
Problem Statement

• Hosts can connect to network infrastructure link automatically
 • infrastructure example: home WiFi network
• No similar way to connect a stub network to network infrastructure link, so that:
 • Hosts on stub network can reach hosts on infrastructure link
 • Hosts on infrastructure can reach hosts on stub net
 • Hosts on stub net can discover services on infrastructure link
 • Hosts on infrastructure can discover services on stub net
• Goal:
 • Connect a stub network to a network giving hosts on stub network the same experience as hosts on infrastructure
Popular non-solution

- The usual non-solution is to have a double NAT
- This has problems:
 - Devices on inner link can reach devices on outer link
 - Devices on outer link can’t reach devices on inner link
 - Devices on inner link can’t discover devices on outer link
 - Devices on outer link can’t discover devices on inner link
 - Devices on both links can reach internet
 - So you’re stuck with cloud-only solutions
Double-NAT topology

CE Router

Home LAN

Double NAT LAN

Ted Lemon <mellon@fugue.com>
Goals

• Primary goals
 • Mutual reachability between stub hosts and infra hosts
 • Mutual discoverability between stub hosts and infra hosts
 • Stub hosts can reach services on the internet (firmware updates!)

• Stretch goals:
 • Hosts on stub networks can mutually communicate with
 hosts on non-adjacent links, within an administrative
 domain or the internet
 • Hosts on stub networks are discoverable on non-adjacent
 infrastructure links, or possibly on the internet
Constraints

• This has to work with existing networks:
 • We can’t require changes to people’s home routers, for example
 • We can’t require changes to infrastructure hosts
• Stub networks might be green-field or ordinary
 • Green-field example: constrained network that doesn’t currently provide IP routing
 • In this case we can require changes to hosts
 • Ordinary example: like the double NAT, but without the limitations
 • In this case, we can’t require changes to hosts
Topology constraints

• Stub networks are not transit networks:
 • we don’t want or need routing across stub networks
• Stub networks may be multiply connected:
 • more than one stub network router connected to same stub network
 • stub routers connected to one stub network may be connected to different infrastructure links
 • Not clear we can support this, and if so how we would support it
Simple Stub topology

- CE Router
- Home LAN
- Stub Router
- Stub network
Multi-router Stub topology

CE Router

Home LAN

Stub Router

Stub Router

Stub network
Multi-link topology

Home LAN

Stub network

Garage LAN
Assumptions

- Based on analysis in draft-lemon-stub-networks-ps
 - Use IPv6
 - Use routing
 - Use DNS Service Discovery
- Are these assumptions controversial?
Service Discovery

- Current home networks use multicast DNS for service discovery
- This is widely deployed, and widely supported:
 - Linux
 - Android
 - Apple iOS, MacOS, etc.
 - Windows
- Other alternatives?
Deliverables

- A document that describes how to address the initial goals
 - e.g., draft-lemon-stub-networks
- Additional documents required to address stretch goals, e.g.
 - DHCPv6 PD to acquire stub network on-link prefix
 - How to include stub network DNSSD in an infrastructure-provided DNSSD service