Enhanced Port Forwarding functions with CGNAT

draft-chan-tsvwg-eipf-cgnat-00.txt

Louis Chan
Juniper Networks
Jul 2022

draft-chan-tsvwg-eipf-cgnat-00.txt

Problem statement:

- RFC5128 provides methods for setting up P2P connection behind NAT44. However,
- Only works for UDP in live situation
- For TCP, it has low success rate.
- e.g. Direct TCP connection for webcam does not work
- It hole punching method needs a common $3^{\text {rd }}$ party server
- Need a solution working for TCP under CGNAT
- Each party could run independently

UDP hole punching

UDP - High success rate
But a common $3^{\text {rd }}$ party server is a must, and all runs software from same entity
TCP - Low success rate. Practically, it is not deployed.

Endpoint Independent port forwarding (EIPF) Enhancement

- Allow TCP/UDP incoming connection through CGNAT WITHOUT changing the DEST port
- DEST port is actually allocated from CGNAT as outgoing source port per private IP
- Allow chain of forwarding of the same DEST port from CGNAT, RG and hence to the end device

Example: incoming TCP session for NAT444

1. Use STUN server to discover opening port
2. Use UPNP to enable port forwarding at RG
3. UDP/TCP services allowed

TCP/UDP port usable

RG assigned with public IP

RG assigned with private IP w/ CGNAT

Need to detect

- Public IP
- Usable port

Other

- Use URI to retrieve port mapping from Service provider
- URI /ipport/
- E.g. 100.1.1.1:1040
- URI /ipportrange/
- E.g. 100.1.1.1:1024:1031

