
Compact TLS (cTLS) draft-06
Eric Rescorla, Richard Barnes, Hannes Tschofenig, Ben Schwartz

TLS WG @ IETF 114

1

Major changes since -05

● Profile IDs are now registrable bytestrings
● cTLS is no longer a compression layer!

○ cTLS is now a protocol generator for protocols that are functionally equivalent to subsets of (D)TLS.

● cTLS templates are now binary objects, not JSON
○ A corresponding JSON format is still defined for ease of editing

● New “handshakeFraming” option controls handshake compaction
○ Allows template to disable fragmentation support if handshake messages will definitely be short

2

Profile IDs are now registrable bytestrings

opaque ProfileID<1..2^8-1>

Omitted ID => use “default cTLS”

“IDs whose decoded length is 4 bytes or less are reserved.... When a reserved value is
used (including the default value), other keys MUST NOT appear in the template, and a
client MUST NOT accept the template unless it recognizes the ID.”

“The ID values of length 1 are subject to a "Standards Action" registry policy. Values of
length 2 are subject to an "RFC Required" policy. Values of length 3 and 4 are subject to
a "First Come First Served" policy. Values longer than 4 octets are not subject to
registration and MUST NOT appear in this registry.”

3

cTLS is no longer a compression layer

● cTLS now performs validation on its own transcript
○ No need to reconstruct a standard TLS or DTLS transcript
○ Likely simpler to implement

● …but cTLS transcripts are ambiguous!
○ byte-identical messages are semantically different under different cTLS templates

● Solution: Prepend the template to the transcript as a synthetic message

ClientHello ServerHello EncryptedExtensions …TLS

Client
Hello

Server
Hello

Encrypted
Extensions …cTLS cTLS template

4

cTLS templates are now binary objects, not JSON
● Placing the template in the transcript

requires byte-identical agreement on the
template contents.

● Byte-identical conveyance of JSON is
extremely annoying.

● Need a consistent binary format
○ with byte-identical reproducibility after a

roundtrip through JSON!
● Solution: Key-value map, similar to

ClientHello.extensions but in sorted
order.

enum {
 profile(0),
 version(1),
 cipher_suite(2),
 ...
 optional(65535)
} CTLSTemplateElementType;

struct {
 CTLSTemplateElementType type;
 opaque data<0..2^32-1>;
} CTLSTemplateElement;

struct {
 uint16 ctls_version = 0;
 CTLSTemplateElement elements<0..2^32-1>;
} CTLSTemplate;

5

New “handshakeFraming” option

● TLSʼs Handshake has a uint24 length to support long messages (≥ 216)
● DTLSHandshake adds uint16 message_seq, uint24 fragment_offset, and

uint24 fragment_length to tolerate loss and reordering.
● cTLS is designed for compactness, so handshake messages are likely to fit in one

record.
● New option: handshake_framing = true/false

○ true: Use Handshake or DTLSHandshake as usual. Long messages and fragmentation allowed.
○ false: Use CTLSHandshake or CTLSDatagramHandshake. The length and fragmentation fields are

omitted.

● Like DTLS 1.3, the transcript always uses Handshake messages.

6

Interesting Questions

● What to do about Elliptic Curve compressed representations?
○ Proposal: Handle this independently as a separate draft registering new codepoints.

● Should we support compression of CertificateEntry.extensions and
HelloRetryRequest.extensions?
○ Proposal: Support compression of extensions only on compressed certificates.
○ Proposal: Compress HelloRetryRequest.extensions independently from other messages.

● How do we version cTLS?
○ Currently, cTLS version is 0, independent of TLS version (which can be pinned or negotiated).
○ Not clear how well forward-compatibility will work for future versions of TLS/DTLS!

● Can we omit empty messages?
○ Are we sure that the recipient can always reconstruct the omitted messages? What about in future

versions of TLS?

● Many other details still open!
7

close_notify

8

