

Unintended Operational Issues With ULA

Nick Buraglio, ESnet Chris Cummings, ESnet Russ White, Juniper Networks **IETF 114**

26-July-2022

Current ULA standards present unintended consequences

TL;DR

- This draft is intended to identify and codify existing issues
- We are not attempting to propose any solutions
- The behavior of ULA addressing as defined by [RFC6724] is preferred below legacy
 IPv4 addressing
- ULA deployments using de facto best practices for DNS (A and AAAA for a resource)
 will not, generally, use ULA by default
- "IPv6 by Default" is largely understood to be both default and correct behavior for dual-stacked hosts. Most implementations do not perform in this manner.

Functional but unsupportable solutions

There are ways to change this default behavior, which is in most cases controlled by getaddrinfo(), however.....

These techniques are:

- Problematic to scale across diverse multi functional organizations
- Impose significant additional impediment to operations where implementing IPv6 is already a difficult undertaking for many enterprise organizations
- Functionally impossible for many systems (tablets, embedded systems, operational technology, systems with compliance requirements, guest or partner equipment, legacy equipment) to modify the prefix policy table

In addition...

- We still see remnants of RFC3484 in actively deployed systems.
- RFC6724 was approved in 2012.
- Mean time to implementation is clearly over 10 years, that means even with an update to RFC6724 it would take approximately 10+ years for that change to be widely deployed.
- That timeline doesn't not align with current enterprise deployment needs and schedule.

Simple example of existing behavior

Both systems dual stacked

host gw-test.buragl.io

gw-test.buragl.io has address 10.255.255.3

gw-test.buragl.io has IPv6 address fd68:1e02:dc1a:ffff::3

buraglio@netmon:~ \$ ping gw-test.buragl.io

PING gw-test.buragl.io (10.255.255.3) 56(84) bytes of data.

PING 10.255.255.3 (10.255.255.3) 56(84) bytes of data.

64 bytes from 10.255.255.3: icmp_seq=1 ttl=63 time=0.569 ms

64 bytes from 10.255.255.3: icmp_seq=2 ttl=63 time=0.437 ms

64 bytes from 10.255.255.3: icmp_seq=3 ttl=63 time=0.433 ms

Any reason not to adopt this?

Current draft:

https://www.ietf.org/archive/id/draft-burag lio-v6ops-ula-03.html

Questions?