
GNAP J. Richer, Ed.
Internet-Draft Bespoke Engineering
Intended status: Standards Track F. Imbault
Expires: 21 September 2024 acert.io
 20 March 2024

 Grant Negotiation and Authorization Protocol
 draft-ietf-gnap-core-protocol-20

Abstract

 GNAP defines a mechanism for delegating authorization to a piece of
 software, and conveying the results and artifacts of that delegation
 to the software. This delegation can include access to a set of APIs
 as well as subject information passed directly to the software.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 21 September 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Richer & Imbault Expires 21 September 2024 [Page 1]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

Table of Contents

 1. Introduction . 6
 1.1. Terminology . 7
 1.2. Roles . 8
 1.3. Elements . 10
 1.4. Trust relationships 11
 1.5. Protocol Flow . 13
 1.6. Sequences . 16
 1.6.1. Overall Protocol Sequence 16
 1.6.2. Redirect-based Interaction 19
 1.6.3. User-code Interaction 22
 1.6.4. Asynchronous Authorization 25
 1.6.5. Software-only Authorization 27
 1.6.6. Refreshing an Expired Access Token 28
 1.6.7. Requesting Subject Information Only 30
 1.6.8. Cross-User Authentication 31
 2. Requesting Access . 34
 2.1. Requesting Access to Resources 36
 2.1.1. Requesting a Single Access Token 36
 2.1.2. Requesting Multiple Access Tokens 39
 2.2. Requesting Subject Information 41
 2.3. Identifying the Client Instance 42
 2.3.1. Identifying the Client Instance by Reference 44
 2.3.2. Providing Displayable Client Instance Information . . 45
 2.3.3. Authenticating the Client Instance 45
 2.4. Identifying the User 46
 2.4.1. Identifying the User by Reference 47
 2.5. Interacting with the User 48
 2.5.1. Start Mode Definitions 50
 2.5.2. Interaction Finish Methods 52
 2.5.3. Hints . 55
 3. Grant Response . 56
 3.1. Request Continuation 58
 3.2. Access Tokens . 59
 3.2.1. Single Access Token 59
 3.2.2. Multiple Access Tokens 63
 3.3. Interaction Modes . 64
 3.3.1. Redirection to an arbitrary URI 66
 3.3.2. Launch of an application URI 66
 3.3.3. Display of a Short User Code 67
 3.3.4. Display of a Short User Code and URI 68
 3.3.5. Interaction Finish 69
 3.4. Returning Subject Information 69
 3.4.1. Assertion Formats 71
 3.5. Returning a Dynamically-bound Client Instance
 Identifier . 72
 3.6. Error Response . 72

Richer & Imbault Expires 21 September 2024 [Page 2]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 4. Determining Authorization and Consent 74
 4.1. Starting Interaction With the End User 79
 4.1.1. Interaction at a Redirected URI 79
 4.1.2. Interaction at the Static User Code URI 80
 4.1.3. Interaction at a Dynamic User Code URI 81
 4.1.4. Interaction through an Application URI 83
 4.2. Post-Interaction Completion 83
 4.2.1. Completing Interaction with a Browser Redirect to the
 Callback URI . 84
 4.2.2. Completing Interaction with a Direct HTTP Request
 Callback . 85
 4.2.3. Calculating the interaction hash 86
 5. Continuing a Grant Request 87
 5.1. Continuing After a Completed Interaction 90
 5.2. Continuing During Pending Interaction (Polling) 92
 5.3. Modifying an Existing Request 94
 5.4. Revoking a Grant Request 100
 6. Token Management . 101
 6.1. Rotating the Access Token Value 102
 6.1.1. Binding a New Key to the Rotated Access Token 104
 6.2. Revoking the Access Token 105
 7. Securing Requests from the Client Instance 106
 7.1. Key Formats . 107
 7.1.1. Key References 108
 7.1.2. Key Protection 109
 7.2. Presenting Access Tokens 109
 7.3. Proving Possession of a Key with a Request 110
 7.3.1. HTTP Message Signatures 114
 7.3.2. Mutual TLS . 121
 7.3.3. Detached JWS . 124
 7.3.4. Attached JWS . 128
 8. Resource Access Rights 133
 8.1. Requesting Resources By Reference 137
 9. Discovery . 140
 9.1. RS-first Method of AS Discovery 141
 9.2. Dynamic grant endpoint discovery 143
 10. Acknowledgements . 144
 11. IANA Considerations . 144
 11.1. HTTP Authentication Scheme Registration 145
 11.2. Media Type Registration 145
 11.3. GNAP Grant Request Parameters 149
 11.3.1. Registration Template 149
 11.3.2. Initial Contents 149
 11.4. GNAP Access Token Flags 150
 11.4.1. Registration Template 150
 11.4.2. Initial Contents 151
 11.5. GNAP Subject Information Request Fields 151
 11.5.1. Registration Template 151

Richer & Imbault Expires 21 September 2024 [Page 3]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 11.5.2. Initial Contents 152
 11.6. GNAP Assertion Formats 152
 11.6.1. Registration Template 152
 11.6.2. Initial Contents 152
 11.7. GNAP Client Instance Fields 153
 11.7.1. Registration Template 153
 11.7.2. Initial Contents 153
 11.8. GNAP Client Instance Display Fields 154
 11.8.1. Registration Template 154
 11.8.2. Initial Contents 154
 11.9. GNAP Interaction Start Modes 155
 11.9.1. Registration Template 155
 11.9.2. Initial Contents 156
 11.10. GNAP Interaction Finish Methods 156
 11.10.1. Registration Template 156
 11.10.2. Initial Contents 157
 11.11. GNAP Interaction Hints 157
 11.11.1. Registration Template 157
 11.11.2. Initial Contents 157
 11.12. GNAP Grant Response Parameters 158
 11.12.1. Registration Template 158
 11.12.2. Initial Contents 158
 11.13. GNAP Interaction Mode Responses 159
 11.13.1. Registration Template 159
 11.13.2. Initial Contents 159
 11.14. GNAP Subject Information Response Fields 160
 11.14.1. Registration Template 160
 11.14.2. Initial Contents 160
 11.15. GNAP Error Codes . 161
 11.15.1. Registration Template 161
 11.15.2. Initial Contents 161
 11.16. GNAP Key Proofing Methods 162
 11.16.1. Registration Template 162
 11.16.2. Initial Contents 163
 11.17. GNAP Key Formats . 163
 11.17.1. Registration Template 163
 11.17.2. Initial Contents 164
 11.18. GNAP Authorization Server Discovery Fields 164
 11.18.1. Registration Template 164
 11.18.2. Initial Contents 165
 12. Implementation Status . 165
 13. Security Considerations 166
 13.1. TLS Protection in Transit 166
 13.2. Signing Requests from the Client Software 167
 13.3. MTLS Message Integrity 169
 13.4. MTLS Deployment Patterns 169
 13.5. Protection of Client Instance Key Material 170
 13.6. Protection of Authorization Server 171

Richer & Imbault Expires 21 September 2024 [Page 4]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 13.7. Symmetric and Asymmetric Client Instance Keys 172
 13.8. Generation of Access Tokens 173
 13.9. Bearer Access Tokens 174
 13.10. Key-Bound Access Tokens 175
 13.11. Exposure of End-user Credentials to Client Instance . . 176
 13.12. Mixing Up Authorization Servers 177
 13.13. Processing of Client-Presented User Information 177
 13.14. Client Instance Pre-registration 178
 13.15. Client Instance Impersonation 180
 13.16. Client-Hosted Logo URI 180
 13.17. Interception of Information in the Browser 181
 13.18. Callback URI Manipulation 181
 13.19. Redirection Status Codes 182
 13.20. Interception of Responses from the AS 183
 13.21. Key Distribution . 183
 13.22. Key Rotation Policy 184
 13.23. Interaction Finish Modes and Polling 185
 13.24. Session Management for Interaction Finish Methods . . . 185
 13.25. Calculating Interaction Hash 187
 13.26. Storage of Information During Interaction and
 Continuation . 189
 13.27. Denial of Service (DoS) through Grant Continuation . . . 190
 13.28. Exhaustion of Random Value Space 191
 13.29. Front-channel URIs 191
 13.30. Processing Assertions 192
 13.31. Stolen Token Replay 193
 13.32. Self-contained Stateless Access Tokens 194
 13.33. Network Problems and Token and Grant Management 195
 13.34. Server-side Request Forgery (SSRF) 196
 13.35. Multiple Key Formats 197
 13.36. Asynchronous Interactions 198
 13.37. Compromised RS . 199
 13.38. AS-Provided Token Keys 199
 14. Privacy Considerations 200
 14.1. Surveillance . 200
 14.1.1. Surveillance by the Client 200
 14.1.2. Surveillance by the Authorization Server 201
 14.2. Stored Data . 201
 14.3. Intrusion . 202
 14.4. Correlation . 202
 14.4.1. Correlation by Clients 202
 14.4.2. Correlation by Resource Servers 203
 14.4.3. Correlation by Authorization Servers 204
 14.5. Disclosure in Shared References 204
 15. References . 204
 15.1. Normative References 204
 15.2. Informative References 206
 Appendix A. Document History 209

Richer & Imbault Expires 21 September 2024 [Page 5]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 Appendix B. Compared to OAuth 2.0 215
 Appendix C. Example Protocol Flows 218
 C.1. Redirect-Based User Interaction 218
 C.2. Secondary Device Interaction 221
 C.3. No User Involvement 224
 C.4. Asynchronous Authorization 225
 C.5. Applying OAuth 2.0 Scopes and Client IDs 229
 Appendix D. Interoperability Profiles 230
 D.1. Web-based Redirection 231
 D.2. Secondary Device . 231
 Appendix E. Guidance for Extensions 232
 Appendix F. JSON Structures and Polymorphism 233
 Authors’ Addresses . 234

1. Introduction

 This protocol allows a piece of software, the client instance, to
 request delegated authorization to resource servers and subject
 information. The delegated access to the resource server can be used
 by the client instance to access resources and APIs on behalf a
 resource owner, and delegated access to subject information can in
 turn be used by the client instance to make authentication decisions.
 This delegation is facilitated by an authorization server usually on
 behalf of a resource owner. The end user operating the software can
 interact with the authorization server to authenticate, provide
 consent, and authorize the request as a resource owner.

 The process by which the delegation happens is known as a grant, and
 GNAP allows for the negotiation of the grant process over time by
 multiple parties acting in distinct roles.

 This specification focuses on the portions of the delegation process
 facing the client instance. In particular, this specification
 defines interoperable methods for a client instance to request,
 negotiate, and receive access to information facilitated by the
 authorization server. This specification additionally defines
 methods for the client instance to access protected resources at a
 resource server. This specification also discusses discovery
 mechanisms for the client instance to configure itself dynamically.
 The means for an authorization server and resource server to
 interoperate are discussed in the companion document,
 [I-D.ietf-gnap-resource-servers].

Richer & Imbault Expires 21 September 2024 [Page 6]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 The focus of this protocol is to provide interoperability between the
 different parties acting in each role, and is not to specify
 implementation details of each. Where appropriate, GNAP may make
 recommendations about internal implementation details, but these
 recommendations are to ensure the security of the overall deployment
 rather than to be prescriptive in the implementation.

 This protocol solves many of the same use cases as OAuth 2.0
 [RFC6749], OpenID Connect [OIDC], and the family of protocols that
 have grown up around that ecosystem. However, GNAP is not an
 extension of OAuth 2.0 and is not intended to be directly compatible
 with OAuth 2.0. GNAP seeks to provide functionality and solve use
 cases that OAuth 2.0 cannot easily or cleanly address. Appendix B
 further details the protocol rationale compared to OAuth 2.0. GNAP
 and OAuth 2.0 will likely exist in parallel for many deployments, and
 considerations have been taken to facilitate the mapping and
 transition from existing OAuth 2.0 systems to GNAP. Some examples of
 these can be found in Appendix C.5.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document contains non-normative examples of partial and complete
 HTTP messages, JSON structures, URIs, query components, keys, and
 other elements. Whenever possible, the document uses URI as a
 generic term, since it aligns with [RFC3986] recommendations and
 matches better with the intent that the identifier may be reachable
 through various/generic means (compared to URLs). Some examples use
 a single trailing backslash \ to indicate line wrapping for long
 values, as per [RFC8792]. The \ character and leading spaces on
 wrapped lines are not part of the value.

 This document uses the term "mutual TLS" as defined by [RFC8705].
 The shortened form "MTLS" is used to mean the same thing.

 For brevity, the term "signature" on its own is used in this document
 to refer to both digital signatures (which use asymmetric
 cryptography) and keyed MACs (which use symmetric cryptography).
 Similarly, the verb "sign" refers to the generation of either a
 digital signature or keyed MAC over a given signature base. The
 qualified term "digital signature" refers specifically to the output
 of an asymmetric cryptographic signing operation.

Richer & Imbault Expires 21 September 2024 [Page 7]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

1.2. Roles

 The parties in GNAP perform actions under different roles. Roles are
 defined by the actions taken and the expectations leveraged on the
 role by the overall protocol.

 +-------------+ +------------+
Authorization		Resource
Server		Server
	<--+ +--->	
 +-----+-------+ | | +------------+
 | |
 +--+---+---+
 | Client |
 | Instance |
 +----+-----+

 .----+----. .----------.
	+=====+	
Resource		End
Owner	˜ ˜ ˜ ˜ ˜ ˜	User
 ‘---------‘ ‘----------‘

 Legend

 ===== indicates interaction between a human and computer
 ----- indicates interaction between two pieces of software
 ˜ ˜ ˜ indicates a potential equivalence or out-of-band
 communication between roles

 Figure 1: Figure 1: Roles in GNAP

 Authorization Server (AS): server that grants delegated privileges
 to a particular instance of client software in the form of access
 tokens or other information (such as subject information). The AS
 is uniquely defined by the _grant endpoint URI_, which is the
 absolute URI where grant requests are started by clients.

 Client: application that consumes resources from one or several RSs,
 possibly requiring access privileges from one or several ASs. The
 client is operated by the end user or it runs autonomously on
 behalf of a resource owner.

 Example: a client can be a mobile application, a web application,
 a back-end data processor, etc.

Richer & Imbault Expires 21 September 2024 [Page 8]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 Note: this specification differentiates between a specific
 instance (the client instance, identified by its unique key) and
 the software running the instance (the client software). For some
 kinds of client software, there could be many instances of that
 software, each instance with a different key.

 Resource Server (RS): server that provides an API on protected
 resources, where operations on the API require a valid access
 token issued by a trusted AS.

 Resource Owner (RO): subject entity that may grant or deny
 operations on resources it has authority upon.

 Note: the act of granting or denying an operation may be manual
 (i.e. through an interaction with a physical person) or automatic
 (i.e. through predefined organizational rules).

 End user: natural person that operates a client instance.

 Note: that natural person may or may not be the same entity as the
 RO.

 The design of GNAP does not assume any one deployment architecture,
 but instead attempts to define roles that can be fulfilled in a
 number of different ways for different use cases. As long as a given
 role fulfills all of its obligations and behaviors as defined by the
 protocol, GNAP does not make additional requirements on its structure
 or setup.

 Multiple roles can be fulfilled by the same party, and a given party
 can switch roles in different instances of the protocol. For
 example, the RO and end user in many instances are the same person,
 where a user is authorizing the client instance to act on their own
 behalf at the RS. In this case, one party fulfills both of the RO
 and end-user roles, but the roles themselves are still defined
 separately from each other to allow for other use cases where they
 are fulfilled by different parties.

 For another example, in some complex scenarios, an RS receiving
 requests from one client instance can act as a client instance for a
 downstream secondary RS in order to fulfill the original request. In
 this case, one piece of software is both an RS and a client instance
 from different perspectives, and it fulfills these roles separately
 as far as the overall protocol is concerned.

 A single role need not be deployed as a monolithic service. For
 example, a client instance could have front-end components that are
 installed on the end user’s device as well as a back-end system that

Richer & Imbault Expires 21 September 2024 [Page 9]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 the front-end communicates with. If both of these components
 participate in the delegation protocol, they are both considered part
 of the client instance. If there are several copies of the client
 software that run separately but all share the same key material,
 such as a deployed cluster, then this cluster is considered a single
 client instance. In these cases, the distinct components of what is
 considered a GNAP client instance may use any number of different
 communication mechanisms between them, all of which would be
 considered an implementation detail of the client instances and out
 of scope of GNAP.

 For another example, an AS could likewise be built out of many
 constituent components in a distributed architecture. The component
 that the client instance calls directly could be different from the
 component that the RO interacts with to drive consent, since API
 calls and user interaction have different security considerations in
 many environments. Furthermore, the AS could need to collect
 identity claims about the RO from one system that deals with user
 attributes while generating access tokens at another system that
 deals with security rights. From the perspective of GNAP, all of
 these are pieces of the AS and together fulfill the role of the AS as
 defined by the protocol. These pieces may have their own internal
 communications mechanisms which are considered out of scope of GNAP.

1.3. Elements

 In addition to the roles above, the protocol also involves several
 elements that are acted upon by the roles throughout the process.

 Access Token: a data artifact representing a set of rights and/or
 attributes.

 Note: an access token can be first issued to a client instance
 (requiring authorization by the RO) and subsequently rotated.

 Grant: (verb): to permit an instance of client software to receive
 some attributes at a specific time and valid for a specific
 duration and/or to exercise some set of delegated rights to access
 a protected resource;

 (noun): the act of granting permission to a client instance.

 Privilege: right or attribute associated with a subject.

 Note: the RO defines and maintains the rights and attributes
 associated to the protected resource, and might temporarily
 delegate some set of those privileges to an end user. This
 process is refered to as privilege delegation.

Richer & Imbault Expires 21 September 2024 [Page 10]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 Protected Resource: protected API (Application Programming
 Interface) served by an RS and that can be accessed by a client,
 if and only if a valid and sufficient access token is provided.

 Note: to avoid complex sentences, the specification document may
 simply refer to "resource" instead of "protected resource".

 Right: ability given to a subject to perform a given operation on a
 resource under the control of an RS.

 Subject: person or organization. The subject decides whether and
 under which conditions its attributes can be disclosed to other
 parties.

 Subject Information: set of statements and attributes asserted by an
 AS about a subject. These statements can be used by the client
 instance as part of an authentication decision.

1.4. Trust relationships

 GNAP defines its trust objective as: "the RO trusts the AS to ensure
 access validation and delegation of protected resources to end users,
 through third party clients."

 This trust objective can be decomposed into trust relationships
 between software elements and roles, especially the pairs end user/
 RO, end user/client, client/AS, RS/RO, AS/RO, AS/RS. Trust of an
 agent by its pair can exist if the pair is informed that the agent
 has made a promise to follow the protocol in the past (e.g. pre-
 registration, uncompromised cryptographic components) or if the pair
 is able to infer by indirect means that the agent has made such a
 promise (e.g. a compliant client request). Each agent defines its
 own valuation function of promises given or received. Examples of
 such valuations can be the benefits from interacting with other
 agents (e.g. safety in client access, interoperability with identity
 standards), the cost of following the protocol (including its
 security and privacy requirements and recommendations), a ranking of
 promise importance (e.g. a policy decision made by the AS), the
 assessment of one’s vulnerability or risk of not being able to defend
 against threats, etc. Those valuations may depend on the context of
 the request. For instance, the AS may decide to either take into
 account or discard hints provided by the client, the RS may refuse
 bearer tokens, etc. depending on the specific case in which GNAP is
 used. Some promises can be affected by previous interactions (e.g.,
 repeated requests).

 Looking back on each trust relationship:

Richer & Imbault Expires 21 September 2024 [Page 11]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 * end user/RO: this relationship exists only when the end user and
 the RO are different, in which case the end user needs some out of
 band mechanism of getting the RO consent (see Section 4). GNAP
 generally assumes that humans can be authenticated thanks to
 identity protocols (for instance, through an id_token assertion in
 Section 2.2).

 * end user/client: the client acts as a user agent. Depending on
 the technology used (browser, SPA, mobile application, IoT device,
 etc.), some interactions may or may not be possible (as described
 in Section 2.5.1). Client developers implement requirements and
 generally some recommendations or best practices, so that the end
 users may confidently use their software. However, end users
 might also be facing an attacker’s client software or a poorly-
 implemented client, without even realizing it.

 * end user/AS: when the client supports the interaction feature (see
 Section 3.3), the end user interacts with the AS through an AS-
 provided interface. In many cases, this happens through a front-
 channel interaction through the end user’s browser. See
 Section 13.29 for some considerations in trusting these
 interactions.

 * client/AS: An honest AS may be facing an attacker’s client (as
 discussed just above), or the reverse, and GNAP aims at making
 common attacks impractical. The core specification makes access
 tokens opaque to the client and defines the request/response
 scheme in detail, therefore avoiding extra trust hypotheses from
 this critical piece of software. Yet the AS may further define
 cryptographic attestations or optional rules to simplify the
 access of clients it already trusts, due to past behavior or
 organizational policies (see Section 2.3).

 * RS/RO: the RS promises it protects its resources on behalf of the
 RO from unauthorized access, and only accepts valid access tokens
 issued by a trusted AS. In case tokens are key bound, proper
 validation of the proof method is expected from the RS.

 * AS/RO: the AS is expected to follow the decisions made by the RO,
 either through interactive consent requests, repeated
 interactions, or automated rules (as described in Section 1.6).
 Privacy considerations aim to reduce the risk of an honest but
 too-curious AS, or the consequences of an unexpected user data
 exposure.

Richer & Imbault Expires 21 September 2024 [Page 12]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 * AS/RS: the AS promises to issue valid access tokens to legitimate
 client requests (i.e. after carrying out appropriate due
 diligence, as defined in the GNAP protocol). Some optional
 configurations are covered by [I-D.ietf-gnap-resource-servers].

 A global assumption made by GNAP is that authorization requests are
 security and privacy sensitive, and appropriate measures are
 respectively detailed in Section 13 and Section 14.

 A formal trust model is out of scope of this specification, but one
 could be developed using techniques such as [promise-theory].

1.5. Protocol Flow

 GNAP is fundamentally designed to allow delegated access to APIs and
 other information, such as subject information, using a multi-stage,
 stateful process. This process allows different parties to provide
 information into the system to alter and augment the state of the
 delegated access and its artifacts.

 The underlying requested grant moves through several states as
 different actions take place during the protocol:

 .-----.
 | |
 +------+--+ | Continue
 .---Need Interaction---->| | |
 / | Pending |<--‘
 / .--Finish Interaction--+ |
 / / (approve/deny) +----+----+
 / / |
 / / | Cancel
 / v v
 +-+----------+ +===========+
 | |
---Request-->| Processing +------Finalize----> Finalized
 | |
 +-+----------+ +===========+
 \ ^ ^
 \ \ | Revoke or
 \ \ | Finalize
 \ \ +-----+----+
 \ ‘-----Update---------+ |
 \ | Approved |<--.
 ‘-----No Interaction--->| | |
 +-------+--+ | Continue
 | |
 ‘-----‘

Richer & Imbault Expires 21 September 2024 [Page 13]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 Figure 2: Figure 2: State diagram of a grant request throughout GNAP

 The state of the grant request is defined and managed by the AS,
 though the client instance also needs to manage its view of the grant
 request over time. The means by which these roles manage their state
 is outside the scope of this specification.

 Processing: When a request for access (Section 2) is received by
 the AS, a new grant request is created and placed in the
 processing state by the AS. This state is also entered when an
 existing grant request is updated by the client instance and when
 interaction is completed. In this state, the AS processes the
 context of the grant request to determine whether interaction with
 the end user or RO is required for approval of the request. The
 grant request has to exit this state before a response can be
 returned to the client instance. If approval is required, the
 request moves to the _pending_ state and the AS returns a continue
 response (Section 3.1) along with any appropriate interaction
 responses (Section 3.3). If no such approval is required, such as
 when the client instance is acting on its own behalf or the AS can
 determine that access has been fulfilled, the request moves to the
 approved state where access tokens for API access (Section 3.2)
 and subject information (Section 3.4) can be issued to the client
 instance. If the AS determines that no additional processing can
 occur (such as a timeout or an unrecoverable error), the grant
 request is moved to the _finalized_ state and is terminated.

 Pending: When a request needs to be approved by a RO, or
 interaction with the end user is required, the grant request
 enters a state of _pending_. In this state, no access tokens can
 be granted and no subject information can be released to the
 client instance. While a grant request is in this state, the AS
 seeks to gather the required consent and authorization (Section 4)
 for the requested access. A grant request in this state is always
 associated with a _continuation access token_ bound to the client
 instance’s key (see Section 3.1 for details of the continuation
 access token). If no interaction finish method (Section 2.5.2) is
 associated with this request, the client instance can send a
 polling continue request (Section 5.2) to the AS. This returns a
 continue response (Section 3.1) while the grant request remains in
 this state, allowing the client instance to continue to check the
 state of the pending grant request. If an interaction finish
 method (Section 2.5.2) is specified in the grant request, the
 client instance can continue the request after interaction
 (Section 5.1) to the AS to move this request to the _processing_
 state to be re-evaluated by the AS. Note that this occurs whether
 the grant request has been approved or denied by the RO, since the
 AS needs to take into account the full context of the request

Richer & Imbault Expires 21 September 2024 [Page 14]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 before determining the next step for the grant request. When
 other information is made available in the context of the grant
 request, such as through the asynchronous actions of the RO, the
 AS moves this request to the _processing_ state to be re-
 evaluated. If the AS determines that no additional interaction
 can occur, such as all the interaction methods have timed out or a
 revocation request (Section 5.4) is received from the client
 instance, the grant request can be moved to the _finalized_ state.

 Approved: When a request has been approved by an RO and no further
 interaction with the end user is required, the grant request
 enters a state of _approved_. In this state, responses to the
 client instance can include access tokens for API access
 (Section 3.2) and subject information (Section 3.4). If
 continuation and updates are allowed for this grant request, the
 AS can include the continuation response (Section 3.1). In this
 state, post-interaction continuation requests (Section 5.1) are
 not allowed and will result in an error, since all interaction is
 assumed to have been completed. If the client instance sends a
 polling continue request (Section 5.2) while the request is in
 this state, new access tokens (Section 3.2) can be issued in the
 response. Note that this always creates a new access token, but
 any existing access tokens could be rotated and revoked using the
 token management API (Section 6). The client instance can send an
 update continuation request (Section 5.3) to modify the requested
 access, causing the AS to move the request back to the
 processing state for re-evaluation. If the AS determines that
 no additional tokens can be issued, and that no additional updates
 are to be accepted (such as the continuation access tokens have
 expired), the grant is moved to the _finalized_ state.

 Finalized: After the access tokens are issued, if the AS does not
 allow any additional updates on the grant request, the grant
 request enters the _finalized_ state. This state is also entered
 when an existing grant request is revoked by the client instance
 (Section 5.4) or otherwise revoked by the AS (such as through out-
 of-band action by the RO). This state can also be entered if the
 AS determines that no additional processing is possible, for
 example if the RO has denied the requested access or if
 interaction is required but no compatible interaction methods are
 available. Once in this state, no new access tokens can be
 issued, no subject information can be returned, and no
 interactions can take place. Once in this state, the grant
 request is dead and cannot be revived. If future access is
 desired by the client instance, a new grant request can be
 created, unrelated to this grant request.

Richer & Imbault Expires 21 September 2024 [Page 15]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 While it is possible to deploy an AS in a stateless environment, GNAP
 is a stateful protocol and such deployments will need a way to manage
 the current state of the grant request in a secure and deterministic
 fashion without relying on other components, such as the client
 software, to keep track of the current state.

1.6. Sequences

 GNAP can be used in a variety of ways to allow the core delegation
 process to take place. Many portions of this process are
 conditionally present depending on the context of the deployments,
 and not every step in this overview will happen in all circumstances.

 Note that a connection between roles in this process does not
 necessarily indicate that a specific protocol message is sent across
 the wire between the components fulfilling the roles in question, or
 that a particular step is required every time. For example, for a
 client instance interested in only getting subject information
 directly, and not calling an RS, all steps involving the RS below do
 not apply.

 In some circumstances, the information needed at a given stage is
 communicated out of band or is preconfigured between the components
 or entities performing the roles. For example, one entity can
 fulfill multiple roles, and so explicit communication between the
 roles is not necessary within the protocol flow. Additionally some
 components may not be involved in all use cases. For example, a
 client instance could be calling the AS just to get direct user
 information and have no need to get an access token to call an RS.

1.6.1. Overall Protocol Sequence

 The following diagram provides a general overview of GNAP, including
 many different optional phases and connections. The diagrams in the
 following sections provide views of GNAP under more specific
 circumstances. These additional diagrams use the same conventions as
 the overall diagram below.

Richer & Imbault Expires 21 September 2024 [Page 16]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 .----------. .----------.
 | End user | ˜ ˜ ˜ ˜ | Resource |
 | | | Owner (RO) |
 ‘----+-----‘ ‘-----+----‘

 (A) (B)

 +-----+--+ +------------+
Client	(1)	Resource		
Instance		Server		
	+-----------+---+	(RS)		
+--(2)-->	Authorization			
	<-(3)---+ Server			
		(AS)		
+--(4)-->				
	<-(5)---+			
+---------------(6)------------->				
			(7)	
	<--------------(8)------------->			
+--(9)-->				
	<-(10)--+			
+---------------(11)------------>				
			(12)	
+--(13)->				
 +--------+ +---------------+ +------------+

 Legend
 ===== indicates a possible interaction with a human
 ----- indicates an interaction between protocol roles
 ˜ ˜ ˜ indicates a potential equivalence or out-of-band
 communication between roles

 Figure 3: Figure 3: Overall sequence of GNAP

 * (A) The end user interacts with the client instance to indicate a
 need for resources on behalf of the RO. This could identify the
 RS the client instance needs to call, the resources needed, or the
 RO that is needed to approve the request. Note that the RO and
 end user are often the same entity in practice, but GNAP makes no
 general assumption that they are.

Richer & Imbault Expires 21 September 2024 [Page 17]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 * (1) The client instance determines what access is needed and which
 AS to approach for access. Note that for most situations, the
 client instance is pre-configured with which AS to talk to and
 which kinds of access it needs, but some more dynamic processes
 are discussed in Section 9.1.

 * (2) The client instance requests access at the AS (Section 2).

 * (3) The AS processes the request and determines what is needed to
 fulfill the request (See Section 4). The AS sends its response to
 the client instance (Section 3).

 * (B) If interaction is required, the AS interacts with the RO
 (Section 4) to gather authorization. The interactive component of
 the AS can function using a variety of possible mechanisms
 including web page redirects, applications, challenge/response
 protocols, or other methods. The RO approves the request for the
 client instance being operated by the end user. Note that the RO
 and end user are often the same entity in practice, and many of
 GNAP’s interaction methods allow the client instance to facilitate
 the end user interacting with the AS in order to fulfill the role
 of the RO.

 * (4) The client instance continues the grant at the AS (Section 5).
 This action could occur in response to receiving a signal that
 interaction has finished (Section 4.2) or through a periodic
 polling mechanism, depending on the interaction capabilities of
 the client software and the options active in the grant request.

 * (5) If the AS determines that access can be granted, it returns a
 response to the client instance (Section 3) including an access
 token (Section 3.2) for calling the RS and any directly returned
 information (Section 3.4) about the RO.

 * (6) The client instance uses the access token (Section 7.2) to
 call the RS.

 * (7) The RS determines if the token is sufficient for the request
 by examining the token. The means of the RS determining this
 access are out of scope of this specification, but some options
 are discussed in [I-D.ietf-gnap-resource-servers].

 * (8) The client instance calls the RS (Section 7.2) using the
 access token until the RS or client instance determine that the
 token is no longer valid.

 * (9) When the token no longer works, the client instance rotates
 the access token (Section 6.1).

Richer & Imbault Expires 21 September 2024 [Page 18]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 * (10) The AS issues a new access token (Section 3.2) to the client
 instance with the same rights as the original access token
 returned in (5).

 * (11) The client instance uses the new access token (Section 7.2)
 to call the RS.

 * (12) The RS determines if the new token is sufficient for the
 request, as in (7).

 * (13) The client instance disposes of the token (Section 6.2) once
 the client instance has completed its access of the RS and no
 longer needs the token.

 The following sections and Appendix C contain specific guidance on
 how to use GNAP in different situations and deployments. For
 example, it is possible for the client instance to never request an
 access token and never call an RS, just as it is possible to have no
 end user involved in the delegation process.

1.6.2. Redirect-based Interaction

 In this example flow, the client instance is a web application that
 wants access to resources on behalf of the current user, who acts as
 both the end user and the resource owner (RO). Since the client
 instance is capable of directing the user to an arbitrary URI and
 receiving responses from the user’s browser, interaction here is
 handled through front-channel redirects using the user’s browser.
 The redirection URI used for interaction is a service hosted by the
 AS in this example. The client instance uses a persistent session
 with the user to ensure the same user that is starting the
 interaction is the user that returns from the interaction.

Richer & Imbault Expires 21 September 2024 [Page 19]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 +--------+ +--------+ .----.
Client		AS		End
Instance				User
	<=(1)== Start Session ===============================+			
+--(2)--- Request Access --------->				
	<-(3)-- Interaction Needed -------+			
+==(4)== Redirect for Interaction ===================>				
			+------+	
			<==(5)==>	
			AuthN	RO
			<==(6)==>	
			AuthZ +------+	
				End
	<=(7)== Redirect for Continuation ===================+ User			
			‘----‘	
+--(8)--- Continue Request ------->				
	<-(9)----- Grant Access ----------+			
			+--------+	
+--(10)-- Access API ---------------------------->	RS			
	<-(11)-- API Response ---------------------------			
			+--------+	
 +--------+ +--------+

 Figure 4: Figure 4: Diagram of a redirect-based interaction

 1. The client instance establishes a session with the user, in the
 role of the end user.

 2. The client instance requests access to the resource (Section 2).
 The client instance indicates that it can redirect to an
 arbitrary URI (Section 2.5.1.1) and receive a redirect from the
 browser (Section 2.5.2.1). The client instance stores
 verification information for its redirect in the session created
 in (1).

Richer & Imbault Expires 21 September 2024 [Page 20]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 3. The AS determines that interaction is needed and responds
 (Section 3) with a URI to send the user to (Section 3.3.1) and
 information needed to verify the redirect (Section 3.3.5) in
 (7). The AS also includes information the client instance will
 need to continue the request (Section 3.1) in (8). The AS
 associates this continuation information with an ongoing request
 that will be referenced in (4), (6), and (8).

 4. The client instance stores the verification and continuation
 information from (3) in the session from (1). The client
 instance then redirects the user to the URI (Section 4.1.1)
 given by the AS in (3). The user’s browser loads the
 interaction redirect URI. The AS loads the pending request
 based on the incoming URI generated in (3).

 5. The user authenticates at the AS, taking on the role of the RO.

 6. As the RO, the user authorizes the pending request from the
 client instance.

 7. When the AS is done interacting with the user, the AS redirects
 the user back (Section 4.2.1) to the client instance using the
 redirect URI provided in (2). The redirect URI is augmented
 with an interaction reference that the AS associates with the
 ongoing request created in (2) and referenced in (4). The
 redirect URI is also augmented with a hash of the security
 information provided in (2) and (3). The client instance loads
 the verification information from (2) and (3) from the session
 created in (1). The client instance calculates a hash
 (Section 4.2.3) based on this information and continues only if
 the hash validates. Note that the client instance needs to
 ensure that the parameters for the incoming request match those
 that it is expecting from the session created in (1). The
 client instance also needs to be prepared for the end user never
 being returned to the client instance and handle timeouts
 appropriately.

 8. The client instance loads the continuation information from (3)
 and sends the interaction reference from (7) in a request to
 continue the request (Section 5.1). The AS validates the
 interaction reference ensuring that the reference is associated
 with the request being continued.

 9. If the request has been authorized, the AS grants access to the
 information in the form of access tokens (Section 3.2) and
 direct subject information (Section 3.4) to the client instance.

Richer & Imbault Expires 21 September 2024 [Page 21]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 10. The client instance uses the access token (Section 7.2) to call
 the RS.

 11. The RS validates the access token and returns an appropriate
 response for the API.

 An example set of protocol messages for this method can be found in
 Appendix C.1.

1.6.3. User-code Interaction

 In this example flow, the client instance is a device that is capable
 of presenting a short, human-readable code to the user and directing
 the user to enter that code at a known URI. The user enters the code
 at a URI that is an interactive service hosted by the AS in this
 example. The client instance is not capable of presenting an
 arbitrary URI to the user, nor is it capable of accepting incoming
 HTTP requests from the user’s browser. The client instance polls the
 AS while it is waiting for the RO to authorize the request. The
 user’s interaction is assumed to occur on a secondary device. In
 this example it is assumed that the user is both the end user and RO.
 Note that since the user is not assumed to be interacting with the
 client instance through the same web browser used for interaction at
 the AS, the user is not shown as being connected to the client
 instance in this diagram.

Richer & Imbault Expires 21 September 2024 [Page 22]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 +--------+ +--------+ .----.
Client		AS		End
Instance+--(1)--- Request Access --------->			User	
	<-(2)-- Interaction Needed -------+			
+==(3)==== Display User Code ========================>				
			<==(4)===+	
			Open URI	
			+------+	
			<==(5)==>	RO
			AuthN	
+--(9)--- Continue Request (A) --->				
			<==(6)==>	
	<-(10)-- Not Yet Granted (Wait) --+	Code		
			<==(7)==>	
			AuthZ	
			<==(8)==>	
			Complete	
			+------+	
+--(11)-- Continue Request (B) --->			End	
				User
	<-(12)----- Grant Access ---------+	‘----‘		
			+--------+	
+--(13)-- Access API ---------------------------->	RS			
	<-(14)-- API Response ---------------------------+			
			+--------+	
 +--------+ +--------+

 Figure 5: Figure 5: Diagram of a user-code-based interaction

 1. The client instance requests access to the resource (Section 2).
 The client instance indicates that it can display a user code
 (Section 2.5.1.3).

 2. The AS determines that interaction is needed and responds
 (Section 3) with a user code to communicate to the user
 (Section 3.3.3). The AS also includes information the client
 instance will need to continue the request (Section 3.1) in (8)
 and (10). The AS associates this continuation information with
 an ongoing request that will be referenced in (4), (6), (8), and
 (10).

Richer & Imbault Expires 21 September 2024 [Page 23]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 3. The client instance stores the continuation information from (2)
 for use in (8) and (10). The client instance then communicates
 the code to the user (Section 4.1.2) given by the AS in (2).

 4. The users directs their browser to the user code URI. This URI
 is stable and can be communicated via the client software’s
 documentation, the AS documentation, or the client software
 itself. Since it is assumed that the RO will interact with the
 AS through a secondary device, the client instance does not
 provide a mechanism to launch the RO’s browser at this URI.

 5. The end user authenticates at the AS, taking on the role of the
 RO.

 6. The RO enters the code communicated in (3) to the AS. The AS
 validates this code against a current request in process.

 7. As the RO, the user authorizes the pending request from the
 client instance.

 8. When the AS is done interacting with the user, the AS indicates
 to the RO that the request has been completed.

 9. Meanwhile, the client instance loads the continuation
 information stored at (3) and continues the request (Section 5).
 The AS determines which ongoing access request is referenced
 here and checks its state.

 10. If the access request has not yet been authorized by the RO in
 (6), the AS responds to the client instance to continue the
 request (Section 3.1) at a future time through additional polled
 continuation requests. This response can include updated
 continuation information as well as information regarding how
 long the client instance should wait before calling again. The
 client instance replaces its stored continuation information
 from the previous response (2). Note that the AS may need to
 determine that the RO has not approved the request in a
 sufficient amount of time and return an appropriate error to the
 client instance.

 11. The client instance continues to poll the AS (Section 5.2) with
 the new continuation information in (9).

 12. If the request has been authorized, the AS grants access to the
 information in the form of access tokens (Section 3.2) and
 direct subject information (Section 3.4) to the client instance.

Richer & Imbault Expires 21 September 2024 [Page 24]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 13. The client instance uses the access token (Section 7.2) to call
 the RS.

 14. The RS validates the access token and returns an appropriate
 response for the API.

 An example set of protocol messages for this method can be found in
 Appendix C.2.

1.6.4. Asynchronous Authorization

 In this example flow, the end user and RO roles are fulfilled by
 different parties, and the RO does not interact with the client
 instance. The AS reaches out asynchronously to the RO during the
 request process to gather the RO’s authorization for the client
 instance’s request. The client instance polls the AS while it is
 waiting for the RO to authorize the request.

 +--------+ +--------+ .----.
Client		AS		RO
Instance+--(1)--- Request Access --------->				
	<-(2)-- Not Yet Granted (Wait) ---+			
			<==(3)==>	
			AuthN	
+--(6)--- Continue Request (A) --->				
			<==(4)==>	
	<-(7)-- Not Yet Granted (Wait) ---+	AuthZ		
			<==(5)==>	
			Completed	
+--(8)--- Continue Request (B) --->		‘----‘		
	<-(9)------ Grant Access ---------+			
			+--------+	
+--(10)-- Access API ---------------------------->	RS			
	<-(11)-- API Response ---------------------------+			
			+--------+	
 +--------+ +--------+

 Figure 6: Figure 6: Diagram of an asynchronous authorization
 process, with no end user interaction

Richer & Imbault Expires 21 September 2024 [Page 25]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 1. The client instance requests access to the resource (Section 2).
 The client instance does not send any interaction modes to the
 server, indicating that it does not expect to interact with the
 RO. The client instance can also signal which RO it requires
 authorization from, if known, by using the subject request
 (Section 2.2) and user request (Section 2.4) sections. It’s
 also possible for the AS to determine which RO needs to be
 contacted by the nature of what access is being requested.

 2. The AS determines that interaction is needed, but the client
 instance cannot interact with the RO. The AS responds
 (Section 3) with the information the client instance will need
 to continue the request (Section 3.1) in (6) and (8), including
 a signal that the client instance should wait before checking
 the status of the request again. The AS associates this
 continuation information with an ongoing request that will be
 referenced in (3), (4), (5), (6), and (8).

 3. The AS determines which RO to contact based on the request in
 (1), through a combination of the user request (Section 2.4),
 the subject request (Section 2.2), the access request
 (Section 2.1), and other policy information. The AS contacts
 the RO and authenticates them.

 4. The RO authorizes the pending request from the client instance.

 5. When the AS is done interacting with the RO, the AS indicates to
 the RO that the request has been completed.

 6. Meanwhile, the client instance loads the continuation
 information stored at (2) and continues the request (Section 5).
 The AS determines which ongoing access request is referenced
 here and checks its state.

 7. If the access request has not yet been authorized by the RO in
 (6), the AS responds to the client instance to continue the
 request (Section 3.1) at a future time through additional
 polling. Note that this response is not an error message, since
 no error has yet occurred. This response can include refreshed
 credentials as well as information regarding how long the client
 instance should wait before calling again. The client instance
 replaces its stored continuation information from the previous
 response (2). Note that the AS may need to determine that the
 RO has not approved the request in a sufficient amount of time
 and return an appropriate error to the client instance.

 8. The client instance continues to poll the AS (Section 5.2) with
 the new continuation information from (7).

Richer & Imbault Expires 21 September 2024 [Page 26]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 9. If the request has been authorized, the AS grants access to the
 information in the form of access tokens (Section 3.2) and
 direct subject information (Section 3.4) to the client instance.

 10. The client instance uses the access token (Section 7.2) to call
 the RS.

 11. The RS validates the access token and returns an appropriate
 response for the API.

 An example set of protocol messages for this method can be found in
 Appendix C.4.

 Additional considerations for asynchronous interactions like this are
 discussed in Section 13.36.

1.6.5. Software-only Authorization

 In this example flow, the AS policy allows the client instance to
 make a call on its own behalf, without the need for an RO to be
 involved at runtime to approve the decision. Since there is no
 explicit RO, the client instance does not interact with an RO.

 +--------+ +--------+
Client		AS
Instance+--(1)--- Request Access --->		
	<-(2)---- Grant Access -----+	
+--(3)--- Access API ------------------->	RS	
	<-(4)--- API Response ------------------+	
 +--------+ +--------+

 Figure 7: Figure 7: Diagram of a software-only authorization,
 with no end user or explicit resource owner

 1. The client instance requests access to the resource (Section 2).
 The client instance does not send any interaction modes to the
 server.

Richer & Imbault Expires 21 September 2024 [Page 27]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 2. The AS determines that the request has been authorized based on
 the identity of the client instance making the request and the
 access requested (Section 2.1). The AS grants access to the
 resource in the form of access tokens (Section 3.2) to the client
 instance. Note that direct subject information (Section 3.4) is
 not generally applicable in this use case, as there is no user
 involved.

 3. The client instance uses the access token (Section 7.2) to call
 the RS.

 4. The RS validates the access token and returns an appropriate
 response for the API.

 An example set of protocol messages for this method can be found in
 Appendix C.3.

1.6.6. Refreshing an Expired Access Token

 In this example flow, the client instance receives an access token to
 access a resource server through some valid GNAP process. The client
 instance uses that token at the RS for some time, but eventually the
 access token expires. The client instance then gets a refreshed
 access token by rotating the expired access token’s value at the AS
 using the token management API.

Richer & Imbault Expires 21 September 2024 [Page 28]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 +--------+ +--------+
Client		AS		
Instance+--(1)--- Request Access ----------------->				
	<-(2)--- Grant Access --------------------+			
	+--------+			
+--(3)--- Access Resource --->	RS			
	<-(4)--- Success Response ---+			
	(Time Passes)			
+--(5)--- Access Resource --->				
	<-(6)--- Error Response -----+			
	+--------+			
+--(7)--- Rotate Token ------------------->				
	<-(8)--- Rotated Token -------------------+			
 +--------+ +--------+

 Figure 8: Figure 8: Diagram of the process of refreshing an
 access token

 1. The client instance requests access to the resource (Section 2).

 2. The AS grants access to the resource (Section 3) with an access
 token (Section 3.2) usable at the RS. The access token response
 includes a token management URI.

 3. The client instance uses the access token (Section 7.2) to call
 the RS.

 4. The RS validates the access token and returns an appropriate
 response for the API.

 5. Time passes and the client instance uses the access token to call
 the RS again.

 6. The RS validates the access token and determines that the access
 token is expired. The RS responds to the client instance with an
 error.

Richer & Imbault Expires 21 September 2024 [Page 29]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 7. The client instance calls the token management URI returned in
 (2) to rotate the access token (Section 6.1). The client
 instance uses the access token (Section 7.2) in this call as well
 as the appropriate key, see the token rotation section for
 details.

 8. The AS validates the rotation request including the signature and
 keys presented in (7) and refreshes the access token
 (Section 3.2.1). The response includes a new version of the
 access token and can also include updated token management
 information, which the client instance will store in place of the
 values returned in (2).

1.6.7. Requesting Subject Information Only

 In this scenario, the client instance does not call an RS and does
 not request an access token. Instead, the client instance only
 requests and is returned direct subject information (Section 3.4).
 Many different interaction modes can be used in this scenario, so
 these are shown only in the abstract as functions of the AS here.

 +--------+ +--------+ .----.
Client		AS		End
Instance				User
+--(1)--- Request Access --------->				
	<-(2)-- Interaction Needed -------+			
+==(3)== Facilitate Interaction =====================>				
			+------+	
			<==(4)==>	RO
			AuthN	
			<==(5)==>	
			AuthZ +------+	
				End
	<=(6)== Signal Continuation =========================+ User			
			‘----‘	
+--(7)--- Continue Request ------->				
	<-(8)----- Grant Access ----------+			
 +--------+ +--------+

 Figure 9: Figure 9: Diagram of the process of requesting and
 releasing subject information apart from access tokens

Richer & Imbault Expires 21 September 2024 [Page 30]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 1. The client instance requests access to subject information
 (Section 2).

 2. The AS determines that interaction is needed and responds
 (Section 3) with appropriate information for facilitating user
 interaction (Section 3.3).

 3. The client instance facilitates the user interacting with the AS
 (Section 4) as directed in (2).

 4. The user authenticates at the AS, taking on the role of the RO.

 5. As the RO, the user authorizes the pending request from the
 client instance.

 6. When the AS is done interacting with the user, the AS returns the
 user to the client instance and signals continuation.

 7. The client instance loads the continuation information from (2)
 and calls the AS to continue the request (Section 5).

 8. If the request has been authorized, the AS grants access to the
 requested direct subject information (Section 3.4) to the client
 instance. At this stage, the user is generally considered
 "logged in" to the client instance based on the identifiers and
 assertions provided by the AS. Note that the AS can restrict the
 subject information returned and it might not match what the
 client instance requested, see the section on subject information
 for details.

1.6.8. Cross-User Authentication

 In this scenario, the end user and resource owner are two different
 people. Here, the client instance already knows who the end user is,
 likely through a separate authentication process. The end user,
 operating the client instance, needs to get subject information about
 another person in the system, the RO. The RO is given an opportunity
 to release this information using an asynchronous interaction method
 with the AS. This scenario would apply, for instance, when the end
 user is an agent in a call-center and the resource owner is a
 customer authorizing the call center agent to access their account on
 their behalf.

Richer & Imbault Expires 21 September 2024 [Page 31]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 .----. .----.
End		RO				
User	<=================(1)== Identify RO ==================>					
	+--------+ +--------+					
+==(2)==>	Client		AS			
	RO ID	Instance				
		+--(3)-- Req. ---->				
			<-(4)-- Res. -----+			
					<==(5)==>	
					AuthN	
					<==(6)==>	
					AuthZ	
					<==(7)==>	
			<-(8)--- Finish --+	Completed		
		+--(9)--- Cont. -->				
			<-(10)-- Subj. ---+			
	<=(11)==+	Info				
	Return					
	RO					
	Info					
 ‘----‘ +--------+ +--------+ ‘----‘

 Figure 10: Figure 10: Diagram of cross-user authorization, where
 the end user and RO are different

 Precondition: The end user is authenticated to the client instance,
 and the client instance has an identifier representing the end user
 that it can present to the AS. This identifier should be unique to
 the particular session with the client instance and the AS. The
 client instance is also known to the AS and allowed to access this
 advanced functionality where the information of someone other than
 the end user is returned to the client instance.

 1. The RO communicates a human-readable identifier to the end user,
 such as an email address or account number. This communication
 happens out of band from the protocol, such as over the phone
 between parties. Note that the RO is not interacting with the
 client instance.

Richer & Imbault Expires 21 September 2024 [Page 32]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 2. The end user communicates the identifier to the client instance.
 The means by which the identifier is communicated to the client
 instance is out of scope for this specification.

 3. The client instance requests access to subject information
 (Section 2). The request includes the RO’s identifier in the
 subject information request (Section 2.2) sub_ids field, and the
 end user’s identifier in the user information field
 (Section 2.4) of the request. The request includes no
 interaction start methods, since the end user is not expected to
 be the one interacting with the AS. The request does include
 the push based interaction finish method (Section 2.5.2.2) to
 allow the AS to signal to the client instance when the
 interaction with the RO has concluded.

 4. The AS sees that the identifier for the end user and subject
 being requested are different. The AS determines that it can
 reach out to the RO asynchronously for approval. While it is
 doing so, the AS returns a continuation response (Section 3.1)
 with a finish nonce to allow the client instance to continue the
 grant request after interaction with the RO has concluded.

 5. The AS contacts the RO and has them authenticate to the system.
 The means for doing this are outside the scope of this
 specification, but the identity of the RO is known from the
 subject identifier sent in (3).

 6. The RO is prompted to authorize the end user’s request via the
 client instance. Since the end user was identified in (3) via
 the user field, the AS can show this information to the RO
 during the authorization request.

 7. The RO completes the authorization with the AS. The AS marks
 the request as _approved_.

 8. The RO pushes the interaction finish message (Section 4.2.2) to
 the client instance. Note that in the case the RO cannot be
 reached or the RO denies the request, the AS still sends the
 interaction finish message to the client instance, after which
 the client instance can negotiate next steps if possible.

 9. The client instance validates the interaction finish message and
 continues the grant request (Section 5.1).

 10. The AS returns the RO’s subject information (Section 3.4) to the
 client instance.

Richer & Imbault Expires 21 September 2024 [Page 33]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 11. The client instance can display or otherwise utilize the RO’s
 user information in its session with the end user. Note that
 since the client instance requested different sets of user
 information in (3), the client instance does not conflate the
 end user with the RO.

 Additional considerations for asynchronous interactions like this are
 discussed in Section 13.36.

2. Requesting Access

 To start a request, the client instance sends an HTTP POST with a
 JSON [RFC8259] document to the grant endpoint of the AS. The grant
 endpoint is a URI that uniquely identifies the AS to client instances
 and serves as the identifier for the AS. The document is a JSON
 object where each field represents a different aspect of the client
 instance’s request. Each field is described in detail in a section
 below.

 access_token (object / array of objects): Describes the rights and
 properties associated with the requested access token. REQUIRED
 if requesting an access token. See Section 2.1.

 subject (object): Describes the information about the RO that the
 client instance is requesting to be returned directly in the
 response from the AS. REQUIRED if requesting subject information.
 See Section 2.2.

 client (object / string): Describes the client instance that is
 making this request, including the key that the client instance
 will use to protect this request and any continuation requests at
 the AS and any user-facing information about the client instance
 used in interactions. REQUIRED. See Section 2.3.

 user (object / string): Identifies the end user to the AS in a
 manner that the AS can verify, either directly or by interacting
 with the end user to determine their status as the RO. OPTIONAL.
 See Section 2.4.

 interact (object): Describes the modes that the client instance
 supports for allowing the RO to interact with the AS and modes for
 the client instance to receive updates when interaction is
 complete. REQUIRED if interaction is supported. See Section 2.5.

 Additional members of this request object can be defined by
 extensions using the GNAP Grant Request Parameters Registry
 (Section 11.3).

Richer & Imbault Expires 21 September 2024 [Page 34]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 A non-normative example of a grant request is below:

 {
 "access_token": {
 "access": [
 {
 "type": "photo-api",
 "actions": [
 "read",
 "write",
 "dolphin"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 },
 "dolphin-metadata"
]
 },
 "client": {
 "display": {
 "name": "My Client Display Name",
 "uri": "https://example.net/client"
 },
 "key": {
 "proof": "httpsig",
 "jwk": {
 "kty": "RSA",
 "e": "AQAB",
 "kid": "xyz-1",
 "alg": "RS256",
 "n": "kOB5rR4Jv0GMeL...."
 }
 }
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.example.net/return/123455",
 "nonce": "LKLTI25DK82FX4T4QFZC"
 }
 },

Richer & Imbault Expires 21 September 2024 [Page 35]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 "subject": {
 "sub_id_formats": ["iss_sub", "opaque"],
 "assertion_formats": ["id_token"]
 }
 }

 Sending a request to the grant endpoint creates a grant request in
 the _processing_ state. The AS processes this request to determine
 whether interaction or authorization are necessary (moving to the
 pending state), or if access can be granted immediately (moving to
 the _approved_ state).

 The request MUST be sent as a JSON object in the content of the HTTP
 POST request with Content-Type application/json. A key proofing
 mechanism MAY define an alternative content type, as long as the
 content is formed from the JSON object. For example, the attached
 JWS key proofing mechanism (see Section 7.3.4) places the JSON object
 into the payload of a JWS wrapper, which is in turn sent as the
 message content.

2.1. Requesting Access to Resources

 If the client instance is requesting one or more access tokens for
 the purpose of accessing an API, the client instance MUST include an
 access_token field. This field MUST be an object (for a single
 access token (Section 2.1.1)) or an array of these objects (for
 multiple access tokens (Section 2.1.2)), as described in the
 following sections.

2.1.1. Requesting a Single Access Token

 To request a single access token, the client instance sends an
 access_token object composed of the following fields.

 access (array of objects/strings): Describes the rights that the
 client instance is requesting for the access token to be used at
 the RS. REQUIRED. See Section 8.

 label (string): A unique name chosen by the client instance to refer
 to the resulting access token. The value of this field is opaque
 to the AS and is not intended to be exposed to or used by the end
 user. If this field is included in the request, the AS MUST
 include the same label in the token response (Section 3.2).
 REQUIRED if used as part of a multiple access token request
 (Section 2.1.2), OPTIONAL otherwise.

 flags (array of strings): A set of flags that indicate desired

Richer & Imbault Expires 21 September 2024 [Page 36]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 attributes or behavior to be attached to the access token by the
 AS. OPTIONAL.

 The values of the flags field defined by this specification are as
 follows:

 "bearer": If this flag is included, the access token being requested
 is a bearer token. If this flag is omitted, the access token is
 bound to the key used by the client instance in this request (or
 that key’s most recent rotation) and the access token MUST be
 presented using the same key and proofing method. Methods for
 presenting bound and bearer access tokens are described in
 Section 7.2. See Section 13.9 for additional considerations on
 the use of bearer tokens.

 Flag values MUST NOT be included more than once. If the request
 includes a flag value multiple times, the AS MUST return an
 invalid_flag error defined in Section 3.6.

 Additional flags can be defined by extensions using the GNAP Access
 Token Flags Registry (Section 11.4).

 In the following non-normative example, the client instance is
 requesting access to a complex resource described by a pair of access
 request object.

Richer & Imbault Expires 21 September 2024 [Page 37]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 "access_token": {
 "access": [
 {
 "type": "photo-api",
 "actions": [
 "read",
 "write",
 "delete"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 },
 {
 "type": "walrus-access",
 "actions": [
 "foo",
 "bar"
],
 "locations": [
 "https://resource.other/"
],
 "datatypes": [
 "data",
 "pictures",
 "walrus whiskers"
]
 }
],
 "label": "token1-23"
 }

 If access is approved, the resulting access token is valid for the
 described resource. Since the "bearer" flag is not provided in this
 example, the token is bound to the client instance’s key (or its most
 recent rotation). The token is labeled "token1-23". The token
 response structure is described in Section 3.2.1.

Richer & Imbault Expires 21 September 2024 [Page 38]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

2.1.2. Requesting Multiple Access Tokens

 To request multiple access tokens to be returned in a single
 response, the client instance sends an array of objects as the value
 of the access_token parameter. Each object MUST conform to the
 request format for a single access token request, as specified in
 requesting a single access token (Section 2.1.1). Additionally, each
 object in the array MUST include the label field, and all values of
 these fields MUST be unique within the request. If the client
 instance does not include a label value for any entry in the array,
 or the values of the label field are not unique within the array, the
 AS MUST return an "invalid_request" error (Section 3.6).

 The following non-normative example shows a request for two separate
 access tokens, token1 and token2.

Richer & Imbault Expires 21 September 2024 [Page 39]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 "access_token": [
 {
 "label": "token1",
 "access": [
 {
 "type": "photo-api",
 "actions": [
 "read",
 "write",
 "dolphin"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 },
 "dolphin-metadata"
]
 },
 {
 "label": "token2",
 "access": [
 {
 "type": "walrus-access",
 "actions": [
 "foo",
 "bar"
],
 "locations": [
 "https://resource.other/"
],
 "datatypes": [
 "data",
 "pictures",
 "walrus whiskers"
]
 }
],
 "flags": ["bearer"]
 }
]

Richer & Imbault Expires 21 September 2024 [Page 40]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 All approved access requests are returned in the multiple access
 token response (Section 3.2.2) structure using the values of the
 label fields in the request.

2.2. Requesting Subject Information

 If the client instance is requesting information about the RO from
 the AS, it sends a subject field as a JSON object. This object MAY
 contain the following fields.

 sub_id_formats (array of strings): An array of subject identifier
 subject formats requested for the RO, as defined by [RFC9493].
 REQUIRED if subject identifiers are requested.

 assertion_formats (array of strings): An array of requested
 assertion formats. Possible values include id_token for an OpenID
 Connect ID Token ([OIDC]) and saml2 for a SAML 2 assertion
 ([SAML2]). Additional assertion formats are defined by the GNAP
 Assertion Formats Registry (Section 11.6). REQUIRED if assertions
 are requested.

 sub_ids (array of objects): An array of subject identifiers
 representing the subject for which information is being requested.
 Each object is a subject identifier as defined by [RFC9493]. All
 identifiers in the sub_ids array MUST identify the same subject.
 If omitted, the AS SHOULD assume that subject information requests
 are about the current user and SHOULD require direct interaction
 or proof of presence before releasing information. OPTIONAL.

 Additional fields are defined in the GNAP Subject Information Request
 Fields Registry (Section 11.5).

 "subject": {
 "sub_id_formats": ["iss_sub", "opaque"],
 "assertion_formats": ["id_token", "saml2"]
 }

 The AS can determine the RO’s identity and permission for releasing
 this information through interaction with the RO (Section 4), AS
 policies, or assertions presented by the client instance
 (Section 2.4). If this is determined positively, the AS MAY return
 the RO’s information in its response (Section 3.4) as requested.

 Subject identifier types requested by the client instance serve only
 to identify the RO in the context of the AS and can’t be used as
 communication channels by the client instance, as discussed in
 Section 3.4.

Richer & Imbault Expires 21 September 2024 [Page 41]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

2.3. Identifying the Client Instance

 When sending new grant request to the AS, the client instance MUST
 identify itself by including its client information in the client
 field of the request and by signing the request with its unique key
 as described in Section 7.3. Note that once a grant has been created
 and is in the _pending_ or _accepted_ states, the AS can determine
 which client is associated with the grant by dereferencing the
 continuation access token sent in the continuation request
 (Section 5). As a consequence, the client field is not sent or
 accepted for continuation requests.

 Client information is sent by value as an object or by reference as a
 string (see Section 2.3.1).

 When client instance information is sent by value, the client field
 of the request consists of a JSON object with the following fields.

 key (object / string): The public key of the client instance to be
 used in this request as described in Section 7.1 or a reference to
 a key as described in Section 7.1.1. REQUIRED.

 class_id (string): An identifier string that the AS can use to
 identify the client software comprising this client instance. The
 contents and format of this field are up to the AS. OPTIONAL.

 display (object): An object containing additional information that
 the AS MAY display to the RO during interaction, authorization,
 and management. OPTIONAL. (Section 2.3.2)

 "client": {
 "key": {
 "proof": "httpsig",
 "jwk": {
 "kty": "RSA",
 "e": "AQAB",
 "kid": "xyz-1",
 "alg": "RS256",
 "n": "kOB5rR4Jv0GMeLaY6_It_r3ORwdf8ci_JtffXyaSx8..."
 }
 },
 "class_id": "web-server-1234",
 "display": {
 "name": "My Client Display Name",
 "uri": "https://example.net/client"
 }
 }

Richer & Imbault Expires 21 September 2024 [Page 42]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 Additional fields are defined in the GNAP Client Instance Fields
 Registry (Section 11.7).

 Absent additional attestations, profiles, or trust mechanisms, both
 the display and class_id fields are self-declarative, presented by
 the client instance. The AS needs to exercise caution in their
 interpretation, taking them as a hint but not as absolute truth. The
 class_id field can be used in a variety of ways to help the AS make
 sense of the particular context in which the client instance is
 operating. In corporate environments, for example, different levels
 of trust might apply depending on security policies. This field aims
 to help the AS adjust its own access decisions for different classes
 of client software. It is possible to configure a set of values and
 rules during a pre-registration, and then have the client instances
 provide them later in runtime as a hint to the AS. In other cases,
 the client runs with a specific AS in mind, so a single hardcoded
 value would acceptable (for instance, a set top box with a class_id
 claiming to be "FooBarTV version 4"). While the client instance may
 not have contacted the AS yet, the value of this class_id field can
 be evaluated by the AS according to a broader context of dynamic use,
 alongside other related information available elsewhere (for
 instance, corresponding fields in a certificate). If the AS is not
 able to interpret or validate the class_id field, it MUST either
 return an invalid_client error (Section 3.6) or interpret the request
 as if the class_id were not present. See additional discussion of
 client instance impersonation in Section 13.15.

 The client instance MUST prove possession of any presented key by the
 proof mechanism associated with the key in the request. Key proofing
 methods are defined in the GNAP Key Proofing Methods Registry
 (Section 11.16) and an initial set of methods is described in
 Section 7.3.

 If the same public key is sent by value on different access requests,
 the AS MUST treat these requests as coming from the same client
 instance for purposes of identification, authentication, and policy
 application.

 If the AS does not know the client instance’s public key ahead of
 time, the AS can choose how to process the unknown key. Common
 approaches include:

 * Allowing the request and requiring RO authorization in a trust-on-
 first-use model

 * Limiting the client’s requested access to only certain APIs and
 information

Richer & Imbault Expires 21 September 2024 [Page 43]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 * Denying the request entirely by returning an invalid_client error
 (Section 3.6)

 The client instance MUST NOT send a symmetric key by value in the key
 field of the request, as doing so would expose the key directly
 instead of simply proving possession of it. See considerations on
 symmetric keys in Section 13.7. To use symmetric keys, the client
 instance can send the key by reference (Section 7.1.1) or send the
 entire client identity by reference (Section 2.3.1).

 The client instance’s key can be pre-registered with the AS ahead of
 time and associated with a set of policies and allowable actions
 pertaining to that client. If this pre-registration includes other
 fields that can occur in the client request object described in this
 section, such as class_id or display, the pre-registered values MUST
 take precedence over any values given at runtime. Additional fields
 sent during a request but not present in a pre-registered client
 instance record at the AS SHOULD NOT be added to the client’s pre-
 registered record. See additional considerations regarding client
 instance impersonation in Section 13.15.

 A client instance that is capable of talking to multiple AS’s SHOULD
 use a different key for each AS to prevent a class of mix-up attacks
 as described in Section 13.31 unless other mechanisms can be used to
 assure the identity of the AS for a given request.

2.3.1. Identifying the Client Instance by Reference

 If the client instance has an instance identifier that the AS can use
 to determine appropriate key information, the client instance can
 send this instance identifier as a direct reference value in lieu of
 the client object. The instance identifier MAY be assigned to a
 client instance at runtime through a grant response (Section 3.5) or
 MAY be obtained in another fashion, such as a static registration
 process at the AS.

 "client": "client-541-ab"

 When the AS receives a request with an instance identifier, the AS
 MUST ensure that the key used to sign the request (Section 7.3) is
 associated with the instance identifier.

 If the AS does not recognize the instance identifier, the request
 MUST be rejected with an invalid_client error (Section 3.6).

Richer & Imbault Expires 21 September 2024 [Page 44]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

2.3.2. Providing Displayable Client Instance Information

 If the client instance has additional information to display to the
 RO during any interactions at the AS, it MAY send that information in
 the "display" field. This field is a JSON object that declares
 information to present to the RO during any interactive sequences.

 name (string): Display name of the client software. RECOMMENDED.

 uri (string): User-facing information about the client software,
 such as a web page. This URI MUST be an absolute URI. OPTIONAL.

 logo_uri (string) Display image to represent the client software.
 This URI MUST be an absolute URI. The logo MAY be passed by value
 by using a data: URI [RFC2397] referencing an image mediatype.
 OPTIONAL.

 "display": {
 "name": "My Client Display Name",
 "uri": "https://example.net/client",
 "logo_uri": "...="
 }

 Additional display fields are defined by the GNAP Client Instance
 Display Fields Registry (Section 11.8).

 The AS SHOULD use these values during interaction with the RO. The
 values are for informational purposes only and MUST NOT be taken as
 authentic proof of the client instance’s identity or source. The AS
 MAY restrict display values to specific client instances, as
 identified by their keys in Section 2.3. See additional
 considerations for displayed client information in Section 13.15 and
 for the logo_uri in particular in Section 13.16.

2.3.3. Authenticating the Client Instance

 If the presented key is known to the AS and is associated with a
 single instance of the client software, the process of presenting a
 key and proving possession of that key is sufficient to authenticate
 the client instance to the AS. The AS MAY associate policies with
 the client instance identified by this key, such as limiting which
 resources can be requested and which interaction methods can be used.
 For example, only specific client instances with certain known keys
 might be trusted with access tokens without the AS interacting
 directly with the RO as in Appendix C.3.

Richer & Imbault Expires 21 September 2024 [Page 45]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 The presentation of a key allows the AS to strongly associate
 multiple successive requests from the same client instance with each
 other. This is true when the AS knows the key ahead of time and can
 use the key to authenticate the client instance, but also if the key
 is ephemeral and created just for this series of requests. As such
 the AS MAY allow for client instances to make requests with unknown
 keys. This pattern allows for ephemeral client instances, such as
 single-page applications, and client software with many individual
 long-lived instances, such as mobile applications, to generate key
 pairs per instance and use the keys within the protocol without
 having to go through a separate registration step. The AS MAY limit
 which capabilities are made available to client instances with
 unknown keys. For example, the AS could have a policy saying that
 only previously-registered client instances can request particular
 resources, or that all client instances with unknown keys have to be
 interactively approved by an RO.

2.4. Identifying the User

 If the client instance knows the identity of the end user through one
 or more identifiers or assertions, the client instance MAY send that
 information to the AS in the "user" field. The client instance MAY
 pass this information by value or by reference (See Section 2.4.1).

 sub_ids (array of objects): An array of subject identifiers for the
 end user, as defined by [RFC9493]. OPTIONAL.

 assertions (array of objects) An array containing assertions as
 objects each containing the assertion format and the assertion
 value as the JSON string serialization of the assertion, as
 defined in Section 3.4. OPTIONAL.

 "user": {
 "sub_ids": [{
 "format": "opaque",
 "id": "J2G8G8O4AZ"
 }],
 "assertions": [{
 "format": "id_token",
 "value": "eyj..."
 }]
 }

 Subject identifiers are hints to the AS in determining the RO and
 MUST NOT be taken as authoritative statements that a particular RO is
 present at the client instance and acting as the end user.

Richer & Imbault Expires 21 September 2024 [Page 46]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 Assertions presented by the client instance SHOULD be validated by
 the AS. While the details of such validation are outside the scope
 of this specification, common validation steps include verifying the
 signature of the assertion against a trusted signing key, verifying
 the audience and issuer of the assertion map to expected values, and
 verifying the time window for the assertion itself. However, note
 that in many use cases, some of these common steps are relaxed. For
 example, an AS acting as an identity provider (IdP) could expect that
 assertions being presented using this mechanism were issued by the AS
 to the client software. The AS would verify that the AS is the
 issuer of the assertion, not the audience, and that the client
 instance is instead the audience of the assertion. Similarly, an AS
 might accept a recently-expired assertion in order to help bootstrap
 a new session with a specific end user.

 If the identified end user does not match the RO present at the AS
 during an interaction step, and the AS is not explicitly allowing a
 cross-user authorization, the AS SHOULD reject the request with an
 unknown_user error (Section 3.6).

 If the AS trusts the client instance to present verifiable assertions
 or known subject identifiers, such as an opaque identifier issued by
 the AS for this specific client instance, the AS MAY decide, based on
 its policy, to skip interaction with the RO, even if the client
 instance provides one or more interaction modes in its request.

 See Section 13.30 for considerations that the AS has to make when
 accepting and processing assertions from the client instance.

2.4.1. Identifying the User by Reference

 The AS can identify the current end user to the client instance with
 a reference which can be used by the client instance to refer to the
 end user across multiple requests. If the client instance has a
 reference for the end user at this AS, the client instance MAY pass
 that reference as a string. The format of this string is opaque to
 the client instance.

 "user": "XUT2MFM1XBIKJKSDU8QM"

 One means of dynamically obtaining such a user reference is from the
 AS returning an opaque subject identifier as described in
 Section 3.4. Other means of configuring a client instance with a
 user identifier are out of scope of this specification. The lifetime
 and validity of these user references is determined by the AS and
 this lifetime is not exposed to the client instance in GNAP. As
 such, a client instance using such a user reference is likely to keep
 using that reference until such a time as it stops working.

Richer & Imbault Expires 21 September 2024 [Page 47]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 User reference identifiers are not intended to be human-readable user
 identifiers or structured assertions. For the client instance to
 send either of these, the client can use the full user request object
 (Section 2.4) instead.

 If the AS does not recognize the user reference, it MUST return an
 unknown_user error (Section 3.6).

2.5. Interacting with the User

 Often, the AS will require interaction with the RO (Section 4) in
 order to approve a requested delegation to the client instance for
 both access to resources and direct subject information. Many times
 the end user using the client instance is the same person as the RO,
 and the client instance can directly drive interaction with the end
 user by facilitating the process through means such as redirection to
 a URI or launching an application. Other times, the client instance
 can provide information to start the RO’s interaction on a secondary
 device, or the client instance will wait for the RO to approve the
 request asynchronously. The client instance could also be signaled
 that interaction has concluded through a callback mechanism.

 The client instance declares the parameters for interaction methods
 that it can support using the interact field.

 The interact field is a JSON object with three keys whose values
 declare how the client can initiate and complete the request, as well
 as provide hints to the AS about user preferences such as locale. A
 client instance MUST NOT declare an interaction mode it does not
 support. The client instance MAY send multiple modes in the same
 request. There is no preference order specified in this request. An
 AS MAY respond to any, all, or none of the presented interaction
 modes (Section 3.3) in a request, depending on its capabilities and
 what is allowed to fulfill the request.

 start (array of objects/strings): Indicates how the client instance
 can start an interaction. REQUIRED. (Section 2.5.1)

 finish (object): Indicates how the client instance can receive an
 indication that interaction has finished at the AS. OPTIONAL.
 (Section 2.5.2)

 hints (object): Provides additional information to inform the
 interaction process at the AS. OPTIONAL. (Section 2.5.3)

 In the following non-normative example, the client instance is
 indicating that it can redirect (Section 2.5.1.1) the end user to an
 arbitrary URI and can receive a redirect (Section 2.5.2.1) through a

Richer & Imbault Expires 21 September 2024 [Page 48]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 browser request. Note that the client instance does not accept a
 push-style callback. The pattern of using a redirect for both
 interaction start and finish is common for web-based client software.

 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.example.net/return/123455",
 "nonce": "LKLTI25DK82FX4T4QFZC"
 }
 }

 In the following non-normative example, the client instance is
 indicating that it can display a user code (Section 2.5.1.3) and
 direct the end user to an arbitrary URI (Section 2.5.1.1), but it
 cannot accept a redirect or push callback. This pattern is common
 for devices with robust display capabilities but that expect the use
 of a secondary device to facilitate end-user interaction with the AS,
 such as a set-top box capable of displaying an interaction URL as a
 QR code.

 "interact": {
 "start": ["redirect", "user_code"]
 }

 In the following non-normative example, the client instance is
 indicating that it can not start any interaction with the end-user,
 but that the AS can push an interaction finish message
 (Section 2.5.2.2) when authorization from the RO is received
 asynchronously. This pattern is common for scenarios where a service
 needs to be authorized, but the RO is able to be contacted separately
 from the GNAP transaction itself, such as through a push notification
 or existing interactive session on a secondary device.

 "interact": {
 "start": [],
 "finish": {
 "method": "push",
 "uri": "https://client.example.net/return/123455",
 "nonce": "LKLTI25DK82FX4T4QFZC"
 }
 }

Richer & Imbault Expires 21 September 2024 [Page 49]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 If the client instance does not provide a suitable interaction
 mechanism, the AS cannot contact the RO asynchronously, and the AS
 determines that interaction is required, then the AS MUST return an
 invalid_interaction error (Section 3.6) since the client instance
 will be unable to complete the request without authorization.

2.5.1. Start Mode Definitions

 If the client instance is capable of starting interaction with the
 end user, the client instance indicates this by sending an array of
 start modes under the start key. Each interaction start modes has a
 unique identifying name. Interaction start modes are specified in
 the array either by a string, which consists of the start mode name
 on its own, or by a JSON object with the required field mode:

 mode: The interaction start mode. REQUIRED.

 Interaction start modes defined as objects MAY define additional
 parameters to be required in the object.

 The start array can contain both string-type and object-type modes.

 This specification defines the following interaction start modes:

 "redirect" (string): Indicates that the client instance can direct
 the end user to an arbitrary URI for interaction. Section 2.5.1.1

 "app" (string): Indicates that the client instance can launch an
 application on the end user’s device for interaction.
 Section 2.5.1.2

 "user_code" (string): Indicates that the client instance can
 communicate a human-readable short code to the end user for use
 with a stable URI. Section 2.5.1.3

 "user_code_uri" (string): Indicates that the client instance can
 communicate a human-readable short code to the end user for use
 with a short, dynamic URI. Section 2.5.1.4

 Additional start modes are defined in the GNAP Interaction Start
 Modes Registry (Section 11.9).

Richer & Imbault Expires 21 September 2024 [Page 50]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

2.5.1.1. Redirect to an Arbitrary URI

 If the client instance is capable of directing the end user to a URI
 defined by the AS at runtime, the client instance indicates this by
 including redirect in the array under the start key. The means by
 which the client instance will activate this URI is out of scope of
 this specification, but common methods include an HTTP redirect,
 launching a browser on the end user’s device, providing a scannable
 image encoding, and printing out a URI to an interactive console.
 While this URI is generally hosted at the AS, the client instance can
 make no assumptions about its contents, composition, or relationship
 to the grant endpoint URI.

 "interact": {
 "start": ["redirect"]
 }

 If this interaction mode is supported for this client instance and
 request, the AS returns a redirect interaction response
 Section 3.3.1. The client instance manages this interaction method
 as described in Section 4.1.1.

 See Section 13.29 for more considerations regarding the use of front-
 channel communication techniques.

2.5.1.2. Open an Application-specific URI

 If the client instance can open a URI associated with an application
 on the end user’s device, the client instance indicates this by
 including app in the array under the start key. The means by which
 the client instance determines the application to open with this URI
 are out of scope of this specification.

 "interact": {
 "start": ["app"]
 }

 If this interaction mode is supported for this client instance and
 request, the AS returns an app interaction response with an app URI
 payload (Section 3.3.2). The client instance manages this
 interaction method as described in Section 4.1.4.

Richer & Imbault Expires 21 September 2024 [Page 51]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

2.5.1.3. Display a Short User Code

 If the client instance is capable of displaying or otherwise
 communicating a short, human-entered code to the RO, the client
 instance indicates this by including user_code in the array under the
 start key. This code is to be entered at a static URI that does not
 change at runtime. The client instance has no reasonable means to
 communicate a dynamic URI to the RO, and so this URI is usually
 communicated out of band to the RO through documentation or other
 messaging outside of GNAP. While this URI is generally hosted at the
 AS, the client instance can make no assumptions about its contents,
 composition, or relationship to the grant endpoint URI.

 "interact": {
 "start": ["user_code"]
 }

 If this interaction mode is supported for this client instance and
 request, the AS returns a user code as specified in Section 3.3.3.
 The client instance manages this interaction method as described in
 Section 4.1.2.

2.5.1.4. Display a Short User Code and URI

 If the client instance is capable of displaying or otherwise
 communicating a short, human-entered code along with a short, human-
 entered URI to the RO, the client instance indicates this by
 including user_code_uri in the array under the start key. This code
 is to be entered at the dynamic URL given in the response. While
 this URL is generally hosted at the AS, the client instance can make
 no assumptions about its contents, composition, or relationship to
 the grant endpoint URI.

 "interact": {
 "start": ["user_code_uri"]
 }

 If this interaction mode is supported for this client instance and
 request, the AS returns a user code and interaction URL as specified
 in Section 3.3.4. The client instance manages this interaction
 method as described in Section 4.1.3.

2.5.2. Interaction Finish Methods

 If the client instance is capable of receiving a message from the AS
 indicating that the RO has completed their interaction, the client
 instance indicates this by sending the following members of an object
 under the finish key.

Richer & Imbault Expires 21 September 2024 [Page 52]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 method (string): The callback method that the AS will use to contact
 the client instance. REQUIRED.

 uri (string): Indicates the URI that the AS will either send the RO
 to after interaction or send an HTTP POST request. This URI MAY
 be unique per request and MUST be hosted by or accessible by the
 client instance. This URI MUST be an absolute URI, and MUST NOT
 contain any fragment component. If the client instance needs any
 state information to tie to the front channel interaction
 response, it MUST use a unique callback URI to link to that
 ongoing state. The allowable URIs and URI patterns MAY be
 restricted by the AS based on the client instance’s presented key
 information. The callback URI SHOULD be presented to the RO
 during the interaction phase before redirect. REQUIRED for
 redirect and push methods.

 nonce (string): Unique ASCII string value to be used in the
 calculation of the "hash" query parameter sent to the callback
 URI, must be sufficiently random to be unguessable by an attacker.
 MUST be generated by the client instance as a unique value for
 this request. REQUIRED.

 hash_method (string): An identifier of a hash calculation mechanism
 to be used for the callback hash in Section 4.2.3, as defined in
 the IANA Named Information Hash Algorithm Registry [HASH-ALG]. If
 absent, the default value is sha-256. OPTIONAL.

 This specification defines the following values for the method
 parameter, with other values defined by the GNAP Interaction Finish
 Methods Registry (Section 11.10):

 "redirect": Indicates that the client instance can receive a
 redirect from the end user’s device after interaction with the RO
 has concluded. Section 2.5.2.1

 "push": Indicates that the client instance can receive an HTTP POST
 request from the AS after interaction with the RO has concluded.
 Section 2.5.2.2

 If interaction finishing is supported for this client instance and
 request, the AS will return a nonce (Section 3.3.5) used by the
 client instance to validate the callback. All interaction finish
 methods MUST use this nonce to allow the client to verify the
 connection between the pending interaction request and the callback.
 GNAP does this through the use of the interaction hash, defined in
 Section 4.2.3. All requests to the callback URI MUST be processed as
 described in Section 4.2.

Richer & Imbault Expires 21 September 2024 [Page 53]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 All interaction finish methods MUST require presentation of an
 interaction reference for continuing this grant request. This means
 that the interaction reference MUST be returned by the AS and MUST be
 presented by the client as described in Section 5.1. The means by
 which the interaction reference is returned to the client instance is
 specific to the interaction finish method.

2.5.2.1. Receive an HTTP Callback Through the Browser

 A finish method value of redirect indicates that the client instance
 will expect a request from the RO’s browser using the HTTP method GET
 as described in Section 4.2.1.

 The client instance’s URI MUST be protected by HTTPS, be hosted on a
 server local to the RO’s browser ("localhost"), or use an
 application-specific URI scheme that is loaded on the end user’s
 device.

 "interact": {
 "finish": {
 "method": "redirect",
 "uri": "https://client.example.net/return/123455",
 "nonce": "LKLTI25DK82FX4T4QFZC"
 }
 }

 Requests to the callback URI MUST be processed by the client instance
 as described in Section 4.2.1.

 Since the incoming request to the callback URI is from the RO’s
 browser, this method is usually used when the RO and end user are the
 same entity. See Section 13.24 for considerations on ensuring the
 incoming HTTP message matches the expected context of the request.
 See Section 13.29 for more considerations regarding the use of front-
 channel communication techniques.

2.5.2.2. Receive an HTTP Direct Callback

 A finish method value of push indicates that the client instance will
 expect a request from the AS directly using the HTTP method POST as
 described in Section 4.2.2.

 The client instance’s URI MUST be protected by HTTPS, be hosted on a
 server local to the RO’s browser ("localhost"), or use an
 application-specific URI scheme that is loaded on the end user’s
 device.

Richer & Imbault Expires 21 September 2024 [Page 54]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 "interact": {
 "finish": {
 "method": "push",
 "uri": "https://client.example.net/return/123455",
 "nonce": "LKLTI25DK82FX4T4QFZC"
 }
 }

 Requests to the callback URI MUST be processed by the client instance
 as described in Section 4.2.2.

 Since the incoming request to the callback URI is from the AS and not
 from the RO’s browser, this request is not expected to have any
 shared session information from the start method. See Section 13.24
 and Section 13.23 for more considerations regarding the use of back-
 channel and polling mechanisms like this.

2.5.3. Hints

 The hints key is an object describing one or more suggestions from
 the client instance that the AS can use to help drive user
 interaction.

 This specification defines the following properties under the hints
 key:

 ui_locales (array of strings): Indicates the end user’s preferred
 locales that the AS can use during interaction, particularly
 before the RO has authenticated. OPTIONAL. Section 2.5.3.1

 The following sections detail requests for interaction hints.
 Additional interaction hints are defined in the GNAP Interaction
 Hints Registry (Section 11.11).

2.5.3.1. Indicate Desired Interaction Locales

 If the client instance knows the end user’s locale and language
 preferences, the client instance can send this information to the AS
 using the ui_locales field with an array of locale strings as defined
 by [RFC5646].

 "interact": {
 "hints": {
 "ui_locales": ["en-US", "fr-CA"]
 }
 }

Richer & Imbault Expires 21 September 2024 [Page 55]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 If possible, the AS SHOULD use one of the locales in the array, with
 preference to the first item in the array supported by the AS. If
 none of the given locales are supported, the AS MAY use a default
 locale.

3. Grant Response

 In response to a client instance’s request, the AS responds with a
 JSON object as the HTTP content. Each possible field is detailed in
 the sections below.

 continue (object): Indicates that the client instance can continue
 the request by making one or more continuation requests. REQUIRED
 if continuation calls are allowed for this client instance on this
 grant request. See Section 3.1.

 access_token (object / array of objects): A single access token or
 set of access tokens that the client instance can use to call the
 RS on behalf of the RO. REQUIRED if an access token is included.
 See Section 3.2.

 interact (object): Indicates that interaction through some set of
 defined mechanisms needs to take place. REQUIRED if interaction
 is expected. See Section 3.3.

 subject (object): Claims about the RO as known and declared by the
 AS. REQUIRED if subject information is included. See
 Section 3.4.

 instance_id (string): An identifier this client instance can use to
 identify itself when making future requests. OPTIONAL. See
 Section 3.5.

 error (object or string): An error code indicating that something
 has gone wrong. REQUIRED for an error condition. See
 Section 3.6.

 Additional fields can be defined by extensions to GNAP in the GNAP
 Grant Response Parameters Registry (Section 11.12).

 In the following non-normative example, the AS is returning an
 interaction URI (Section 3.3.1), a callback nonce (Section 3.3.5),
 and a continuation response (Section 3.1).

Richer & Imbault Expires 21 September 2024 [Page 56]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 NOTE: ’\’ line wrapping per RFC 8792

 {
 "interact": {
 "redirect": "https://server.example.com/interact/4CF492ML\
 VMSW9MKMXKHQ",
 "finish": "MBDOFXG4Y5CVJCX821LH"
 },
 "continue": {
 "access_token": {
 "value": "80UPRY5NM33OMUKMKSKU",
 },
 "uri": "https://server.example.com/tx"
 }
 }

 In the following non-normative example, the AS is returning a bearer
 access token (Section 3.2.1) with a management URI and a subject
 identifier (Section 3.4) in the form of an opaque identifier.

 {
 "access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "flags": ["bearer"],
 "manage": {
 "uri": "https://server.example.com/token/PRY5NM33O",
 "access_token": {
 "value": "B8CDFONP21-4TB8N6.BW7ONM"
 }
 }
 },
 "subject": {
 "sub_ids": [{
 "format": "opaque",
 "id": "J2G8G8O4AZ"
 }]
 }
 }

 In following non-normative example, the AS is returning set of
 subject identifiers (Section 3.4), simultaneously as an opaque
 identifier, an email address, and a decentralized identifier (DID),
 formatted as a set of Subject Identifiers defined in [RFC9493].

Richer & Imbault Expires 21 September 2024 [Page 57]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 {
 "subject": {
 "sub_ids": [{
 "format": "opaque",
 "id": "J2G8G8O4AZ"
 }, {
 "format": "email",
 "email": "user@example.com"
 }, {
 "format": "did",
 "url": "did:example:123456"
 }]
 }
 }

 The response MUST be sent as a JSON object in the content of the HTTP
 response with Content-Type application/json, unless otherwise
 specified by the specific response (e.g., an empty response with no
 Content-Type).

 The authorization server MUST include the HTTP Cache-Control response
 header field [RFC9111] with a value set to "no-store".

3.1. Request Continuation

 If the AS determines that the grant request can be continued by the
 client instance, the AS responds with the continue field. This field
 contains a JSON object with the following properties.

 uri (string): The URI at which the client instance can make
 continuation requests. This URI MAY vary per request, or MAY be
 stable at the AS. This URI MUST be an absolute URI. The client
 instance MUST use this value exactly as given when making a
 continuation request (Section 5). REQUIRED.

 wait (integer): The amount of time in integer seconds the client
 instance MUST wait after receiving this request continuation
 response and calling the continuation URI. The value SHOULD NOT
 be less than five seconds, and omission of the value MUST be
 interpreted as five seconds. RECOMMENDED.

 access_token (object): A unique access token for continuing the
 request, called the "continuation access token". The value of
 this property MUST be an object in the format specified in
 Section 3.2.1. This access token MUST be bound to the client
 instance’s key used in the request and MUST NOT be a bearer token.
 As a consequence, the flags array of this access token MUST NOT
 contain the string bearer and the key field MUST be omitted. This

Richer & Imbault Expires 21 September 2024 [Page 58]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 access token MUST NOT have a manage field. The client instance
 MUST present the continuation access token in all requests to the
 continuation URI as described in Section 7.2. REQUIRED.

 {
 "continue": {
 "access_token": {
 "value": "80UPRY5NM33OMUKMKSKU"
 },
 "uri": "https://server.example.com/continue",
 "wait": 60
 }
 }

 This field is REQUIRED if the grant request is in the _pending_
 state, as the field contains the information needed by the client
 request to continue the request as described in Section 5. Note that
 the continuation access token is bound to the client instance’s key,
 and therefore the client instance MUST sign all continuation requests
 with its key as described in Section 7.3 and MUST present the
 continuation access token in its continuation request.

3.2. Access Tokens

 If the AS has successfully granted one or more access tokens to the
 client instance, the AS responds with the access_token field. This
 field contains either a single access token as described in
 Section 3.2.1 or an array of access tokens as described in
 Section 3.2.2.

 The client instance uses any access tokens in this response to call
 the RS as described in Section 7.2.

 The grant request MUST be in the _approved_ state to include this
 field in the response.

3.2.1. Single Access Token

 If the client instance has requested a single access token and the AS
 has granted that access token, the AS responds with the
 "access_token" field. The value of this field is an object with the
 following properties.

 value (string): The value of the access token as a string. The
 value is opaque to the client instance. The value MUST be limited
 to the token68 character set defined in Section 11.2 of [HTTP] to
 facilitate transmission over HTTP headers and within other
 protocols without requiring additional encoding. REQUIRED.

Richer & Imbault Expires 21 September 2024 [Page 59]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 label (string): The value of the label the client instance provided
 in the associated token request (Section 2.1), if present.
 REQUIRED for multiple access tokens or if a label was included in
 the single access token request, OPTIONAL for a single access
 token where no label was included in the request.

 manage (object): Access information for the token management API for
 this access token. The management URI for this access token. If
 provided, the client instance MAY manage its access token as
 described in Section 6. This management API is a function of the
 AS and is separate from the RS the client instance is requesting
 access to. OPTIONAL.

 access (array of objects/strings): A description of the rights
 associated with this access token, as defined in Section 8. If
 included, this MUST reflect the rights associated with the issued
 access token. These rights MAY vary from what was requested by
 the client instance. REQUIRED.

 expires_in (integer): The number of seconds in which the access will
 expire. The client instance MUST NOT use the access token past
 this time. Note that the access token MAY be revoked by the AS or
 RS at any point prior to its expiration. OPTIONAL.

 key (object / string): The key that the token is bound to, if
 different from the client instance’s presented key. The key MUST
 be an object or string in a format described in Section 7.1. The
 client instance MUST be able to dereference or process the key
 information in order to be able to sign subsequent requests using
 the access token (Section 7.2). When the key is provided by value
 from the AS, the token shares some security properties with bearer
 tokens as discussed in Section 13.38. It is RECOMMENDED that keys
 returned for use with access tokens be key references as described
 in Section 7.1.1 that the client instance can correlate to its
 known keys. OPTIONAL.

 flags (array of strings): A set of flags that represent attributes
 or behaviors of the access token issued by the AS. OPTIONAL.

 The value of the manage field is an object with the following
 properties:

 uri (string): The URI of the token management API for this access
 token. This URI MUST be an absolute URI. This URI MUST NOT include
 the access token value and SHOULD be different for each access token
 issued in a request and MUST NOT include the value of the access
 token being managed. REQUIRED.

Richer & Imbault Expires 21 September 2024 [Page 60]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 access_token (object): A unique access token for continuing the
 request, called the "token management access token". The value of
 this property MUST be an object in the format specified in
 Section 3.2.1. This access token MUST be bound to the client
 instance’s key used in the request (or its most recent rotation)
 and MUST NOT be a bearer token. As a consequence, the flags array
 of this access token MUST NOT contain the string bearer and the
 key field MUST be omitted. This access token MUST NOT have a
 manage field. This access token MUST NOT have the same value as
 the token it is managing. The client instance MUST present the
 continuation access token in all requests to the continuation URI
 as described in Section 7.2. REQUIRED.

 The values of the flags field defined by this specification are as
 follows:

 "bearer": This flag indicates whether the token is a bearer token,
 not bound to a key and proofing mechanism. If the bearer flag is
 present, the access token is a bearer token, and the key field in
 this response MUST be omitted. See Section 13.9 for additional
 considerations on the use of bearer tokens.

 "durable": Flag indicating a hint of AS behavior on token rotation.
 If this flag is present, then the client instance can expect a
 previously-issued access token to continue to work after it has
 been rotated (Section 6.1) or the underlying grant request has
 been modified (Section 5.3), resulting in the issuance of new
 access tokens. If this flag is omitted, the client instance can
 anticipate a given access token could stop working after token
 rotation or grant request modification. Note that a token flagged
 as durable can still expire or be revoked through any normal
 means.

 Flag values MUST NOT be included more than once.

 Additional flags can be defined by extensions using the GNAP Access
 Token Fields Registry (Section 11.4).

 If the bearer flag and the key field in this response are omitted,
 the token is bound the key used by the client instance (Section 2.3)
 in its request for access. If the bearer flag is omitted, and the
 key field is present, the token is bound to the key and proofing
 mechanism indicated in the key field. The means by which the AS
 determines how to bind an access token to a key other than that
 presented by the client instance is out of scope for this
 specification, but common practices include pre-registering specific
 keys in a static fashion.

Richer & Imbault Expires 21 September 2024 [Page 61]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 The client software MUST reject any access token where the flags
 field contains the bearer flag and the key field is present with any
 value.

 The following non-normative example shows a single access token bound
 to the client instance’s key used in the initial request, with a
 management URI, and that has access to three described resources (one
 using an object and two described by reference strings).

 NOTE: ’\’ line wrapping per RFC 8792

 "access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "manage": {
 "uri": "https://server.example.com/token/PRY5NM33O",
 "access_token": {
 "value": "B8CDFONP21-4TB8N6.BW7ONM"
 }
 },
 "access": [
 {
 "type": "photo-api",
 "actions": [
 "read",
 "write",
 "dolphin"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 },
 "read", "dolphin-metadata"
]
 }

 The following non-normative example shows a single bearer access
 token with access to two described resources.

Richer & Imbault Expires 21 September 2024 [Page 62]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 "access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "flags": ["bearer"],
 "access": [
 "finance", "medical"
]
 }

 If the client instance requested a single access token
 (Section 2.1.1), the AS MUST NOT respond with the multiple access
 token structure.

3.2.2. Multiple Access Tokens

 If the client instance has requested multiple access tokens and the
 AS has granted at least one of them, the AS responds with the
 "access_token" field. The value of this field is a JSON array, the
 members of which are distinct access tokens as described in
 Section 3.2.1. Each object MUST have a unique label field,
 corresponding to the token labels chosen by the client instance in
 the multiple access token request (Section 2.1.2).

 In the following non-normative example, two tokens are issued under
 the names token1 and token2, and only the first token has a
 management URI associated with it.

 NOTE: ’\’ line wrapping per RFC 8792

 "access_token": [
 {
 "label": "token1",
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "manage": {
 "uri": "https://server.example.com/token/PRY5NM33O",
 "access_token": {
 "value": "B8CDFONP21-4TB8N6.BW7ONM"
 }
 },
 "access": ["finance"]
 },
 {
 "label": "token2",
 "value": "UFGLO2FDAFG7VGZZPJ3IZEMN21EVU71FHCARP4J1",
 "access": ["medical"]
 }
 }

Richer & Imbault Expires 21 September 2024 [Page 63]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 Each access token corresponds to one of the objects in the
 access_token array of the client instance’s request (Section 2.1.2).

 The AS MAY refuse to issue one or more of the requested access
 tokens, for any reason. In such cases the refused token is omitted
 from the response and all of the other issued access tokens are
 included in the response under their respective requested labels. If
 the client instance requested multiple access tokens (Section 2.1.2),
 the AS MUST NOT respond with a single access token structure, even if
 only a single access token is granted. In such cases, the AS MUST
 respond with a multiple access token structure containing one access
 token.

 "access_token": [
 {
 "label": "token2",
 "value": "8N6BW7OZB8CDFONP219-OS9M2PMHKUR64TBRP1LT0",
 "manage": {
 "uri": "https://server.example.com/token/PRY5NM33O",
 "access_token": {
 "value": "B8CDFONP21-4TB8N6.BW7ONM"
 }
 },
 "access": ["fruits"]
 }
]

 The parameters of each access token are separate. For example, each
 access token is expected to have a unique value and (if present)
 label, and likely has different access rights associated with it.
 Each access token could also be bound to different keys with
 different proofing mechanisms.

3.3. Interaction Modes

 If the client instance has indicated a capability to interact with
 the RO in its request (Section 2.5), and the AS has determined that
 interaction is both supported and necessary, the AS responds to the
 client instance with any of the following values in the interact
 field of the response. There is no preference order for interaction
 modes in the response, and it is up to the client instance to
 determine which ones to use. All supported interaction methods are
 included in the same interact object.

 redirect (string): Redirect to an arbitrary URI. REQUIRED if the
 redirect interaction start mode is possible for this request. See
 Section 3.3.1.

Richer & Imbault Expires 21 September 2024 [Page 64]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 app (string): Launch of an application URI. REQUIRED if the app
 interaction start mode is possible for this request. See
 Section 3.3.2.

 user_code (string): Display a short user code. REQUIRED if the
 user_code interaction start mode is possible for this request.
 See Section 3.3.3.

 user_code_uri (object): Display a short user code and URI. REQUIRED
 if the user_code_uri interaction start mode is possible for this
 request. Section 3.3.4

 finish (string): A unique ASCII string value provided by the AS as a
 nonce. This is used by the client instance to verify the callback
 after interaction is completed. REQUIRED if the interaction
 finish method requested by the client instance is possible for
 this request. See Section 3.3.5.

 expires_in (integer): The number of integer seconds after which this
 set of interaction responses will expire and no longer be usable
 by the client instance. If the interaction methods expire, the
 client MAY re-start the interaction process for this grant request
 by sending an update (Section 5.3) with a new interaction request
 (Section 2.5) section. OPTIONAL. If omitted, the interaction
 response modes returned do not expire but MAY be invalidated by
 the AS at any time.

 Additional interaction mode responses can be defined in the GNAP
 Interaction Mode Responses Registry (Section 11.13).

 The AS MUST NOT respond with any interaction mode that the client
 instance did not indicate in its request. The AS MUST NOT respond
 with any interaction mode that the AS does not support. Since
 interaction responses include secret or unique information, the AS
 SHOULD respond to each interaction mode only once in an ongoing
 request, particularly if the client instance modifies its request
 (Section 5.3).

 The grant request MUST be in the _pending_ state to include this
 field in the response.

Richer & Imbault Expires 21 September 2024 [Page 65]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

3.3.1. Redirection to an arbitrary URI

 If the client instance indicates that it can redirect to an arbitrary
 URI (Section 2.5.1.1) and the AS supports this mode for the client
 instance’s request, the AS responds with the "redirect" field, which
 is a string containing the URI for the end user to visit. This URI
 MUST be unique for the request and MUST NOT contain any security-
 sensitive information such as user identifiers or access tokens.

 "interact": {
 "redirect": "https://interact.example.com/4CF492MLVMSW9MKMXKHQ"
 }

 The URI returned is a function of the AS, but the URI itself MAY be
 completely distinct from the grant endpoint URI that the client
 instance uses to request access (Section 2), allowing an AS to
 separate its user-interactive functionality from its back-end
 security functionality. The AS will need to dereference the specific
 grant request and its information from the URI alone. If the AS does
 not directly host the functionality accessed through the redirect
 URI, then the means for the interaction functionality to communicate
 with the rest of the AS are out of scope for this specification.

 The client instance sends the end user to the URI to interact with
 the AS. The client instance MUST NOT alter the URI in any way. The
 means for the client instance to send the end user to this URI is out
 of scope of this specification, but common methods include an HTTP
 redirect, launching the system browser, displaying a scannable code,
 or printing out the URI in an interactive console. See details of
 the interaction in Section 4.1.1.

3.3.2. Launch of an application URI

 If the client instance indicates that it can launch an application
 URI (Section 2.5.1.2) and the AS supports this mode for the client
 instance’s request, the AS responds with the "app" field, which is a
 string containing the URI for the client instance to launch. This
 URI MUST be unique for the request and MUST NOT contain any security-
 sensitive information such as user identifiers or access tokens.

 "interact": {
 "app": "https://app.example.com/launch?tx=4CF492MLV"
 }

 The means for the launched application to communicate with the AS are
 out of scope for this specification.

Richer & Imbault Expires 21 September 2024 [Page 66]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 The client instance launches the URI as appropriate on its platform,
 and the means for the client instance to launch this URI is out of
 scope of this specification. The client instance MUST NOT alter the
 URI in any way. The client instance MAY attempt to detect if an
 installed application will service the URI being sent before
 attempting to launch the application URI. See details of the
 interaction in Section 4.1.4.

3.3.3. Display of a Short User Code

 If the client instance indicates that it can display a short
 user-typeable code (Section 2.5.1.3) and the AS supports this mode
 for the client instance’s request, the AS responds with a "user_code"
 field. This field is string containing a unique short code that the
 user can type into a web page. To facilitate usability, this string
 MUST consist only of characters that can be easily typed by the end
 user (such as ASCII letters or numbers) and MUST be processed by the
 AS in a case-insensitive manner (see Section 4.1.2). The string MUST
 be randomly generated so as to be unguessable by an attacker within
 the time it is accepted. The time in which this code will be
 accepted SHOULD be short lived, such as several minutes. It is
 RECOMMENDED that this code be between six and eight characters in
 length.

 "interact": {
 "user_code": "A1BC3DFF"
 }

 The client instance MUST communicate the "user_code" value to the end
 user in some fashion, such as displaying it on a screen or reading it
 out audibly. This code is used by the interaction component of the
 AS as a means of identifying the pending grant request and does not
 function as an authentication factor for the RO.

 The URI that the end user is intended to enter the code into MUST be
 stable, since the client instance is expected to have no means of
 communicating a dynamic URI to the end user at runtime.

 As this interaction mode is designed to facilitate interaction via a
 secondary device, it is not expected that the client instance
 redirect the end user to the URI where the code is entered. If the
 client instance is capable of communicating an short arbitrary URI to
 the end user for use with the user code, the client instance SHOULD
 instead use the "user_code_uri" (Section 2.5.1.4) mode. If the
 client instance is capable of communicating a long arbitrary URI to
 the end user, such as through a scannable code, the client instance
 SHOULD use the "redirect" (Section 2.5.1.1) mode for this purpose
 instead of or in addition to the user code mode.

Richer & Imbault Expires 21 September 2024 [Page 67]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 See details of the interaction in Section 4.1.2.

3.3.4. Display of a Short User Code and URI

 If the client instance indicates that it can display a short
 user-typeable code (Section 2.5.1.3) and the AS supports this mode
 for the client instance’s request, the AS responds with a
 "user_code_uri" object that contains the following members.

 code (string): A unique short code that the end user can type into a
 provided URI. To facilitate usability, this string MUST consist
 only of characters that can be easily typed by the end user (such
 as ASCII letters or numbers) and MUST be processed by the AS in a
 case-insensitive manner (see Section 4.1.3). The string MUST be
 randomly generated so as to be unguessable by an attacker within
 the time it is accepted. The time in which this code will be
 accepted SHOULD be short lived, such as several minutes. It is
 RECOMMENDED that this code be between six and eight characters in
 length. REQUIRED.

 uri (string): The interaction URI that the client instance will
 direct the RO to. This URI MUST be short enough to be
 communicated to the end user by the client instance. It is
 RECOMMENDED that this URI be short enough for an end user to type
 in manually. The URI MUST NOT contain the code value. This URI
 MUST be an absolute URI. REQUIRED.

 "interact": {
 "user_code_uri": {
 "code": "A1BC3DFF",
 "uri": "https://s.example/device"
 }
 }

 The client instance MUST communicate the "code" to the end user in
 some fashion, such as displaying it on a screen or reading it out
 audibly. This code is used by the interaction component of the AS as
 a means of identifying the pending grant request and does not
 function as an authentication factor for the RO.

 The client instance MUST also communicate the URI to the end user.
 Since it is expected that the end user will continue interaction on a
 secondary device, the URI needs to be short enough to allow the end
 user to type or copy it to a secondary device without mistakes.

 The URI returned is a function of the AS, but the URI itself MAY be
 completely distinct from the grant endpoint URI that the client
 instance uses to request access (Section 2), allowing an AS to

Richer & Imbault Expires 21 September 2024 [Page 68]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 separate its user-interactive functionality from its back-end
 security functionality. If the AS does not directly host the
 functionality accessed through the given URI, then the means for the
 interaction functionality to communicate with the rest of the AS are
 out of scope for this specification.

 See details of the interaction in Section 4.1.2.

3.3.5. Interaction Finish

 If the client instance indicates that it can receive a
 post-interaction redirect or push at a URI (Section 2.5.2) and the AS
 supports this mode for the client instance’s request, the AS responds
 with a finish field containing a nonce that the client instance will
 use in validating the callback as defined in Section 4.2.

 "interact": {
 "finish": "MBDOFXG4Y5CVJCX821LH"
 }

 When the interaction is completed, the interaction component of the
 AS MUST contact the client instance using the means defined by the
 finish method as described in Section 4.2.

 If the AS returns the finish field, the client instance MUST NOT
 continue a grant request before it receives the associated
 interaction reference on the callback URI. See details in
 Section 4.2.

3.4. Returning Subject Information

 If information about the RO is requested and the AS grants the client
 instance access to that data, the AS returns the approved information
 in the "subject" response field. The AS MUST return the subject
 field only in cases where the AS is sure that the RO and the end user
 are the same party. This can be accomplished through some forms of
 interaction with the RO (Section 4).

 This field is an object with the following properties.

 sub_ids (array of objects): An array of subject identifiers for the
 RO, as defined by [RFC9493]. REQUIRED if returning subject
 identifiers.

 assertions (array of objects): An array containing assertions as
 objects each containing the assertion object described below.
 REQUIRED if returning assertions.

Richer & Imbault Expires 21 September 2024 [Page 69]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 updated_at (string): Timestamp as an [RFC3339] date string,
 indicating when the identified account was last updated. The
 client instance MAY use this value to determine if it needs to
 request updated profile information through an identity API. The
 definition of such an identity API is out of scope for this
 specification. RECOMMENDED.

 Assertion objects contain the following fields:

 format (string): The assertion format. Possible formats are listed
 in Section 3.4.1. Additional assertion formats are defined by the
 GNAP Assertion Formats Registry (Section 11.6). REQUIRED.

 value (string): The assertion value as the JSON string serialization
 of the assertion. REQUIRED.

 The following non-normative example contains an opaque identifier and
 an OpenID Connect ID Token:

 "subject": {
 "sub_ids": [{
 "format": "opaque",
 "id": "XUT2MFM1XBIKJKSDU8QM"
 }],
 "assertions": [{
 "format": "id_token",
 "value": "eyj..."
 }]
 }

 Subject identifiers returned by the AS SHOULD uniquely identify the
 RO at the AS. Some forms of subject identifier are opaque to the
 client instance (such as the subject of an issuer and subject pair),
 while others forms (such as email address and phone number) are
 intended to allow the client instance to correlate the identifier
 with other account information at the client instance. The client
 instance MUST NOT request or use any returned subject identifiers for
 communication purposes (see Section 2.2). That is, a subject
 identifier returned in the format of an email address or a phone
 number only identifies the RO to the AS and does not indicate that
 the AS has validated that the represented email address or phone
 number in the identifier is suitable for communication with the
 current user. To get such information, the client instance MUST use
 an identity protocol to request and receive additional identity
 claims. The details of an identity protocol and associated schema
 are outside the scope of this specification.

Richer & Imbault Expires 21 September 2024 [Page 70]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 The AS MUST ensure that the returned subject information represents
 the RO. In most cases, the AS will also ensure that the returned
 subject information represents the end user authenticated
 interactively at the AS. The AS SHOULD NOT re-use subject
 identifiers for multiple different ROs.

 The "sub_ids" and "assertions" response fields are independent of
 each other. That is, a returned assertion MAY use a different
 subject identifier than other assertions and subject identifiers in
 the response. However, all subject identifiers and assertions
 returned MUST refer to the same party.

 The client instance MUST interpret all subject information in the
 context of the AS from which the subject information is received, as
 is discussed in Section 6 of [SP80063C]. For example, one AS could
 return an email identifier of "user@example.com" for one RO, and a
 different AS could return that same email identifier of
 "user@example.com" for a completely different RO. A client instance
 talking to both AS’s needs to differentiate between these two
 accounts by accounting for the AS source of each identifier and not
 assuming that either has a canonical claim on the identifier without
 additional configuration and trust agreements. Otherwise, a rogue AS
 could exploit this to take over a targeted account asserted by a
 different AS.

 Extensions to this specification MAY define additional response
 properties in the GNAP Subject Information Response Fields Registry
 (Section 11.14).

 The grant request MUST be in the _approved_ state to return this
 field in the response.

 See Section 13.30 for considerations that the client instance has to
 make when accepting and processing assertions from the AS.

3.4.1. Assertion Formats

 The following assertion formats are defined in this specification:

 id_token: An OpenID Connect ID Token ([OIDC]), in JWT compact format
 as a single string.

 saml2: A SAML 2 assertion ([SAML2]), encoded as a single base64url
 string with no padding.

Richer & Imbault Expires 21 September 2024 [Page 71]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

3.5. Returning a Dynamically-bound Client Instance Identifier

 Many parts of the client instance’s request can be passed as either a
 value or a reference. The use of a reference in place of a value
 allows for a client instance to optimize requests to the AS.

 Some references, such as for the client instance’s identity
 (Section 2.3.1) or the requested resources (Section 8.1), can be
 managed statically through an admin console or developer portal
 provided by the AS or RS. The developer of the client software can
 include these values in their code for a more efficient and compact
 request.

 If desired, the AS MAY also generate and return an instance
 identifier dynamically to the client instance in the response to
 facilitate multiple interactions with the same client instance over
 time. The client instance SHOULD use this instance identifier in
 future requests in lieu of sending the associated data values in the
 client field.

 Dynamically generated client instance identifiers are string values
 that MUST be protected by the client instance as secrets. Instance
 identifier values MUST be unguessable and MUST NOT contain any
 information that would compromise any party if revealed. Instance
 identifier values are opaque to the client instance, and their
 content is determined by the AS. The instance identifier MUST be
 unique per client instance at the AS.

 instance_id (string): A string value used to represent the
 information in the client object that the client instance can use
 in a future request, as described in Section 2.3.1. OPTIONAL.

 The following non-normative example shows an instance identifier
 along side an issued access token.

 {
 "instance_id": "7C7C4AZ9KHRS6X63AJAO",
 "access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0"
 }
 }

3.6. Error Response

 If the AS determines that the request cannot be completed for any
 reason, it responds to the client instance with an error field in the
 response message. This field is either an object or a string.

Richer & Imbault Expires 21 September 2024 [Page 72]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 When returned as an object, the object contains the following fields:

 code (string): A single ASCII error code defining the error. The
 value MUST be defined in the GNAP Error Codes Registry
 (Section 11.15). REQUIRED.

 description (string): A human-readable string description of the
 error intended for the developer of the client. The value is
 chosen by the implementation. OPTIONAL.

 This specification defines the following code values:

 "invalid_request": The request is missing a required parameter,
 includes an invalid parameter value or is otherwise malformed.

 "invalid_client": The request was made from a client that was not
 recognized or allowed by the AS, or the client’s signature
 validation failed.

 "invalid_interaction" The client instance has provided an
 interaction reference that is incorrect for this request or the
 interaction modes in use have expired.

 "invalid_flag" The flag configuration is not valid.

 "invalid_rotation" The token rotation request is not valid.

 "key_rotation_not_supported" The AS does not allow rotation of this
 access token’s key.

 "invalid_continuation": The continuation of the referenced grant
 could not be processed.

 "user_denied": The RO denied the request.

 "request_denied": The request was denied for an unspecified reason.

 "unknown_user": The user presented in the request is not known to
 the AS or does not match the user present during interaction.

 "unknown_interaction": The interaction integrity could not be
 established.

 "too_fast": The client instance did not respect the timeout in the
 wait response before the next call.

 "too_many_attempts": A limit has been reached in the total number of

Richer & Imbault Expires 21 September 2024 [Page 73]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 reasonable attempts. This number is either defined statically or
 adjusted based on runtime conditions by the AS.

 Additional error codes can be defined in the GNAP Error Codes
 Registry (Section 11.15).

 For example, if the RO denied the request while interacting with the
 AS, the AS would return the following error when the client instance
 tries to continue the grant request:

 {
 "error": {
 "code": "user_denied",
 "description": "The RO denied the request"
 }
 }

 Alternatively, the AS MAY choose to only return the error as codes
 and provide the error as a string. Since the description field is
 not intended to be machine-readable, the following response is
 considered functionally equivalent to the previous example for the
 purposes of the client software’s understanding:

 {
 "error": "user_denied"
 }

 If an error state is reached but the grant is in the _pending_ state
 (and therefore the client instance can continue), the AS MAY include
 the continue field in the response along with the error, as defined
 Section 3.1. This allows the client instance to modify its request
 for access, potentially leading to prompting the RO again. Other
 fields MUST NOT be included in the response.

4. Determining Authorization and Consent

 When the client instance makes its initial request (Section 2) to the
 AS for delegated access, it is capable of asking for several
 different kinds of information in response:

 * the access being requested, in the access_token request parameter

 * the subject information being requested, in the subject request
 parameter

 * any additional requested information defined by extensions of this
 protocol

Richer & Imbault Expires 21 September 2024 [Page 74]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 When the grant request is in the _processing_ state, the AS
 determines what authorizations and consents are required to fulfill
 this requested delegation. The details of how the AS makes this
 determination are out of scope for this document. However, there are
 several common patterns defined and supported by GNAP for fulfilling
 these requirements, including information sent by the client
 instance, information gathered through the interaction process, and
 information supplied by external parties. An individual AS can
 define its own policies and processes for deciding when and how to
 gather the necessary authorizations and consent, and how those are
 applied to the grant request.

 To facilitate the AS fulfilling this request, the client instance
 sends information about the actions the client software can take,
 including:

 * starting interaction with the end user, in the interact request
 parameter

 * receiving notification that interaction with the RO has concluded,
 in the interact request parameter

 * any additional capabilities defined by extensions of this protocol

 The client instance can also supply information directly to the AS in
 its request. The client instance can send several kinds of things,
 including:

 * the identity of the client instance, known from the keys or
 identifiers in the client request parameter

 * the identity of the end user, in the user request parameter

 * any additional information presented by the client instance in the
 request defined by extensions of this protocol

 The AS will process this presented information in the context of the
 client instance’s request and can only trust the information as much
 as it trusts the presentation and context of that request. If the AS
 determines that the information presented in the initial request is
 sufficient for granting the requested access, the AS MAY move the
 grant request to the _approved_ state and return results immediately
 in its response (Section 3) with access tokens and subject
 information.

Richer & Imbault Expires 21 September 2024 [Page 75]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 If the AS determines that additional runtime authorization is
 required, the AS can either deny the request outright (if there is no
 possible recovery) or move the grant request to the _pending_ state
 and use a number of means at its disposal to gather that
 authorization from the appropriate ROs, including for example:

 * starting interaction with the end user facilitated by the client
 software, such as a redirection or user code

 * challenging the client instance through a challenge-response
 mechanism

 * requesting that the client instance present specific additional
 information, such as a user’s credential or an assertion

 * contacting an RO through an out-of-band mechanism, such as a push
 notification

 * executing an auxiliary software process through an out-of-band
 mechanism, such as querying a digital wallet

 The authorization and consent gathering process in GNAP is left
 deliberately flexible to allow for a wide variety of different
 deployments, interactions, and methodologies. In this process, the
 AS can gather consent from the RO or apply the RO’s policy as
 necessitated by the access that has been requested. The AS can
 sometimes determine which RO needs to prompt for consent based on
 what has been requested by the client instance, such as a specific RS
 record, an identified subject, or a request requiring specific access
 such as approval by an administrator. In other cases, the request is
 applied to whichever RO is present at the time of consent gathering.
 This pattern is especially prevalent when the end user is sent to the
 AS for an interactive session, during which the end user takes on the
 role of the RO. In these cases, the end user is delegating their own
 access as RO to the client instance.

Richer & Imbault Expires 21 September 2024 [Page 76]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 The client instance can indicate that it is capable of facilitating
 interaction with the end user, another party, or another piece of
 software through its interaction start (Section 2.5.1) request.
 Here, the AS usually needs to interact directly with the end user to
 determine their identity, determine their status as an RO, and
 collect their consent. If the AS has determined that authorization
 is required and the AS can support one or more of the requested
 interaction start methods, the AS returns the associated interaction
 start responses (Section 3.3). The client instance SHOULD initiate
 one or more of these interaction methods (Section 4.1) in order to
 facilitate the granting of the request. If more than one interaction
 start method is available, the means by which the client chooses
 which methods to follow is out of scope of this specification.

 After starting interaction, the client instance can then make a
 continuation request (Section 5) either in response to a signal
 indicating the finish of the interaction (Section 4.2), after a time-
 based polling, or through some other method defined by an extension
 of this specification through the GNAP Interaction Mode Responses
 registry (Section 11.13).

 If the grant request is not in the _approved_ state, the client
 instance can repeat the interaction process by sending a grant update
 request (Section 5.3) with new interaction (Section 2.5) methods.

 The client instance MUST use each interaction method at most once, if
 a response can be detected. The AS MUST handle any interact request
 as a one-time-use mechanism and SHOULD apply suitable timeouts to any
 interaction start methods provided, including user codes and
 redirection URIs. The client instance SHOULD apply suitable timeouts
 to any interaction finish method.

 In order to support client software deployed in disadvantaged network
 conditions, the AS MAY allow for processing of the same interaction
 method multiple times if the AS can determine that the request is
 from the same party and the results are idempotent. For example, if
 a client instance launches a redirect to the AS but does not receive
 a response within a reasonable time, the client software can launch
 the redirect again, assuming that it never reached the AS in the
 first place. However, if the AS in question receives both requests,
 it could mistakenly process them separately, creating an undefined
 state for the client instance. If the AS can determine that both
 requests come from the same origin or under the same session, and the
 requests both came before any additional state change to the grant
 occurs, the AS can reasonably conclude that the initial response was
 not received and the same response can be returned to the client
 instance.

Richer & Imbault Expires 21 September 2024 [Page 77]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 If the AS instead has a means of contacting the RO directly, it could
 do so without involving the client instance in its consent gathering
 process. For example, the AS could push a notification to a known RO
 and have the RO approve the pending request asynchronously. These
 interactions can be through an interface of the AS itself (such as a
 hosted web page), through another application (such as something
 installed on the RO’s device), through a messaging fabric, or any
 other means.

 When interacting with an RO, the AS can do anything it needs to
 determine the authorization of the requested grant, including:

 * authenticate the RO, through a local account or some other means
 such as federated login

 * validate the RO through presentation of claims, attributes, or
 other information

 * prompt the RO for consent for the requested delegation

 * describe to the RO what information is being released, to whom,
 and for what purpose

 * provide warnings to the RO about potential attacks or negative
 effects of allowing the information

 * allow the RO to modify the client instance’s requested access,
 including limiting or expanding that access

 * provide the RO with artifacts such as receipts to facilitate an
 audit trail of authorizations

 * allow the RO to deny the requested delegation

 The AS is also allowed to request authorization from more than one
 RO, if the AS deems fit. For example, a medical record might need to
 be released by both an attending nurse and a physician, or both
 owners of a bank account need to sign off on a transfer request.
 Alternatively, the AS could require N of M possible RO’s to approve a
 given request. In some circumstances, the AS could even determine
 that the end user present during the interaction is not the
 appropriate RO for a given request and reach out to the appropriate
 RO asynchronously.

 The RO is also allowed to define an automated policy at the AS to
 determine which kind of end user can get access to the resource, and
 under which condition. For instance, such a condition might require
 the end user login and the acceptance of the RO’s legal provisions.

Richer & Imbault Expires 21 September 2024 [Page 78]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 Alternatively, client software could be acting without an end user,
 and the RO’s policy allows issuance of access tokens to specific
 instances of that client software without human interaction.

 While all of these cases are supported by GNAP, the details of their
 implementation, and for determining which RO’s or related policies
 are required for a given request, are out of scope for this
 specification.

4.1. Starting Interaction With the End User

 When a grant request is in the _pending_ state, the interaction start
 methods sent by the client instance can be used to facilitate
 interaction with the end user. To initiate an interaction start
 method indicated by the interaction start responses (Section 3.3)
 from the AS, the client instance follows the steps defined by that
 interaction start mode. The actions of the client instance required
 for the interaction start modes defined in this specification are
 described in the following sections. Interaction start modes defined
 in extensions to this specification MUST define the expected actions
 of the client software when that interaction start mode is used.

 If the client instance does not start an interaction start mode
 within an AS-determined amount of time, the AS MUST reject attempts
 to use the interaction start modes. If the client instance has
 already begun one interaction start mode and the interaction has been
 successfully completed, the AS MUST reject attempts to use other
 interaction start modes. For example, if a user code has been
 successfully entered for a grant request, the AS will need to reject
 requests to an arbitrary redirect URI on the same grant request in
 order to prevent an attacker from capturing and altering an active
 authorization process.

4.1.1. Interaction at a Redirected URI

 When the end user is directed to an arbitrary URI through the
 "redirect" (Section 3.3.1) mode, the client instance facilitates
 opening the URI through the end user’s web browser. The client
 instance could launch the URI through the system browser, provide a
 clickable link, redirect the user through HTTP response codes, or
 display the URI in a form the end user can use to launch such as a
 multidimensional barcode. In all cases, the URI is accessed with an
 HTTP GET request, and the resulting page is assumed to allow direct
 interaction with the end user through an HTTP user agent. With this
 method, it is common (though not required) for the RO to be the same
 party as the end user, since the client instance has to communicate
 the redirection URI to the end user.

Richer & Imbault Expires 21 September 2024 [Page 79]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 In many cases, the URI indicates a web page hosted at the AS,
 allowing the AS to authenticate the end user as the RO and
 interactively provide consent. The URI value is used to identify the
 grant request being authorized. If the URI cannot be associated with
 a currently active request, the AS MUST display an error to the RO
 and MUST NOT attempt to redirect the RO back to any client instance
 even if a redirect finish method is supplied (Section 2.5.2.1). If
 the URI is not hosted by the AS directly, the means of communication
 between the AS and the service provided by this URI are out of scope
 for this specification.

 The client instance MUST NOT modify the URI when launching it, in
 particular the client instance MUST NOT add any parameters to the
 URI. The URI MUST be reachable from the end user’s browser, though
 the URI MAY be opened on a separate device from the client instance
 itself. The URI MUST be accessible from an HTTP GET request and MUST
 be protected by HTTPS, be hosted on a server local to the RO’s
 browser ("localhost"), or use an application-specific URI scheme that
 is loaded on the end user’s device.

4.1.2. Interaction at the Static User Code URI

 When the end user is directed to enter a short code through the
 "user_code" (Section 3.3.3) mode, the client instance communicates
 the user code to the end user and directs the end user to enter that
 code at an associated URI. The client instance MAY format the user
 code in such a way as to facilitate memorability and transfer of the
 code, so long as this formatting does not alter the value as accepted
 at the user code URI. For example, a client instance receiving the
 user code "A1BC3DFF" could choose to display this to the user as
 "A1BC 3DFF", breaking up the long string into two shorter strings.

 When processing input codes, the AS MUST transform the input string
 to remove invalid characters. In the above example, the space in
 between the two parts would be removed upon its entry into the
 interactive form at the user code URI. Additionally, the AS MUST
 treat user input as case insensitive. For example, if the user
 inputs the string "a1bc 3DFF", the AS will treat the input the same
 as "A1BC3DFF". To facilitate this, it is RECOMMENDED that the AS use
 only ASCII letters and numbers as valid characters for the user code.

 It is RECOMMENDED that the AS choose from character values that are
 easily copied and typed without ambiguity. For example, some glyphs
 have multiple Unicode code points for the same visual character, and
 the end-user could potentially type a different character than what
 the AS has returned. For additional considerations of
 internationalized character strings, see [RFC8264]

Richer & Imbault Expires 21 September 2024 [Page 80]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 This mode is designed to be used when the client instance is not able
 to communicate or facilitate launching an arbitrary URI. The
 associated URI could be statically configured with the client
 instance or in the client software’s documentation. As a
 consequence, these URIs SHOULD be short. The user code URI MUST be
 reachable from the end user’s browser, though the URI is usually
 opened on a separate device from the client instance itself. The URI
 MUST be accessible from an HTTP GET request and MUST be protected by
 HTTPS, be hosted on a server local to the RO’s browser ("localhost"),
 or use an application-specific URI scheme that is loaded on the end
 user’s device.

 In many cases, the URI indicates a web page hosted at the AS,
 allowing the AS to authenticate the end user as the RO and
 interactively provide consent. The value of the user code is used to
 identify the grant request being authorized. If the user code cannot
 be associated with a currently active request, the AS MUST display an
 error to the RO and MUST NOT attempt to redirect the RO back to any
 client instance even if a redirect finish method is supplied
 (Section 2.5.2.1). If the interaction component at the user code URI
 is not hosted by the AS directly, the means of communication between
 the AS and this URI, including communication of the user code itself,
 are out of scope for this specification.

 When the RO enters this code at the user code URI, the AS MUST
 uniquely identify the pending request that the code was associated
 with. If the AS does not recognize the entered code, the interaction
 component MUST display an error to the user. If the AS detects too
 many unrecognized code enter attempts, the interaction component
 SHOULD display an error to the user indicating too many attempts and
 MAY take additional actions such as slowing down the input
 interactions. The user should be warned as such an error state is
 approached, if possible.

4.1.3. Interaction at a Dynamic User Code URI

 When the end user is directed to enter a short code through the
 "user_code_uri" (Section 3.3.4) mode, the client instance
 communicates the user code and associated URI to the end user and
 directs the end user to enter that code at the URI. The client
 instance MAY format the user code in such a way as to facilitate
 memorability and transfer of the code, so long as this formatting
 does not alter the value as accepted at the user code URI. For
 example, a client instance receiving the user code "A1BC3DFF" could
 choose to display this to the user as "A1BC 3DFF", breaking up the
 long string into two shorter strings.

Richer & Imbault Expires 21 September 2024 [Page 81]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 When processing input codes, the AS MUST transform the input string
 to remove invalid characters. In the above example, the space in
 between the two parts would be removed upon its entry into the
 interactive form at the user code URI. Additionally, the AS MUST
 treat user input as case insensitive. For example, if the user
 inputs the string "a1bc 3DFF", the AS will treat the input the same
 as "A1BC3DFF". To facilitate this, it is RECOMMENDED that the AS use
 only ASCII letters and numbers as valid characters for the user code.

 This mode is used when the client instance is not able to facilitate
 launching a complex arbitrary URI but can communicate arbitrary
 values like URIs. As a consequence, these URIs SHOULD be short
 enough to allow the URI to be typed by the end user, such as a total
 length of 20 characters or fewer. The client instance MUST NOT
 modify the URI when communicating it to the end user; in particular
 the client instance MUST NOT add any parameters to the URI. The user
 code URI MUST be reachable from the end user’s browser, though the
 URI is usually be opened on a separate device from the client
 instance itself. The URI MUST be accessible from an HTTP GET request
 and MUST be protected by HTTPS, be hosted on a server local to the
 RO’s browser ("localhost"), or use an application-specific URI scheme
 that is loaded on the end user’s device.

 In many cases, the URI indicates a web page hosted at the AS,
 allowing the AS to authenticate the end user as the RO and
 interactively provide consent. The value of the user code is used to
 identify the grant request being authorized. If the user code cannot
 be associated with a currently active request, the AS MUST display an
 error to the RO and MUST NOT attempt to redirect the RO back to any
 client instance even if a redirect finish method is supplied
 (Section 2.5.2.1). If the interaction component at the user code URI
 is not hosted by the AS directly, the means of communication between
 the AS and this URI, including communication of the user code itself,
 are out of scope for this specification.

 When the RO enters this code at the given URI, the AS MUST uniquely
 identify the pending request that the code was associated with. If
 the AS does not recognize the entered code, the interaction component
 MUST display an error to the user. If the AS detects too many
 unrecognized code enter attempts, the interaction component SHOULD
 display an error to the user indicating too many attempts and MAY
 take additional actions such as slowing down the input interactions.
 The user should be warned as such an error state is approached, if
 possible.

Richer & Imbault Expires 21 September 2024 [Page 82]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

4.1.4. Interaction through an Application URI

 When the client instance is directed to launch an application through
 the "app" (Section 3.3.2) mode, the client launches the URI as
 appropriate to the system, such as through a deep link or custom URI
 scheme registered to a mobile application. The means by which the AS
 and the launched application communicate with each other and perform
 any of the required actions are out of scope for this specification.

4.2. Post-Interaction Completion

 If an interaction "finish" (Section 3.3.5) method is associated with
 the current request, the AS MUST follow the appropriate method upon
 completion of interaction in order to signal the client instance to
 continue, except for some limited error cases discussed below. If a
 finish method is not available, the AS SHOULD instruct the RO to
 return to the client instance upon completion. In such cases, it is
 expected that the client instance will poll the continuation endpoint
 as described in Section 5.2.

 The AS MUST create an interaction reference and associate that
 reference with the current interaction and the underlying pending
 request. The interaction reference value is an ASCII string
 consisting of only unreserved characters per Section 2.3 of
 [RFC3986]. The interaction reference value MUST be sufficiently
 random so as not to be guessable by an attacker. The interaction
 reference MUST be one-time-use to prevent interception and replay
 attacks.

 The AS MUST calculate a hash value based on the client instance and
 AS nonces and the interaction reference, as described in
 Section 4.2.3. The client instance will use this value to validate
 the "finish" call.

 All interaction finish methods MUST define a way to convey the hash
 and interaction reference back to the client instance. When an
 interaction finish method is used, the client instance MUST present
 the interaction reference back to the AS as part of its continuation
 request (Section 5.1).

 Note that in many error cases, such as when the RO has denied access,
 the "finish" method is still enacted by the AS. This pattern allows
 the client instance to potentially recover from the error state by
 modifying its request or providing additional information directly to
 the AS in a continuation request. The AS MUST NOT follow the
 "finish" method in the following circumstances:

Richer & Imbault Expires 21 September 2024 [Page 83]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 * The AS has determined that any URIs involved with the finish
 method are dangerous or blocked.

 * The AS cannot determine which ongoing grant request is being
 referenced.

 * The ongoing grant request has been cancelled or otherwise blocked.

4.2.1. Completing Interaction with a Browser Redirect to the Callback
 URI

 When using the redirect interaction finish method defined in
 Section 2.5.2.1 and Section 3.3.5, the AS signals to the client
 instance that interaction is complete and the request can be
 continued by directing the RO (in their browser) back to the client
 instance’s redirect URI.

 The AS secures this redirect by adding the hash and interaction
 reference as query parameters to the client instance’s redirect URI.

 hash: The interaction hash value as described in Section 4.2.3.
 REQUIRED.

 interact_ref: The interaction reference generated for this
 interaction. REQUIRED.

 The means of directing the RO to this URI are outside the scope of
 this specification, but common options include redirecting the RO
 from a web page and launching the system browser with the target URI.
 See Section 13.19 for considerations on which HTTP status code to use
 when redirecting a request that potentially contains credentials.

 NOTE: ’\’ line wrapping per RFC 8792

 https://client.example.net/return/123455\
 ?hash=x-gguKWTj8rQf7d7i3w3UhzvuJ5bpOlKyAlVpLxBffY\
 &interact_ref=4IFWWIKYBC2PQ6U56NL1

 The client instance MUST be able to process a request on the URI. If
 the URI is HTTP, the request MUST be an HTTP GET.

Richer & Imbault Expires 21 September 2024 [Page 84]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 When receiving the request, the client instance MUST parse the query
 parameters to extract the hash and interaction reference values. The
 client instance MUST calculate and validate the hash value as
 described in Section 4.2.3. If the hash validates, the client
 instance sends a continuation request to the AS as described in
 Section 5.1 using the interaction reference value received here. If
 the hash does not validate, the client instance MUST NOT send the
 interaction reference to the AS.

4.2.2. Completing Interaction with a Direct HTTP Request Callback

 When using the push interaction finish method defined in
 Section 2.5.2.1 and Section 3.3.5, the AS signals to the client
 instance that interaction is complete and the request can be
 continued by sending an HTTP POST request to the client instance’s
 callback URI.

 The HTTP message content is a JSON object consisting of the following
 two fields:

 hash (string): The interaction hash value as described in
 Section 4.2.3. REQUIRED.

 interact_ref (string) The interaction reference generated for this
 interaction. REQUIRED.

 POST /push/554321 HTTP/1.1
 Host: client.example.net
 Content-Type: application/json

 {
 "hash": "pjdHcrti02HLCwGU3qhUZ3wZXt8IjrV_BtE3oUyOuKNk",
 "interact_ref": "4IFWWIKYBC2PQ6U56NL1"
 }

 Since the AS is making an outbound connection to a URI supplied by an
 outside party (the client instance), the AS MUST protect itself
 against SSRF attacks when making this call as discussed in
 Section 13.34.

 When receiving the request, the client instance MUST parse the JSON
 object and validate the hash value as described in Section 4.2.3. If
 either fails, the client instance MUST return an unknown_interaction
 error (Section 3.6). If the hash validates, the client instance
 sends a continuation request to the AS as described in Section 5.1
 using the interaction reference value received here.

Richer & Imbault Expires 21 September 2024 [Page 85]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

4.2.3. Calculating the interaction hash

 The "hash" parameter in the request to the client instance’s callback
 URI ties the front channel response to an ongoing request by using
 values known only to the parties involved. This security mechanism
 allows the client instance to protect itself against several kinds of
 session fixation and injection attacks as discussed in Section 13.25
 and related sections. The AS MUST always provide this hash, and the
 client instance MUST validate the hash when received.

 To calculate the "hash" value, the party doing the calculation
 creates a hash base string by concatenating the following values in
 the following order using a single newline (0x0A) character to
 separate them:

 * the "nonce" value sent by the client instance in the interaction
 "finish" section of the initial request (Section 2.5.2)

 * the AS’s nonce value from the interaction finish response
 (Section 3.3.5)

 * the "interact_ref" returned from the AS as part of the interaction
 finish method (Section 4.2)

 * the grant endpoint URI the client instance used to make its
 initial request (Section 2)

 There is no padding or whitespace before or after any of the lines,
 and no trailing newline character. The following non-normative
 example shows a constructed hash base string consisting of these four
 elements.

 VJLO6A4CATR0KRO
 MBDOFXG4Y5CVJCX821LH
 4IFWWIKYB2PQ6U56NL1
 https://server.example.com/tx

 The party then hashes the bytes of the ASCII encoding of this string
 with the appropriate algorithm based on the "hash_method" parameter
 under the "finish" key of the interaction finish request
 (Section 2.5.2). The resulting byte array from the hash function is
 then encoded using URL-Safe Base64 with no padding [RFC4648]. The
 resulting string is the hash value.

 If provided, the "hash_method" value MUST be one of the hash name
 strings defined in the IANA Named Information Hash Algorithm Registry
 [HASH-ALG]. If the "hash_method" value is not present in the client
 instance’s request, the algorithm defaults to "sha-256".

Richer & Imbault Expires 21 September 2024 [Page 86]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 For example, the "sha-256" hash method consists of hashing the input
 string with the 256-bit SHA2 algorithm. The following is the encoded
 "sha-256" hash of the above example hash base string.

 x-gguKWTj8rQf7d7i3w3UhzvuJ5bpOlKyAlVpLxBffY

 For another example, the "sha3-512" hash method consists of hashing
 the input string with the 512-bit SHA3 algorithm. The following is
 the encoded "sha3-512" hash of the above example hash base string.

 NOTE: ’\’ line wrapping per RFC 8792

 pyUkVJSmpqSJMaDYsk5G8WCvgY91l-agUPe1wgn-cc5rUtN69gPI2-S_s-Eswed8iB4\
 PJ_a5Hg6DNi7qGgKwSQ

5. Continuing a Grant Request

 While it is possible for the AS to return an approved grant response
 (Section 3) with all the client instance’s requested information
 (including access tokens (Section 3.2) and subject information
 (Section 3.4)) immediately, it’s more common that the AS will place
 the grant request into the _pending_ state and require communication
 with the client instance several times over the lifetime of a grant
 request. This is often part of facilitating interaction (Section 4),
 but it could also be used to allow the AS and client instance to
 continue negotiating the parameters of the original grant request
 (Section 2) through modification of the request.

 The ability to continue an already-started request allows the client
 instance to perform several important functions, including presenting
 additional information from interaction, modifying the initial
 request, and revoking a grant request in progress.

 To enable this ongoing negotiation, the AS provides a continuation
 API to the client software. The AS returns a continue field in the
 response (Section 3.1) that contains information the client instance
 needs to access this API, including a URI to access as well as a
 special access token to use during the requests, called the
 continuation access token.

Richer & Imbault Expires 21 September 2024 [Page 87]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 All requests to the continuation API are protected by a bound
 continuation access token. The continuation access token is bound to
 the same key and method the client instance used to make the initial
 request (or its most recent rotation). As a consequence, when the
 client instance makes any calls to the continuation URI, the client
 instance MUST present the continuation access token as described in
 Section 7.2 and present proof of the client instance’s key (or its
 most recent rotation) by signing the request as described in
 Section 7.3. The AS MUST validate the signature and ensure that it
 is bound to the appropriate key for the continuation access token.

 Access tokens other than the continuation access tokens MUST NOT be
 usable for continuation requests. Conversely, continuation access
 tokens MUST NOT be usable to make authorized requests to RS’s, even
 if co-located within the AS.

 In the following non-normative example, the client instance makes a
 POST request to a unique URI and signs the request with HTTP Message
 Signatures:

 POST /continue/KSKUOMUKM HTTP/1.1
 Authorization: GNAP 80UPRY5NM33OMUKMKSKU
 Host: server.example.com
 Content-Length: 0
 Signature-Input: sig1=...
 Signature: sig1=...

 The AS MUST be able to tell from the client instance’s request which
 specific ongoing request is being accessed, using a combination of
 the continuation URI and the continuation access token. If the AS
 cannot determine a single active grant request to map the
 continuation request to, the AS MUST return an invalid_continuation
 error (Section 3.6).

 In the following non-normative example, the client instance makes a
 POST request to a stable continuation endpoint URI with the
 interaction reference (Section 5.1), includes the access token, and
 signs with HTTP Message Signatures:

Richer & Imbault Expires 21 September 2024 [Page 88]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 POST /continue HTTP/1.1
 Host: server.example.com
 Content-Type: application/json
 Authorization: GNAP 80UPRY5NM33OMUKMKSKU
 Signature-Input: sig1=...
 Signature: sig1=...
 Content-Digest: sha-256=...

 {
 "interact_ref": "4IFWWIKYBC2PQ6U56NL1"
 }

 In following non-normative alternative example, the client instance
 had been provided a continuation URI unique to this ongoing grant
 request:

 POST /tx/rxgIIEVMBV-BQUO7kxbsp HTTP/1.1
 Host: server.example.com
 Content-Type: application/json
 Authorization: GNAP eyJhbGciOiJub25lIiwidHlwIjoiYmFkIn0
 Signature-Input: sig1=...
 Signature: sig1=...
 Content-Digest: sha-256=...

 {
 "interact_ref": "4IFWWIKYBC2PQ6U56NL1"
 }

 In both cases, the AS determines which grant is being asked for based
 on the URI and continuation access token provided.

 If a wait parameter was included in the continuation response
 (Section 3.1), the client instance MUST NOT call the continuation URI
 prior to waiting the number of seconds indicated. If no wait period
 is indicated, the client instance MUST NOT poll immediately and
 SHOULD wait at least 5 seconds. If the client instance does not
 respect the given wait period, the AS MUST return the too_fast error
 (Section 3.6).

 The response from the AS is a JSON object of a grant response and MAY
 contain any of the fields described in Section 3, as described in
 more detail in the sections below.

 If the AS determines that the client instance can make further
 requests to the continuation API, the AS MUST include a new
 "continue" response (Section 3.1). The new continue response MUST
 include a continuation access token as well, and this token SHOULD be
 a new access token, invalidating the previous access token. If the

Richer & Imbault Expires 21 September 2024 [Page 89]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 AS does not return a new continue response, the client instance MUST
 NOT make an additional continuation request. If a client instance
 does so, the AS MUST return an invalid_continuation error
 (Section 3.6).

 For continuation functions that require the client instance to send a
 message content, the content MUST be a JSON object.

 For all requests to the grant continuation API, the AS MAY make use
 of long polling mechanisms such as discussed in [RFC6202]. That is
 to say, instead of returning the current status immediately, the long
 polling technique allows the AS additional time to process and
 fulfill the request before returning the HTTP response to the client
 instance. For example, when the AS receives a continuation request
 but the grant request is in the _processing_ state, the AS could wait
 until the grant request has moved to the _pending_ or _approved_
 state before returning the response message.

5.1. Continuing After a Completed Interaction

 When the AS responds to the client instance’s finish method as in
 Section 4.2.1, this response includes an interaction reference. The
 client instance MUST include that value as the field interact_ref in
 a POST request to the continuation URI.

 POST /continue HTTP/1.1
 Host: server.example.com
 Content-Type: application/json
 Authorization: GNAP 80UPRY5NM33OMUKMKSKU
 Signature-Input: sig1=...
 Signature: sig1=...
 Content-Digest: sha-256=...

 {
 "interact_ref": "4IFWWIKYBC2PQ6U56NL1"
 }

 Since the interaction reference is a one-time-use value as described
 in Section 4.2.1, if the client instance needs to make additional
 continuation calls after this request, the client instance MUST NOT
 include the interaction reference in subsequent calls. If the AS
 detects a client instance submitting an interaction reference when
 the request is not in the _pending_ state, the AS MUST return a
 too_many_attempts error (Section 3.6) and SHOULD invalidate the
 ongoing request by moving it to the _finalized_ state.

Richer & Imbault Expires 21 September 2024 [Page 90]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 If the grant request is in the _approved_ state, the grant response
 (Section 3) MAY contain any newly-created access tokens (Section 3.2)
 or newly-released subject information (Section 3.4). The response
 MAY contain a new "continue" response (Section 3.1) as described
 above. The response SHOULD NOT contain any interaction responses
 (Section 3.3).

 If the grant request is in the _pending_ state, the grant response
 (Section 3) MUST NOT contain access tokens or subject information,
 and MAY contain a new interaction responses (Section 3.3) to any
 interaction methods that have not been exhausted at the AS.

 For example, if the request is successful in causing the AS to issue
 access tokens and release opaque subject claims, the response could
 look like this:

 NOTE: ’\’ line wrapping per RFC 8792

 {
 "access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "manage": {
 "uri": "https://server.example.com/token/PRY5NM33O",
 "access_token": {
 "value": "B8CDFONP21-4TB8N6.BW7ONM"
 }
 }
 },
 "subject": {
 "sub_ids": [{
 "format": "opaque",
 "id": "J2G8G8O4AZ"
 }]
 }
 }

 With the above example, the client instance can not make an
 additional continuation request because a continue field is not
 included.

 In the following non-normative example, the RO has denied the client
 instance’s request and the AS responds with the following response:

Richer & Imbault Expires 21 September 2024 [Page 91]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 {
 "error": "user_denied",
 "continue": {
 "access_token": {
 "value": "33OMUKMKSKU80UPRY5NM"
 },
 "uri": "https://server.example.com/continue",
 "wait": 30
 }
 }

 In the preceding example, the AS includes the continue field in the
 response. Therefore, the client instance can continue the grant
 negotiation process, perhaps modifying the request as discussed in
 Section 5.3.

5.2. Continuing During Pending Interaction (Polling)

 When the client instance does not include a finish parameter, the
 client instance will often need to poll the AS until the RO has
 authorized the request. To do so, the client instance makes a POST
 request to the continuation URI as in Section 5.1, but does not
 include message content.

 POST /continue HTTP/1.1
 Host: server.example.com
 Authorization: GNAP 80UPRY5NM33OMUKMKSKU
 Signature-Input: sig1=...
 Signature: sig1=...

 If the grant request is in the _approved_ state, the grant response
 (Section 3) MAY contain any newly-created access tokens (Section 3.2)
 or newly-released subject claims (Section 3.4). The response MAY
 contain a new "continue" response (Section 3.1) as described above.
 If a continue field is included, it SHOULD include a wait field to
 facilitate a reasonable polling rate by the client instance. The
 response SHOULD NOT contain interaction responses (Section 3.3).

 If the grant request is in the _pending_ state, the grant response
 (Section 3) MUST NOT contain access tokens or subject information,
 and MAY contain a new interaction responses (Section 3.3) to any
 interaction methods that have not been exhausted at the AS.

 For example, if the request has not yet been authorized by the RO,
 the AS could respond by telling the client instance to make another
 continuation request in the future. In the following non-normative
 example, a new, unique access token has been issued for the call,
 which the client instance will use in its next continuation request.

Richer & Imbault Expires 21 September 2024 [Page 92]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 {
 "continue": {
 "access_token": {
 "value": "33OMUKMKSKU80UPRY5NM"
 },
 "uri": "https://server.example.com/continue",
 "wait": 30
 }
 }

 If the request is successful in causing the AS to issue access tokens
 and release subject information, the response could look like the
 following non-normative example:

 NOTE: ’\’ line wrapping per RFC 8792

 {
 "access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "manage": {
 "uri": "https://server.example.com/token/PRY5NM33O",
 "access_token": {
 "value": "B8CDFONP21-4TB8N6.BW7ONM"
 }
 }
 },
 "subject": {
 "sub_ids": [{
 "format": "opaque",
 "id": "J2G8G8O4AZ"
 }]
 }
 }

 See Section 13.23 for considerations on polling for continuation
 without an interaction finish method.

 In error conditions, the AS responds to the client instance with the
 error code as discussed in Section 3.6. For example, if the client
 instance has polled too many times before the RO has approved the
 request, the AS would respond with a message like the following:

 {
 "error": "too_many_attempts"
 }

Richer & Imbault Expires 21 September 2024 [Page 93]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 Since this response does not include a continue section, the client
 instance cannot continue to poll the AS for additional updates and
 the grant request is _finalized_. If the client instance still needs
 access to the resource, it will need to start with a new grant
 request.

5.3. Modifying an Existing Request

 The client instance might need to modify an ongoing request, whether
 or not tokens have already been issued or subject information has
 already been released. In such cases, the client instance makes an
 HTTP PATCH request to the continuation URI and includes any fields it
 needs to modify. Fields that aren’t included in the request are
 considered unchanged from the original request.

 A grant request associated with a modification request MUST be in the
 approved or _pending_ state. When the AS receives a valid
 modification request, the AS MUST place the grant request into the
 processing state and re-evaluate the authorization in the new
 context created by the update request, since the extent and context
 of the request could have changed.

 The client instance MAY include the access_token and subject fields
 as described in Section 2.1 and Section 2.2. Inclusion of these
 fields override any values in the initial request, which MAY trigger
 additional requirements and policies by the AS. For example, if the
 client instance is asking for more access, the AS could require
 additional interaction with the RO to gather additional consent. If
 the client instance is asking for more limited access, the AS could
 determine that sufficient authorization has been granted to the
 client instance and return the more limited access rights
 immediately. If the grant request was previously in the _approved_
 state, the AS could decide to remember the larger scale of access
 rights associated with the grant request, allowing the client
 instance to make subsequent requests of different subsets of granted
 access. The details of this processing are out of scope for this
 specification, but a one possible approach is as follows:

 1. A client instance requests access to Foo, and is granted by the
 RO. This results in an access token, AT1.

 2. The client instance later modifies the grant request to include
 Foo and Bar together. Since the client instance was previously
 granted Foo under this grant request, the RO is prompted to allow
 the client instance access to Foo and Bar together. This results
 in a new access token, AT2 This access token has access to both
 Foo and Bar. The rights of the original access token AT1 are not
 modified.

Richer & Imbault Expires 21 September 2024 [Page 94]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 3. The client instance makes another grant modification to ask only
 for Bar. Since the client instance was previously granted Foo and
 Bar together under this grant request, the RO is not prompted and
 the access to Bar is granted in a new access token, AT3. This
 new access token does not allow access to Foo.

 4. The original access token AT1 expires and the client seeks a new
 access token to replace it. The client instance makes another
 grant modification to ask only for Foo. Since the client instance
 was previously granted Foo and Bar together under this grant
 request, the RO is not prompted and the access to Foo is granted
 in a new access token, AT4. This new access token does not allow
 access to Bar.

 All four access tokens are independent of each other and associated
 with the same underlying grant request. Each of these access tokens
 could possibly also be rotated using token management, if available.
 For example, instead of asking for a new token to replace AT1, the
 client instance could ask for a refresh of AT1 using the rotation
 method of the token management API. This would result in a refreshed
 AT1 with a different token value and expiration from the original AT1
 but with the same access rights of allowing only access to Foo.

 The client instance MAY include the interact field as described in
 Section 2.5. Inclusion of this field indicates that the client
 instance is capable of driving interaction with the end user, and
 this field replaces any values from a previous request. The AS MAY
 respond to any of the interaction responses as described in
 Section 3.3, just like it would to a new request.

 The client instance MAY include the user field as described in
 Section 2.4 to present new assertions or information about the end
 user. The AS SHOULD check that this presented user information is
 consistent with any user information previously presented by the
 client instance or otherwise associated with this grant request.

 The client instance MUST NOT include the client section of the
 request, since the client instance is assumed not to have changed.
 Modification of client instance information, including rotation of
 keys associated with the client instance, is outside the scope of
 this specification.

 The client instance MUST NOT include post-interaction responses such
 as described in Section 5.1.

Richer & Imbault Expires 21 September 2024 [Page 95]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 Modification requests MUST NOT alter previously-issued access tokens.
 Instead, any access tokens issued from a continuation are considered
 new, separate access tokens. The AS MAY revoke previously-issued
 access tokens after a modification has occurred.

 If the modified request can be granted immediately by the AS (the
 grant request is in the _approved_ state), the grant response
 (Section 3) MAY contain any newly-created access tokens (Section 3.2)
 or newly-released subject claims (Section 3.4). The response MAY
 contain a new "continue" response (Section 3.1) as described above.
 If interaction can occur, the response SHOULD contain interaction
 responses (Section 3.3) as well.

 For example, a client instance initially requests a set of resources
 using references:

 POST /tx HTTP/1.1
 Host: server.example.com
 Content-Type: application/json
 Signature-Input: sig1=...
 Signature: sig1=...
 Content-Digest: sha-256=...

 {
 "access_token": {
 "access": [
 "read", "write"
]
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.example.net/return/123455",
 "nonce": "LKLTI25DK82FX4T4QFZC"
 }
 },
 "client": "987YHGRT56789IOLK"
 }

 Access is granted by the RO, and a token is issued by the AS. In its
 final response, the AS includes a continue field, which includes a
 separate access token for accessing the continuation API:

Richer & Imbault Expires 21 September 2024 [Page 96]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 {
 "continue": {
 "access_token": {
 "value": "80UPRY5NM33OMUKMKSKU"
 },
 "uri": "https://server.example.com/continue",
 "wait": 30
 },
 "access_token": {
 "value": "RP1LT0-OS9M2P_R64TB",
 "access": [
 "read", "write"
]
 }
 }

 This continue field allows the client instance to make an eventual
 continuation call. Some time later, the client instance realizes
 that it no longer needs "write" access and therefore modifies its
 ongoing request, here asking for just "read" access instead of both
 "read" and "write" as before.

 PATCH /continue HTTP/1.1
 Host: server.example.com
 Content-Type: application/json
 Authorization: GNAP 80UPRY5NM33OMUKMKSKU
 Signature-Input: sig1=...
 Signature: sig1=...
 Content-Digest: sha-256=...

 {
 "access_token": {
 "access": [
 "read"
]
 }
 ...
 }

 The AS replaces the previous access from the first request, allowing
 the AS to determine if any previously-granted consent already
 applies. In this case, the AS would determine that reducing the
 breadth of the requested access means that new access tokens can be
 issued to the client instance without additional interaction or
 consent. The AS would likely revoke previously-issued access tokens
 that had the greater access rights associated with them, unless they
 had been issued with the durable flag.

Richer & Imbault Expires 21 September 2024 [Page 97]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 {
 "continue": {
 "access_token": {
 "value": "M33OMUK80UPRY5NMKSKU"
 },
 "uri": "https://server.example.com/continue",
 "wait": 30
 },
 "access_token": {
 "value": "0EVKC7-2ZKwZM_6N760",
 "access": [
 "read"
]
 }
 }

 For another example, the client instance initially requests read-only
 access but later needs to step up its access. The initial request
 could look like the following HTTP message.

 POST /tx HTTP/1.1
 Host: server.example.com
 Content-Type: application/json
 Signature-Input: sig1=...
 Signature: sig1=...
 Content-Digest: sha-256=...

 {
 "access_token": {
 "access": [
 "read"
]
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.example.net/return/123455",
 "nonce": "LKLTI25DK82FX4T4QFZC"
 }
 },
 "client": "987YHGRT56789IOLK"
 }

 Access is granted by the RO, and a token is issued by the AS. In its
 final response, the AS includes a continue field:

Richer & Imbault Expires 21 September 2024 [Page 98]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 {
 "continue": {
 "access_token": {
 "value": "80UPRY5NM33OMUKMKSKU"
 },
 "uri": "https://server.example.com/continue",
 "wait": 30
 },
 "access_token": {
 "value": "RP1LT0-OS9M2P_R64TB",
 "access": [
 "read"
]
 }
 }

 This allows the client instance to make an eventual continuation
 call. The client instance later realizes that it now needs "write"
 access in addition to the "read" access. Since this is an expansion
 of what it asked for previously, the client instance also includes a
 new interaction section in case the AS needs to interact with the RO
 again to gather additional authorization. Note that the client
 instance’s nonce and callback are different from the initial request.
 Since the original callback was already used in the initial exchange,
 and the callback is intended for one-time-use, a new one needs to be
 included in order to use the callback again.

Richer & Imbault Expires 21 September 2024 [Page 99]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 PATCH /continue HTTP/1.1
 Host: server.example.com
 Content-Type: application/json
 Authorization: GNAP 80UPRY5NM33OMUKMKSKU
 Signature-Input: sig1=...
 Signature: sig1=...
 Content-Digest: sha-256=...

 {
 "access_token": {
 "access": [
 "read", "write"
]
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.example.net/return/654321",
 "nonce": "K82FX4T4LKLTI25DQFZC"
 }
 }
 }

 From here, the AS can determine that the client instance is asking
 for more than it was previously granted, but since the client
 instance has also provided a mechanism to interact with the RO, the
 AS can use that to gather the additional consent. The protocol
 continues as it would with a new request. Since the old access
 tokens are good for a subset of the rights requested here, the AS
 might decide to not revoke them. However, any access tokens granted
 after this update process are new access tokens and do not modify the
 rights of existing access tokens.

5.4. Revoking a Grant Request

 If the client instance wishes to cancel an ongoing grant request and
 place it into the _finalized_ state, the client instance makes an
 HTTP DELETE request to the continuation URI.

 DELETE /continue HTTP/1.1
 Host: server.example.com
 Content-Type: application/json
 Authorization: GNAP 80UPRY5NM33OMUKMKSKU
 Signature-Input: sig1=...
 Signature: sig1=...

Richer & Imbault Expires 21 September 2024 [Page 100]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 If the request is successfully revoked, the AS responds with status
 code HTTP 204 (No Content). The AS SHOULD revoke all associated
 access tokens, if possible. The AS SHOULD disable all token rotation
 and other token management functions on such access tokens, if
 possible. Once the grant request is in the _finalized_ state, it
 MUST NOT be moved to any other state.

 If the request is not revoked, the AS responds with an
 invalid_continuation error (Section 3.6).

6. Token Management

 If an access token response includes the manage field as described in
 Section 3.2.1, the client instance MAY call this URI to manage the
 access token with the rotate and revoke actions defined in the
 following sections. Other actions are undefined by this
 specification.

 {
 "access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "flags": ["bearer"],
 "manage": {
 "uri": "https://server.example.com/token/PRY5NM33O",
 "access_token": {
 "value": "B8CDFONP21-4TB8N6.BW7ONM"
 }
 }
 }
 }

 The token management access token issued under the manage field is
 used to protect all calls to the token management API. The client
 instance MUST present proof of the key associated with the token
 along with the token management access token value.

 The AS MUST validate the proof and ensure that it is associated with
 the token management access token.

 The AS MUST uniquely identify the token being managed from the token
 management URI, the token management access token, or a combination
 of both.

Richer & Imbault Expires 21 September 2024 [Page 101]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

6.1. Rotating the Access Token Value

 If the client instance has an access token and that access token
 expires, the client instance might want to rotate the access token to
 a new value without expiration. Rotating an access token consists of
 issuing a new access token in place of an existing access token, with
 the same rights and properties as the original token, apart from an
 updated token value and expiration time.

 To rotate an access token, the client instance makes an HTTP POST to
 the token management URI with no message content, sending the access
 token in the authorization header as described in Section 7.2 and
 signing the request with the appropriate key.

 POST /token/PRY5NM33O HTTP/1.1
 Host: server.example.com
 Authorization: GNAP B8CDFONP21-4TB8N6.BW7ONM
 Signature-Input: sig1=...
 Signature: sig1=...
 Content-Digest: sha-256=...

 The client instance can not request to alter the access rights
 associated with the access token during a rotation request. To get
 an access token with different access rights for this grant request,
 the client instance has to call the continuation API’s update
 (Section 5.3) functionality to get a new access token. The client
 instance can also create a new grant request with the required access
 rights.

 The AS validates that the token management access token presented is
 associated with the management URI, that the AS issued the token to
 the given client instance, and that the presented key is the correct
 key for the token management access token. The AS determines which
 access token is being rotated from the token management URI, the
 token management access token, or both.

 If the token is validated and the key is appropriate for the request,
 the AS MUST invalidate the current access token value associated with
 this URI, if possible. Note that stateless access tokens can make
 proactive revocation difficult within a system, see Section 13.32.

Richer & Imbault Expires 21 September 2024 [Page 102]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 For successful rotations, the AS responds with an HTTP 200 with a
 JSON-formatted message content consisting of the rotated access token
 in the access_token field described in Section 3.2.1. The value of
 the access token MUST NOT be the same as the current value of the
 access token used to access the management API. The response MUST
 include an access token management URI, and the value of this URI MAY
 be different from the URI used by the client instance to make the
 rotation call. The client instance MUST use this new URI to manage
 the rotated access token.

 The access rights in the access array for the rotated access token
 MUST be included in the response and MUST be the same as the token
 before rotation.

 NOTE: ’\’ line wrapping per RFC 8792

 {
 "access_token": {
 "value": "FP6A8H6HY37MH13CK76LBZ6Y1UADG6VEUPEER5H2",
 "manage": {
 "uri": "https://server.example.com/token/PRY5NM33O",
 "access_token": {
 "value": "B8CDFONP21-4TB8N6.BW7ONM"
 }
 },
 "expires_in": 3600,
 "access": [
 {
 "type": "photo-api",
 "actions": [
 "read",
 "write",
 "dolphin"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 },
 "read", "dolphin-metadata"
]
 }
 }

Richer & Imbault Expires 21 September 2024 [Page 103]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 If the AS is unable or unwilling to rotate the value of the access
 token, the AS responds with an invalid_rotation error (Section 3.6).
 Upon receiving such an error, the client instance MUST consider the
 access token to not have changed its state.

6.1.1. Binding a New Key to the Rotated Access Token

 If the client instance wishes to bind a new presentation key to an
 access token, the client instance MUST present both the new key and
 the proof of previous key material in the access token rotation
 request. The client instance makes an HTTP POST as a JSON object
 with the following field:

 key: The new key value or reference in the format described in
 Section 7.1. Note that keys passed by value are always public
 keys. REQUIRED when doing key rotation.

 The proof method and parameters for the new key MUST be the same as
 those established for the previous key.

 The client instance MUST prove possession of both the currently-bound
 key and the newly-requested key simultaneously in the rotation
 request. Specifically, the signature from the previous key MUST
 cover the value or reference of the new key, and the signature of the
 new key MUST cover the signature value of the old key. The means of
 doing so varies depending on the proofing method in use. For
 example, the HTTP Message Signatures proofing method uses multiple
 signatures in the request as described in Section 7.3.1.1, as shown
 in this example.

Richer & Imbault Expires 21 September 2024 [Page 104]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 POST /token/PRY5NM33O HTTP/1.1
 Host: server.example.com
 Authorization: GNAP B8CDFONP21-4TB8N6.BW7ONM
 Signature-Input: \
 sig1=("@method" "@target-uri" "content-digest" \
 "authorization"),\
 sig2=("@method" "@target-uri" "content-digest" \
 "authorization" "signature";key="sig1" \
 "signature-input";key="sig1")
 Signature: sig1=..., sig2=...
 Content-Digest: sha-256=...

 {
 "key": {
 "proof": "httpsig",
 "jwk": {
 "kty": "RSA",
 "e": "AQAB",
 "kid": "xyz-2",
 "alg": "RS256",
 "n": "kOB5rR4Jv0GMeLaY6_It_r3ORwdf8ci_JtffXyaSx8xY..."
 }
 }
 }

 Failure to present the appropriate proof of either the new key or the
 previous key for the access token, as defined by the proof method,
 MUST result in an invalid_rotation error code from the AS
 (Section 3.6).

 An attempt to change the proof method or parameters, including an
 attempt to rotate the key of a bearer token (which has no key), MUST
 result in an invalid_rotation error code returned from the AS
 (Section 3.6).

 If the AS does not allow rotation of the access token’s key for any
 reason, including but not limited to lack of permission for this
 client instance or lack of capability by the AS, the AS MUST return a
 key_rotation_not_supported error code (Section 3.6).

6.2. Revoking the Access Token

 If the client instance wishes to revoke the access token proactively,
 such as when a user indicates to the client instance that they no
 longer wish for it to have access or the client instance application
 detects that it is being uninstalled, the client instance can use the
 token management URI to indicate to the AS that the AS SHOULD
 invalidate the access token for all purposes.

Richer & Imbault Expires 21 September 2024 [Page 105]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 The client instance makes an HTTP DELETE request to the token
 management URI, presenting the access token and signing the request
 with the appropriate key.

 DELETE /token/PRY5NM33O HTTP/1.1
 Host: server.example.com
 Authorization: GNAP B8CDFONP21-4TB8N6.BW7ONM
 Signature-Input: sig1=...
 Signature: sig1=...

 If the key presented is associated with the token (or the client
 instance, in the case of a bearer token), the AS MUST invalidate the
 access token, if possible, and return an HTTP 204 response code.

 204 No Content

 Though the AS MAY revoke an access token at any time for any reason,
 the token management function is specifically for the client
 instance’s use. If the access token has already expired or has been
 revoked through other means, the AS SHOULD honor the revocation
 request to the token management URI as valid, since the end result is
 still the token not being usable.

7. Securing Requests from the Client Instance

 In GNAP, the client instance secures its requests to an AS and RS by
 presenting an access token, presenting proof of a key that it
 possesses (aka, a "key proof"), or both an access token and key proof
 together.

 * When an access token is used with a key proof, this is a bound
 token request. This type of request is used for calls to the RS
 as well as the AS during grant negotiation.

 * When a key proof is used with no access token, this is a non-
 authorized signed request. This type of request is used for calls
 to the AS to initiate a grant negotiation.

 * When an access token is used with no key proof, this is a bearer
 token request. This type of request is used only for calls to the
 RS, and only with access tokens that are not bound to any key as
 described in Section 3.2.1.

 * When neither an access token nor key proof are used, this is an
 unsecured request. This type of request is used optionally for
 calls to the RS as part of an RS-first discovery process as
 described in Section 9.1.

Richer & Imbault Expires 21 September 2024 [Page 106]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

7.1. Key Formats

 Several different places in GNAP require the presentation of key
 material by value or by reference. Key material sent by value is
 sent using a JSON object with several fields described in this
 section.

 All keys are associated with a specific key proofing method. The
 proofing method associated with the key is indicated using the proof
 field of the key object.

 proof (string or object): The form of proof that the client instance
 will use when presenting the key. The valid values of this field
 and the processing requirements for each are detailed in
 Section 7.3. REQUIRED.

 A key presented by value MUST be a public key and MUST be presented
 in one and only one supported format, as discussed in Section 13.35.
 Note that while most formats present the full value of the public
 key, some formats present a value cryptographically derived from the
 public key. See additional discussion of the presentation of public
 keys in Section 13.7.

 jwk (object): The public key and its properties represented as a
 JSON Web Key [RFC7517]. A JWK MUST contain the alg (Algorithm)
 and kid (Key ID) parameters. The alg parameter MUST NOT be
 "none". The x5c (X.509 Certificate Chain) parameter MAY be used
 to provide the X.509 representation of the provided public key.
 OPTIONAL.

 cert (string): PEM serialized value of the certificate used to sign
 the request, with optional internal whitespace per [RFC7468]. The
 PEM header and footer are optionally removed. OPTIONAL.

 cert#S256 (string): The certificate thumbprint calculated as per
 OAuth-MTLS [RFC8705] in base64 URL encoding. Note that this
 format does not include the full public key. OPTIONAL.

 Additional key formats are defined in the GNAP Key Formats Registry
 (Section 11.17).

 The following non-normative example shows a single key presented in
 two different formats. The example key is intended to be used with
 the HTTP Message Signatures (Section 7.3.1) proofing mechanism, as
 indicated by the httpsig value of the proof field.

 As a JSON Web Key:

Richer & Imbault Expires 21 September 2024 [Page 107]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 "key": {
 "proof": "httpsig",
 "jwk": {
 "kty": "RSA",
 "e": "AQAB",
 "kid": "xyz-1",
 "alg": "RS256",
 "n": "kOB5rR4Jv0GMeLaY6_It_r3ORwdf8ci_JtffXyaSx8xY..."
 }
 }

 As a certificate in PEM format:

 "key": {
 "proof": "httpsig",
 "cert": "MIIEHDCCAwSgAwIBAgIBATANBgkqhkiG9w0BAQsFA..."
 }

 When the key is presented in GNAP, proof of this key material MUST be
 used to bind the request, the nature of which varies with the
 location in the protocol the key is used. For a key used as part of
 a client instance’s initial request in Section 2.3, the key value
 represents the client instance’s public key, and proof of that key
 MUST be presented in that request. For a key used as part of an
 access token response in Section 3.2.1, the proof of that key MUST be
 used when the client instance later presents the access token to the
 RS.

7.1.1. Key References

 Keys in GNAP can also be passed by reference such that the party
 receiving the reference will be able to determine the appropriate
 keying material for use in that part of the protocol. Key references
 are a single opaque string.

 "key": "S-P4XJQ_RYJCRTSU1.63N3E"

 Keys referenced in this manner MAY be shared symmetric keys. See the
 additional considerations for symmetric keys in Section 13.7. The
 key reference MUST NOT contain any unencrypted private or shared
 symmetric key information.

 Keys referenced in this manner MUST be bound to a single proofing
 mechanism.

 The means of dereferencing this reference to a key value and proofing
 mechanism are out of scope for this specification. Commonly, key
 references are created by the AS and are not necessarily needed to be

Richer & Imbault Expires 21 September 2024 [Page 108]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 understood by the client. These types of key references are an
 internal reference to the AS, such as an identifier of a record in a
 database. In other applications, it can be useful to use key
 references that are resolvable by both clients and AS, which could be
 accomplished by a client publishing a public key at a URI, for
 example. For interoperability, this method could later be described
 as an extension, but doing so is out of scope for this specification.

7.1.2. Key Protection

 The security of GNAP relies on the cryptographic security of the keys
 themselves. When symmetric keys are used in GNAP, a key management
 system or secure key derivation mechanism MUST be used to supply the
 keys. Symmetric keys MUST NOT be a human memorable password or a
 value derived from one. Symmetric keys MUST NOT be passed by value
 from the client instance to the AS.

 Additional security considerations apply when rotating keys
 (Section 13.22).

7.2. Presenting Access Tokens

 Access tokens are issued to client instances in GNAP to allow the
 client instance to make an authorized call to an API. The method the
 client instance uses to send an access token depends on whether the
 token is bound to a key, and if so which proofing method is
 associated with the key. This information is conveyed by the key
 parameter and the bearer flag in the access token response structure
 (Section 3.2.1).

 If the flags field does not contain the bearer flag and the key is
 absent, the access token MUST be sent using the same key and proofing
 mechanism that the client instance used in its initial request (or
 its most recent rotation).

 If the flags field does not contain the bearer flag and the key value
 is an object as described in Section 7.1, the access token MUST be
 sent using the key and proofing mechanism defined by the value of the
 proof field within the key object.

 The access token MUST be sent using the HTTP "Authorization" request
 header field and the "GNAP" authorization scheme along with a key
 proof as described in Section 7.3 for the key bound to the access
 token. For example, an access token bound using HTTP Message
 Signatures would be sent as follows:

Richer & Imbault Expires 21 September 2024 [Page 109]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 NOTE: ’\’ line wrapping per RFC 8792

 GET /stuff HTTP/1.1
 Host: resource.example.com
 Authorization: GNAP 80UPRY5NM33OMUKMKSKU
 Signature-Input: sig1=("@method" "@target-uri" "authorization")\
 ;created=1618884473;keyid="gnap-rsa";nonce="NAOEJF12ER2";tag="gnap"
 Signature: sig1=:FQ+EjWqc38uLFByKa5y+c4WyYYwCTGUhidWKfr5L1Cha8FiPEw\
 DxG7nWttpBLS/B6VLfkZJogPbclySs9MDIsAIJwHnzlcJjwXWR2lfvm2z3X7EkJHm\
 Zp4SmyKOS34luAiKR1xwf32NYFolHmZf/SbHZJuWvQuS4U33C+BbsXz8MflFH1Dht\
 H/C1E5i244gSbdLCPxzABc/Q0NHVSLo1qaouYIvnxXB8OT3K7mwWjsLh1GC5vFThb\
 3XQ363r6f0OPRa4qWHhubR/d/J/lNOjbBdjq9AJ69oqNJ+A2XT+ZCrVasEJE0OBvD\
 auQoiywhb8BMB7+PEINsPk5/8UvaNxbw==:

 If the flags field contains the bearer flag, the access token is a
 bearer token that MUST be sent using the Authorization Request Header
 Field method defined in [RFC6750].

 Authorization: Bearer OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0

 The Form-Encoded Body Parameter and URI Query Parameter methods of
 [RFC6750] MUST NOT be used for GNAP access tokens.

7.3. Proving Possession of a Key with a Request

 Any keys presented by the client instance to the AS or RS MUST be
 validated as part of the request in which they are presented. The
 type of binding used is indicated by the proof parameter of the key
 object in Section 7.1. Key proof methods are specified either by a
 string, which consists of the key proof method name on its own, or by
 a JSON object with the required field method:

 method: The name of the key proofing method to be used. REQUIRED.

 Individual methods defined as objects MAY define additional
 parameters as members in this object.

 Values for the method defined by this specification are as follows:

 "httpsig" (string or object): HTTP Signing signature headers. See
 Section 7.3.1.

 "mtls" (string): Mutual TLS certificate verification. See
 Section 7.3.2.

 "jwsd" (string): A detached JWS signature header. See
 Section 7.3.3.

Richer & Imbault Expires 21 September 2024 [Page 110]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 "jws" (string): Attached JWS payload. See Section 7.3.4.

 Additional proofing methods are defined by the GNAP Key Proofing
 Methods Registry (Section 11.16).

 Proof methods MAY be defined as both an object and a string. For
 example, the httpsig method can be specified as an object with its
 parameters explicitly declared, such as:

 {
 "proof": {
 "method": "httpsig",
 "alg": "ecdsa-p384-sha384",
 "content-digest-alg": "sha-256"
 }
 }

 The httpsig method also defines default behavior when it is passed as
 a string form, using the signature algorithm specified by the
 associated key material and the content digest is calculated using
 sha-256. This configuration can be selected using the following
 shortened form:

 {
 "proof": "httpsig"
 }

 All key binding methods used by this specification MUST cover all
 relevant portions of the request, including anything that would
 change the nature of the request, to allow for secure validation of
 the request. Relevant aspects include the URI being called, the HTTP
 method being used, any relevant HTTP headers and values, and the HTTP
 message content itself. The verifier of the signed message MUST
 validate all components of the signed message to ensure that nothing
 has been tampered with or substituted in a way that would change the
 nature of the request. Key binding method definitions MUST enumerate
 how these requirements are fulfilled.

 When a key proofing mechanism is bound to an access token, the key
 being presented MUST be the key associated with the access token and
 the access token MUST be covered by the signature method of the
 proofing mechanism.

 The key binding methods in this section MAY be used by other
 components making calls as part of GNAP, such as the extensions
 allowing the RS to make calls to the AS defined in
 [I-D.ietf-gnap-resource-servers]. To facilitate this extended use,
 the sections below are defined in generic terms of the "signer" and

Richer & Imbault Expires 21 September 2024 [Page 111]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 "verifier" of the HTTP message. In the core functions of GNAP
 specified in this document, the "signer" is the client instance and
 the "verifier" is the AS (for grant requests) or RS (for resource
 requests), as appropriate.

 When used for delegation in GNAP, these key binding mechanisms allow
 the AS to ensure that the keys presented by the client instance in
 the initial request are in control of the party calling any follow-up
 or continuation requests. To facilitate this requirement, the
 continuation response (Section 3.1) includes an access token bound to
 the client instance’s key (Section 2.3), and that key (or its most
 recent rotation) MUST be proved in all continuation requests
 (Section 5). Token management requests (Section 6) are similarly
 bound to either the access token’s own key or, in the case of bearer
 tokens, the client instance’s key.

 In the following sections, unless otherwise noted, the RS256 JOSE
 Signature Algorithm (defined in Section 3.3 of [RFC7518]) is applied
 using the following RSA key (presented here in JWK format):

Richer & Imbault Expires 21 September 2024 [Page 112]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 NOTE: ’\’ line wrapping per RFC 8792

 {
 "kid": "gnap-rsa",
 "p": "xS4-YbQ0SgrsmcA7xDzZKuVNxJe3pCYwdAe6efSy4hdDgF9-vhC5gjaRk\
 i1wWuERSMW4Tv44l5HNrL-Bbj_nCJxr_HAOaesDiPn2PnywwEfg3Nv95Nn-\
 eilhqXRaW-tJKEMjDHu_fmJBeemHNZI412gBnXdGzDVo22dvYoxd6GM",
 "kty": "RSA",
 "q": "rVdcT_uy-CD0GKVLGpEGRR7k4JO6Tktc8MEHkC6NIFXihk_6vAIOCzCD6\
 LMovMinOYttpRndKoGTNdJfWlDFDScAs8C5n2y1STCQPRximBY-bw39-aZq\
 JXMxOLyPjzuVgiTOCBIvLD6-8-mvFjXZk_eefD0at6mQ5qV3U1jZt88",
 "d": "FHlhdTF0ozTliDxMBffT6aJVKZKmbbFJOVNten9c3lXKB3ux3NAb_D2dB\
 7inp9EV23oWrDspFtvCvD9dZrXgRKMHofkEpo_SSvBZfgtH-OTkbY_TqtPF\
 FLPKAw0JX5cFPnn4Q2xE4n-dQ7tpRCKl59vZLHBrHShr90zqzFp0AKXU5fj\
 b1gC9LPwsFA2Fd7KXmI1drQQEVq9R-o18Pnn4BGQNQNjO_VkcJTiBmEIVT_\
 KJRPdpVJAmbgnYWafL_hAfeb_dK8p85yurEVF8nCK5oO3EPrqB7IL4UqaEn\
 5Sl3u0j8x5or-xrrAoNz-gdOv7ONfZY6NFoa-3f8q9wBAHUuQ",
 "e": "AQAB",
 "qi": "ogpNEkDKg22Rj9cDV_-PJBZaXMk66Fp557RT1tafIuqJRHEufSOYnsto\
 bWPJ0gHxv1gVJw3gm-zYvV-wTMNgr2wVsBSezSJjPSjxWZtmT2z68W1DuvK\
 kZy15vz7Jd85hmDlriGcXNCoFEUsGLWkpHH9RwPIzguUHWmTt8y0oXyI",
 "dp": "dvCKGI2G7RLh3WyjoJ_Dr6hZ3LhXweB3YcY3qdD9BnxZ71mrLiMQg4c_\
 EBnwqCETN_5sStn2cRc2JXnvLP3G8t7IFKHTT_i_TSTacJ7uT04MSa053Y3\
 RfwbvLjRNPR0UKAE3ZxROUoIaVNuU_6-QMf8-2ilUv2GIOrCN87gP_Vk",
 "alg": "RS256",
 "dq": "iMZmELaKgT9_W_MRT-UfDWtTLeFjIGRW8aFeVmZk9R7Pnyt8rNzyN-IQ\
 M40ql8u8J6vc2GmQGfokLlPQ6XLSCY68_xkTXrhoU1f-eDntkhP7L6XawSK\
 Onv5F2H7wyBQ75HUmHTg8AK2B_vRlMyFKjXbVlzKf4kvqChSGEz4IjQ",
 "n": "hYOJ-XOKISdMMShn_G4W9m20mT0VWtQBsmBBkI2cmRt4Ai8BfYdHsFzAt\
 YKOjpBR1RpKpJmVKxIGNy0g6Z3ad2XYsh8KowlyVy8IkZ8NMwSrcUIBZGYX\
 jHpwjzvfGvXH_5KJlnR3_uRUp4Z4Ujk2bCaKegDn11V2vxE41hqaPUnhRZx\
 e0jRETddzsE3mu1SK8dTCROjwUl14mUNo8iTrTm4n0qDadz8BkPo-uv4BC0\
 bunS0K3bA_3UgVp7zBlQFoFnLTO2uWp_muLEWGl67gBq9MO3brKXfGhi3kO\
 zywzwPTuq-cVQDyEN7aL0SxCb3Hc4IdqDaMg8qHUyObpPitDQ"
 }

 Key proofing methods SHOULD define a mechanism to allow the rotation
 of keys discussed in Section 6.1.1. Key rotation mechanisms MUST
 define a way for presenting proof of two keys simultaneously with the
 following attributes:

 * The value of or reference to the new key material MUST be signed
 by the existing key. Generally speaking, this amounts to using
 the existing key to sign the content of the message which contains
 the new key.

Richer & Imbault Expires 21 September 2024 [Page 113]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 * The signature of the old key MUST be signed by the new key.
 Generally speaking, this means including the signature value of
 the old key under the coverage of the new key.

7.3.1. HTTP Message Signatures

 This method is indicated by the method value httpsig and can be
 declared in either object form or string form.

 When the proof method is specified in object form, the following
 parameters are defined:

 alg: The HTTP signature algorithm, from the HTTP Signature Algorithm
 registry. REQUIRED.

 content-digest-alg: The algorithm used for the Content-Digest field,
 used to protect the content when present in the message.
 REQUIRED.

 This example uses the ECDSA signing algorithm over the P384 curve and
 the SHA-512 hashing algorithm for the content digest.

 {
 "proof": {
 "method": "httpsig",
 "alg": "ecdsa-p384-sha384",
 "content-digest-alg": "sha-512"
 }
 }

 When the proof method is specified in string form, the signing
 algorithm MUST be derived from the key material (such as using the
 JWS algorithm in a JWK formatted key), and the content digest
 algorithm MUST be sha-256.

 {
 "proof": "httpsig"
 }

 When using this method, the signer creates an HTTP Message Signature
 as described in [RFC9421]. The covered components of the signature
 MUST include the following:

 "@method": The method used in the HTTP request.

 "@target-uri": The full request URI of the HTTP request.

Richer & Imbault Expires 21 September 2024 [Page 114]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 When the message contains request content, the covered components
 MUST also include the following:

 "content-digest": The Content-Digest header as defined in [RFC9530].
 When the request message has content, the signer MUST calculate
 this field value and include the field in the request. The
 verifier MUST validate this field value. REQUIRED when the
 message request contains message content.

 When the request is bound to an access token, the covered components
 MUST also include the following:

 "authorization": The Authorization header used to present the access
 token as discussed in Section 7.2.

 Other message components MAY also be included.

 The signer MUST include the tag signature parameter with the value
 gnap, and the verifier MUST verify that the parameter exists with
 this value. The signer MUST include the created signature parameter
 with a timestamp of when the signature was created, and the verifier
 MUST ensure that the creation timestamp is sufficiently close to the
 current time given expected network delay and clock skew. The signer
 SHOULD include the nonce parameter with a unique and unguessable
 value. When included, the verifier MUST determine that the nonce
 value is unique within a reasonably short time period such as several
 minutes.

 If the signer’s key presented is a JWK, the keyid parameter of the
 signature MUST be set to the kid value of the JWK, the signing
 algorithm used MUST be the JWS algorithm denoted by the key’s alg
 field of the JWK.

 The explicit alg signature parameter MUST NOT be included in the
 signature, since the algorithm will be derived either from the key
 material or from the proof value.

 In the following non-normative example, the message content is the
 following JSON object:

Richer & Imbault Expires 21 September 2024 [Page 115]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 NOTE: ’\’ line wrapping per RFC 8792

 {
 "access_token": {
 "access": [
 "dolphin-metadata"
]
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.foo/callback",
 "nonce": "VJLO6A4CAYLBXHTR0KRO"
 }
 },
 "client": {
 "key": {
 "proof": "httpsig",
 "jwk": {
 "kid": "gnap-rsa",
 "kty": "RSA",
 "e": "AQAB",
 "alg": "PS512",
 "n": "hYOJ-XOKISdMMShn_G4W9m20mT0VWtQBsmBBkI2cmRt4Ai8Bf\
 YdHsFzAtYKOjpBR1RpKpJmVKxIGNy0g6Z3ad2XYsh8KowlyVy8IkZ8NMwSrcUIBZG\
 YXjHpwjzvfGvXH_5KJlnR3_uRUp4Z4Ujk2bCaKegDn11V2vxE41hqaPUnhRZxe0jR\
 ETddzsE3mu1SK8dTCROjwUl14mUNo8iTrTm4n0qDadz8BkPo-uv4BC0bunS0K3bA_\
 3UgVp7zBlQFoFnLTO2uWp_muLEWGl67gBq9MO3brKXfGhi3kOzywzwPTuq-cVQDyE\
 N7aL0SxCb3Hc4IdqDaMg8qHUyObpPitDQ"
 }
 }
 "display": {
 "name": "My Client Display Name",
 "uri": "https://client.foo/"
 },
 }
 }

 This content is hashed for the Content-Digest header using sha-256
 into the following encoded value:

 sha-256=:q2XBmzRDCREcS2nWo/6LYwYyjrlN1bRfv+HKLbeGAGg=:

 The HTTP message signature input string is calculated to be the
 following:

Richer & Imbault Expires 21 September 2024 [Page 116]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 NOTE: ’\’ line wrapping per RFC 8792

 "@method": POST
 "@target-uri": https://server.example.com/gnap
 "content-digest": \
 sha-256=:q2XBmzRDCREcS2nWo/6LYwYyjrlN1bRfv+HKLbeGAGg=:
 "content-length": 988
 "content-type": application/json
 "@signature-params": ("@method" "@target-uri" "content-digest" \
 "content-length" "content-type");created=1618884473\
 ;keyid="gnap-rsa";nonce="NAOEJF12ER2";tag="gnap"

 This leads to the following full HTTP message request:

 NOTE: ’\’ line wrapping per RFC 8792

 POST /gnap HTTP/1.1
 Host: server.example.com
 Content-Type: application/json
 Content-Length: 988
 Content-Digest: sha-256=:q2XBmzRDCREcS2nWo/6LYwYyjrlN1bRfv+HKLbeGAG\
 g=:
 Signature-Input: sig1=("@method" "@target-uri" "content-digest" \
 "content-length" "content-type");created=1618884473\
 ;keyid="gnap-rsa";nonce="NAOEJF12ER2";tag="gnap"
 Signature: sig1=:c2uwTa6ok3iHZsaRKl1ediKlgd5cCAYztbym68XgX8gSOgK0Bt\
 +zLJ19oGjSAHDjJxX2gXP2iR6lh9bLMTfPzbFVn4Eh+5UlceP+0Z5mES7v0R1+eHe\
 OqBl0YlYKaSQ11YT7n+cwPnCSdv/6+62m5zwXEEftnBeA1ECorfTuPtau/yrTYEvD\
 9A/JqR2h9VzAE17kSlSSsDHYA6ohsFqcRJavX29duPZDfYgkZa76u7hJ23yVxoUpu\
 2J+7VUdedN/72N3u3/z2dC8vQXbzCPTOiLru12lb6vnBZoDbUGsRR/zHPauxhj9T+\
 218o5+tgwYXw17othJSxIIOZ9PkIgz4g==:

 {
 "access_token": {
 "access": [
 "dolphin-metadata"
]
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.foo/callback",
 "nonce": "VJLO6A4CAYLBXHTR0KRO"
 }
 },
 "client": {
 "key": {

Richer & Imbault Expires 21 September 2024 [Page 117]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 "proof": "httpsig",
 "jwk": {
 "kid": "gnap-rsa",
 "kty": "RSA",
 "e": "AQAB",
 "alg": "PS512",
 "n": "hYOJ-XOKISdMMShn_G4W9m20mT0VWtQBsmBBkI2cmRt4Ai8Bf\
 YdHsFzAtYKOjpBR1RpKpJmVKxIGNy0g6Z3ad2XYsh8KowlyVy8IkZ8NMwSrcUIBZG\
 YXjHpwjzvfGvXH_5KJlnR3_uRUp4Z4Ujk2bCaKegDn11V2vxE41hqaPUnhRZxe0jR\
 ETddzsE3mu1SK8dTCROjwUl14mUNo8iTrTm4n0qDadz8BkPo-uv4BC0bunS0K3bA_\
 3UgVp7zBlQFoFnLTO2uWp_muLEWGl67gBq9MO3brKXfGhi3kOzywzwPTuq-cVQDyE\
 N7aL0SxCb3Hc4IdqDaMg8qHUyObpPitDQ"
 }
 }
 "display": {
 "name": "My Client Display Name",
 "uri": "https://client.foo/"
 },
 }
 }

 The verifier MUST ensure that the signature covers all required
 message components. If the HTTP Message includes content, the
 verifier MUST calculate and verify the value of the Content-Digest
 header. The verifier MUST validate the signature against the
 expected key of the signer.

 A received message MAY include multiple signatures, each with its own
 label. The verifier MUST examine all included signatures until it
 finds (at least) one that’s acceptable according to its policy and
 meets the requirements in this section.

7.3.1.1. Key Rotation using HTTP Message Signatures

 When rotating a key using HTTP Message Signatures, the message, which
 includes the new public key value or reference, is first signed with
 the old key following all of the requirements in Section 7.3.1. The
 message is then signed again with the new key by following all of the
 requirements in Section 7.3.1 again with the following additional
 requirements:

 * The covered components MUST include the Signature and Signature-
 Input values from the signature generated with the old key

 * The tag value MUST be gnap-rotate

Richer & Imbault Expires 21 September 2024 [Page 118]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 For example, the following request to the token management endpoint
 for rotating a token value contains the new key in the request. The
 message is first signed using the old key and the resulting signature
 is placed in "old-key":

 NOTE: ’\’ line wrapping per RFC 8792

 POST /token/PRY5NM33 HTTP/1.1
 Host: server.example.com
 Authorization: GNAP 4398.34-12-asvDa.a
 Content-Digest: sha-512=:Fb/A5vnawhuuJ5xk2RjGrbbxr6cvinZqd4+JPY85u/\
 JNyTlmRmCOtyVhZ1Oz/cSS4tsYen6fzpCwizy6UQxNBQ==:
 Signature-Input: old-key=("@method" "@target-uri" "content-digest" \
 "authorization");created=1618884475;keyid="test-key-ecc-p256"\
 ;tag="gnap"
 Signature: old-key=:vN4IKYsJl2RLFe+tYEm4dHM4R4BToqx5D2FfH4ge5WOkgxo\
 dI2QRrjB8rysvoSEGvAfiVJOWsGcPD1lU639Amw==:

 {
 "key": {
 "proof": "httpsig",
 "jwk": {
 "kty": "RSA",
 "e": "AQAB",
 "kid": "xyz-2",
 "alg": "RS256",
 "n": "kOB5rR4Jv0GMeLaY6_It_r3ORwdf8ci_JtffXyaSx8xY..."
 }
 }
 }

 The signer then creates a new signature using the new key, adding the
 signature input and value to the signature base.

Richer & Imbault Expires 21 September 2024 [Page 119]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 NOTE: ’\’ line wrapping per RFC 8792

 "@method": POST
 "@target-uri": https://server.example.com/token/PRY5NM33
 "content-digest": sha-512=:Fb/A5vnawhuuJ5xk2RjGrbbxr6cvinZqd4+JPY85\
 u/JNyTlmRmCOtyVhZ1Oz/cSS4tsYen6fzpCwizy6UQxNBQ==:
 "authorization": GNAP 4398.34-12-asvDa.a
 "signature";key="old-key": :YdDJjDn2Sq8FR82e5IcOLWmmf6wILoswlnRcz+n\
 M+e8xjFDpWS2YmiMYDqUdri2UiJsZx63T1z7As9Kl6HTGkQ==:
 "signature-input";key="old-key": ("@method" "@target-uri" \
 "content-digest" "authorization");created=1618884475\
 ;keyid="test-key-ecc-p256";tag="gnap"
 "@signature-params": ("@method" "@target-uri" "content-digest" \
 "authorization" "signature";key="old-key" "signature-input"\
 ;key="old-key");created=1618884480;keyid="xyz-2"
 ;tag="gnap-rotate"

 This signature is then added to the message:

Richer & Imbault Expires 21 September 2024 [Page 120]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 NOTE: ’\’ line wrapping per RFC 8792

 POST /token/PRY5NM33 HTTP/1.1
 Host: server.example.com
 Authorization: GNAP 4398.34-12-asvDa.a
 Content-Digest: sha-512=:Fb/A5vnawhuuJ5xk2RjGrbbxr6cvinZqd4+JPY85u/\
 JNyTlmRmCOtyVhZ1Oz/cSS4tsYen6fzpCwizy6UQxNBQ==:
 Signature-Input: old-key=("@method" "@target-uri" "content-digest" \
 "authorization");created=1618884475;keyid="test-key-ecc-p256"\
 ;tag="gnap", \
 new-key=("@method" "@target-uri" "content-digest" \
 "authorization" "signature";key="old-key" "signature-input"\
 ;key="old-key");created=1618884480;keyid="xyz-2"
 ;tag="gnap-rotate"
 Signature: old-key=:vN4IKYsJl2RLFe+tYEm4dHM4R4BToqx5D2FfH4ge5WOkgxo\
 dI2QRrjB8rysvoSEGvAfiVJOWsGcPD1lU639Amw==:, \
 new-key=:VWUExXQ0geWeTUKhCfDT7WJyT++OHSVbfPA1ukW0o7mmstdbvIz9iOuH\
 DRFzRBm0MQPFVMpLDFXQdE3vi2SL3ZjzcX2qLwzAtyRB9+RsV2caAA80A5ZGMoo\
 gUsKPk4FFDN7KRUZ0vT9Mo9ycx9Dq/996TOWtAmq5z0YUYEwwn+T6+NcW8rFtms\
 s1ZfXG0EoAfV6ve25p+x40Y1rvDHsfkakTRB4J8jWVDybSe39tjIKQBo3uicDVw\
 twewBMNidIa+66iF3pWj8w9RSb0cncEgvbkHgASqaZeXmxxG4gM8p1HH9v/OqQT\
 Oggm5gTWmCQs4oxEmWsfTOxefunfh3X+Qw==:

 {
 "key": {
 "proof": "httpsig",
 "jwk": {
 "kty": "RSA",
 "e": "AQAB",
 "kid": "xyz-2",
 "alg": "RS256",
 "n": "kOB5rR4Jv0GMeLaY6_It_r3ORwdf8ci_JtffXyaSx8xY..."
 }
 }
 }

 The verifier MUST validate both signatures before processing the
 request for key rotation.

7.3.2. Mutual TLS

 This method is indicated by the method value mtls in string form.

 {
 "proof": "mtls"
 }

Richer & Imbault Expires 21 September 2024 [Page 121]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 The signer presents its TLS client certificate during TLS negotiation
 with the verifier.

 In the following non-normative example, the certificate is
 communicated to the application through the Client-Cert header field
 from a TLS reverse proxy as per [RFC9440], leading to the following
 full HTTP request message:

 POST /gnap HTTP/1.1
 Host: server.example.com
 Content-Type: application/jose
 Content-Length: 1567
 Client-Cert: \
 :MIIC6jCCAdKgAwIBAgIGAXjw74xPMA0GCSqGSIb3DQEBCwUAMDYxNDAyBgNVBAMM\
 K05JWU15QmpzRGp5QkM5UDUzN0Q2SVR6a3BEOE50UmppOXlhcEV6QzY2bVEwHhcN\
 MjEwNDIwMjAxODU0WhcNMjIwMjE0MjAxODU0WjA2MTQwMgYDVQQDDCtOSVlNeUJq\
 c0RqeUJDOVA1MzdENklUemtwRDhOdFJqaTl5YXBFekM2Nm1RMIIBIjANBgkqhkiG\
 9w0BAQEFAAOCAQ8AMIIBCgKCAQEAhYOJ+XOKISdMMShn/G4W9m20mT0VWtQBsmBB\
 kI2cmRt4Ai8BfYdHsFzAtYKOjpBR1RpKpJmVKxIGNy0g6Z3ad2XYsh8KowlyVy8I\
 kZ8NMwSrcUIBZGYXjHpwjzvfGvXH/5KJlnR3/uRUp4Z4Ujk2bCaKegDn11V2vxE4\
 1hqaPUnhRZxe0jRETddzsE3mu1SK8dTCROjwUl14mUNo8iTrTm4n0qDadz8BkPo+\
 uv4BC0bunS0K3bA/3UgVp7zBlQFoFnLTO2uWp/muLEWGl67gBq9MO3brKXfGhi3k\
 OzywzwPTuq+cVQDyEN7aL0SxCb3Hc4IdqDaMg8qHUyObpPitDQIDAQABMA0GCSqG\
 SIb3DQEBCwUAA4IBAQBnYFK0eYHy+hVf2D58usj39lhL5znb/q9G35GBd/XsWfCE\
 wHuLOSZSUmG71bZtrOcx0ptle9bp2kKl4HlSTTfbtpuG5onSa3swRNhtKtUy5NH9\
 W/FLViKWfoPS3kwoEpC1XqKY6l7evoTCtS+kTQRSrCe4vbNprCAZRxz6z1nEeCgu\
 NMk38yTRvx8ihZpVOuU+Ih+dOtVe/ex5IAPYxlQsvtfhsUZqc7IyCcy72WHnRHlU\
 fn3pJm0S5270+Yls3Iv6h3oBAP19i906UjiUTNH3g0xMW+V4uLxgyckt4wD4Mlyv\
 jnaQ7Z3sR6EsXMocAbXHIAJhwKdtU/fLgdwL5vtx:

 {
 "access_token": {
 "access": [
 "dolphin-metadata"
]
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.foo/callback",
 "nonce": "VJLO6A4CAYLBXHTR0KRO"
 }
 },
 "client": {
 "key": {
 "proof": "mtls",

Richer & Imbault Expires 21 September 2024 [Page 122]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 "cert": "MIIC6jCCAdKgAwIBAgIGAXjw74xPMA0GCSqGSIb3DQEBCwUAMD\
 YxNDAyBgNVBAMMK05JWU15QmpzRGp5QkM5UDUzN0Q2SVR6a3BEOE50UmppOXlhcEV\
 6QzY2bVEwHhcNMjEwNDIwMjAxODU0WhcNMjIwMjE0MjAxODU0WjA2MTQwMgYDVQQD\
 DCtOSVlNeUJqc0RqeUJDOVA1MzdENklUemtwRDhOdFJqaTl5YXBFekM2Nm1RMIIBI\
 jANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAhYOJ+XOKISdMMShn/G4W9m20mT\
 0VWtQBsmBBkI2cmRt4Ai8BfYdHsFzAtYKOjpBR1RpKpJmVKxIGNy0g6Z3ad2XYsh8\
 KowlyVy8IkZ8NMwSrcUIBZGYXjHpwjzvfGvXH/5KJlnR3/uRUp4Z4Ujk2bCaKegDn\
 11V2vxE41hqaPUnhRZxe0jRETddzsE3mu1SK8dTCROjwUl14mUNo8iTrTm4n0qDad\
 z8BkPo+uv4BC0bunS0K3bA/3UgVp7zBlQFoFnLTO2uWp/muLEWGl67gBq9MO3brKX\
 fGhi3kOzywzwPTuq+cVQDyEN7aL0SxCb3Hc4IdqDaMg8qHUyObpPitDQIDAQABMA0\
 GCSqGSIb3DQEBCwUAA4IBAQBnYFK0eYHy+hVf2D58usj39lhL5znb/q9G35GBd/Xs\
 WfCEwHuLOSZSUmG71bZtrOcx0ptle9bp2kKl4HlSTTfbtpuG5onSa3swRNhtKtUy5\
 NH9W/FLViKWfoPS3kwoEpC1XqKY6l7evoTCtS+kTQRSrCe4vbNprCAZRxz6z1nEeC\
 guNMk38yTRvx8ihZpVOuU+Ih+dOtVe/ex5IAPYxlQsvtfhsUZqc7IyCcy72WHnRHl\
 Ufn3pJm0S5270+Yls3Iv6h3oBAP19i906UjiUTNH3g0xMW+V4uLxgyckt4wD4Mlyv\
 jnaQ7Z3sR6EsXMocAbXHIAJhwKdtU/fLgdwL5vtx"
 }
 "display": {
 "name": "My Client Display Name",
 "uri": "https://client.foo/"
 },
 },
 "subject": {
 "formats": ["iss_sub", "opaque"]
 }
 }

 The verifier compares the TLS client certificate presented during
 mutual TLS negotiation to the expected key of the signer. Since the
 TLS connection covers the entire message, there are no additional
 requirements to check.

 Note that in many instances, the verifier will not do a full
 certificate chain validation of the presented TLS client certificate,
 as the means of trust for this certificate could be in something
 other than a PKI system, such as a static registration or trust-on-
 first-use. See Section 13.3 and Section 13.4 for some additional
 considerations for this key proofing method.

7.3.2.1. Key Rotation using MTLS

 Since it is not possible to present two client authenticated
 certificates to a mutual TLS connection simultaneously, dynamic key
 rotation for this proofing method is not defined. Instead, key
 rotation for MTLS-based client instances is expected to be managed
 through deployment practices, as discussed in Section 13.4.

Richer & Imbault Expires 21 September 2024 [Page 123]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

7.3.3. Detached JWS

 This method is indicated by the method value jwsd in string form.

 {
 "proof": "jwsd"
 }

 The signer creates a JSON Web Signature (JWS) [RFC7515] object as
 follows:

 To protect the request, the JOSE header of the signature contains the
 following claims:

 kid (string): The key identifier. REQUIRED if the key is presented
 in JWK format, this MUST be the value of the kid field of the key.

 alg (string): The algorithm used to sign the request. MUST be
 appropriate to the key presented. If the key is presented as a
 JWK, this MUST be equal to the alg parameter of the key. MUST NOT
 be none. REQUIRED.

 typ (string): The type header, value "gnap-binding-jwsd". REQUIRED.

 htm (string): The HTTP Method used to make this request, as a case-
 sensitive ASCII string. Note that most public HTTP methods are in
 uppercase ASCII by convention. REQUIRED.

 uri (string): The HTTP URI used for this request. This value MUST
 be an absolute URI, including all path and query components and no
 fragment component. REQUIRED.

 created (integer): A timestamp of when the signature was created, in
 integer seconds since UNIX Epoch. REQUIRED.

 When the request is bound to an access token, the JOSE header MUST
 also include the following:

 ath (string): The hash of the access token. The value MUST be the
 result of Base64url encoding (with no padding) the SHA-256 digest
 of the ASCII encoding of the associated access token’s value.
 REQUIRED.

Richer & Imbault Expires 21 September 2024 [Page 124]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 If the HTTP request has content, such as an HTTP POST or PUT method,
 the payload of the JWS object is the Base64url encoding (without
 padding) of the SHA256 digest of the bytes of the content. If the
 request being made does not have content, such as an HTTP GET,
 OPTIONS, or DELETE method, the JWS signature is calculated over an
 empty payload.

 The signer presents the signed object in compact form [RFC7515] in
 the Detached-JWS HTTP Header field.

 In the following non-normative example, the JOSE Header contains the
 following parameters:

 {
 "alg": "RS256",
 "kid": "gnap-rsa",
 "uri": "https://server.example.com/gnap",
 "htm": "POST",
 "typ": "gnap-binding-jwsd",
 "created": 1618884475
 }

 The request content is the following JSON object:

Richer & Imbault Expires 21 September 2024 [Page 125]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 NOTE: ’\’ line wrapping per RFC 8792

 {
 "access_token": {
 "access": [
 "dolphin-metadata"
]
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.foo/callback",
 "nonce": "VJLO6A4CAYLBXHTR0KRO"
 }
 },
 "client": {
 "key": {
 "proof": "jwsd",
 "jwk": {
 "kid": "gnap-rsa",
 "kty": "RSA",
 "e": "AQAB",
 "alg": "RS256",
 "n": "hYOJ-XOKISdMMShn_G4W9m20mT0VWtQBsmBBkI2cmRt4Ai8Bf\
 YdHsFzAtYKOjpBR1RpKpJmVKxIGNy0g6Z3ad2XYsh8KowlyVy8IkZ8NMwSrcUIBZG\
 YXjHpwjzvfGvXH_5KJlnR3_uRUp4Z4Ujk2bCaKegDn11V2vxE41hqaPUnhRZxe0jR\
 ETddzsE3mu1SK8dTCROjwUl14mUNo8iTrTm4n0qDadz8BkPo-uv4BC0bunS0K3bA_\
 3UgVp7zBlQFoFnLTO2uWp_muLEWGl67gBq9MO3brKXfGhi3kOzywzwPTuq-cVQDyE\
 N7aL0SxCb3Hc4IdqDaMg8qHUyObpPitDQ"
 }
 }
 "display": {
 "name": "My Client Display Name",
 "uri": "https://client.foo/"
 },
 }
 }

 This is hashed to the following Base64 encoded value:

 PGiVuOZUcN1tRtUS6tx2b4cBgw9mPgXG3IPB3wY7ctc

 This leads to the following full HTTP request message:

Richer & Imbault Expires 21 September 2024 [Page 126]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 NOTE: ’\’ line wrapping per RFC 8792

 POST /gnap HTTP/1.1
 Host: server.example.com
 Content-Type: application/json
 Content-Length: 983
 Detached-JWS: eyJhbGciOiJSUzI1NiIsImNyZWF0ZWQiOjE2MTg4ODQ0NzUsImh0b\
 SI6IlBPU1QiLCJraWQiOiJnbmFwLXJzYSIsInR5cCI6ImduYXAtYmluZGluZytqd3\
 NkIiwidXJpIjoiaHR0cHM6Ly9zZXJ2ZXIuZXhhbXBsZS5jb20vZ25hcCJ9.PGiVuO\
 ZUcN1tRtUS6tx2b4cBgw9mPgXG3IPB3wY7ctc.fUq-SV-A1iFN2MwCRW_yolVtT2_\
 TZA2h5YeXUoi5F2Q2iToC0Tc4drYFOSHIX68knd68RUA7yHqCVP-ZQEd6aL32H69e\
 9zuMiw6O_s4TBKB3vDOvwrhYtDH6fX2hP70cQoO-47OwbqP-ifkrvI3hVgMX9TfjV\
 eKNwnhoNnw3vbu7SNKeqJEbbwZfpESaGepS52xNBlDNMYBQQXxM9OqKJaXffzLFEl\
 -Xe0UnfolVtBraz3aPrPy1C6a4uT7wLda3PaTOVtgysxzii3oJWpuz0WP5kRujzDF\
 wX_EOzW0jsjCSkL-PXaKSpZgEjNjKDMg9irSxUISt1C1T6q3SzRgfuQ

 {
 "access_token": {
 "access": [
 "dolphin-metadata"
]
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.foo/callback",
 "nonce": "VJLO6A4CAYLBXHTR0KRO"
 }
 },
 "client": {
 "key": {
 "proof": "jwsd",
 "jwk": {
 "kid": "gnap-rsa",
 "kty": "RSA",
 "e": "AQAB",
 "alg": "RS256",
 "n": "hYOJ-XOKISdMMShn_G4W9m20mT0VWtQBsmBBkI2cmRt4Ai8Bf\
 YdHsFzAtYKOjpBR1RpKpJmVKxIGNy0g6Z3ad2XYsh8KowlyVy8IkZ8NMwSrcUIBZG\
 YXjHpwjzvfGvXH_5KJlnR3_uRUp4Z4Ujk2bCaKegDn11V2vxE41hqaPUnhRZxe0jR\
 ETddzsE3mu1SK8dTCROjwUl14mUNo8iTrTm4n0qDadz8BkPo-uv4BC0bunS0K3bA_\
 3UgVp7zBlQFoFnLTO2uWp_muLEWGl67gBq9MO3brKXfGhi3kOzywzwPTuq-cVQDyE\
 N7aL0SxCb3Hc4IdqDaMg8qHUyObpPitDQ"
 }
 }
 "display": {

Richer & Imbault Expires 21 September 2024 [Page 127]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 "name": "My Client Display Name",
 "uri": "https://client.foo/"
 },
 }
 }

 When the verifier receives the Detached-JWS header, it MUST parse and
 validate the JWS object. The signature MUST be validated against the
 expected key of the signer. If the HTTP message request contains
 content, the verifier MUST calculate the hash of the content just as
 the signer does, with no normalization or transformation of the
 request. All required fields MUST be present and their values MUST
 be valid. All fields MUST match the corresponding portions of the
 HTTP message. For example, the htm field of the JWS header has to be
 the same as the HTTP verb used in the request.

 Note that this proof method depends on a specific cryptographic
 algorithm, SHA-256, in two ways: the ath hash algorithm is hardcoded,
 and computing the payload of the detached/attached signature also
 uses a hardcoded hash. A future version of this document may address
 crypto-agility for both these uses by replacing ath with a new header
 that upgrades the algorithm, and possibly defining a new JWS header
 that indicates the HTTP content’s hash method.

7.3.3.1. Key Rotation using Detached JWS

 When rotating a key using Detached JWS, the message, which includes
 the new public key value or reference, is first signed with the old
 key as described above using a JWS object with typ header value
 "gnap-binding-rotation-jwsd". The value of the JWS object is then
 taken as the payload of a new JWS object, to be signed by the new key
 using the parameters above.

 The value of the new JWS object is sent in the Detached-JWS header.

7.3.4. Attached JWS

 This method is indicated by the method value jws in string form.

 {
 "proof": "jws"
 }

 The signer creates a JWS [RFC7515] object as follows:

 To protect the request, the JWS header contains the following claims.

 kid (string): The key identifier. REQUIRED if the key is presented

Richer & Imbault Expires 21 September 2024 [Page 128]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 in JWK format, this MUST be the value of the kid field of the key.

 alg (string): The algorithm used to sign the request. MUST be
 appropriate to the key presented. If the key is presented as a
 JWK, this MUST be equal to the alg parameter of the key. MUST NOT
 be none. REQUIRED.

 typ (string): The type header, value "gnap-binding-jws". REQUIRED.

 htm (string): The HTTP Method used to make this request, as a case-
 sensitive ASCII string. (Note that most public HTTP methods are
 in uppercase.) REQUIRED.

 uri (string): The HTTP URI used for this request, including all path
 and query components and no fragment component. REQUIRED.

 created (integer): A timestamp of when the signature was created, in
 integer seconds since UNIX Epoch. REQUIRED.

 When the request is bound to an access token, the JOSE header MUST
 also include the following:

 ath (string): The hash of the access token. The value MUST be the
 result of Base64url encoding (with no padding) the SHA-256 digest
 of the ASCII encoding of the associated access token’s value.
 REQUIRED.

 If the HTTP request has content, such as an HTTP POST or PUT method,
 the payload of the JWS object is the JSON serialized content of the
 request, and the object is signed according to JWS and serialized
 into compact form [RFC7515]. The signer presents the JWS as the
 content of the request along with a content type of application/jose.
 The verifier MUST extract the payload of the JWS and treat it as the
 request content for further processing.

 If the request being made does not have content, such as an HTTP GET,
 OPTIONS, or DELETE method, the JWS signature is calculated over an
 empty payload and passed in the Detached-JWS header as described in
 Section 7.3.3.

 In the following non-normative example, the JOSE header contains the
 following parameters:

Richer & Imbault Expires 21 September 2024 [Page 129]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 {
 "alg": "RS256",
 "kid": "gnap-rsa",
 "uri": "https://server.example.com/gnap",
 "htm": "POST",
 "typ": "gnap-binding-jws",
 "created": 1618884475
 }

 The request content, used as the JWS Payload, is the following JSON
 object:

Richer & Imbault Expires 21 September 2024 [Page 130]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 NOTE: ’\’ line wrapping per RFC 8792

 {
 "access_token": {
 "access": [
 "dolphin-metadata"
]
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.foo/callback",
 "nonce": "VJLO6A4CAYLBXHTR0KRO"
 }
 },
 "client": {
 "key": {
 "proof": "jws",
 "jwk": {
 "kid": "gnap-rsa",
 "kty": "RSA",
 "e": "AQAB",
 "alg": "RS256",
 "n": "hYOJ-XOKISdMMShn_G4W9m20mT0VWtQBsmBBkI2cmRt4Ai8Bf\
 YdHsFzAtYKOjpBR1RpKpJmVKxIGNy0g6Z3ad2XYsh8KowlyVy8IkZ8NMwSrcUIBZG\
 YXjHpwjzvfGvXH_5KJlnR3_uRUp4Z4Ujk2bCaKegDn11V2vxE41hqaPUnhRZxe0jR\
 ETddzsE3mu1SK8dTCROjwUl14mUNo8iTrTm4n0qDadz8BkPo-uv4BC0bunS0K3bA_\
 3UgVp7zBlQFoFnLTO2uWp_muLEWGl67gBq9MO3brKXfGhi3kOzywzwPTuq-cVQDyE\
 N7aL0SxCb3Hc4IdqDaMg8qHUyObpPitDQ"
 }
 }
 "display": {
 "name": "My Client Display Name",
 "uri": "https://client.foo/"
 },
 },
 "subject": {
 "formats": ["iss_sub", "opaque"]
 }
 }

 This leads to the following full HTTP request message:

Richer & Imbault Expires 21 September 2024 [Page 131]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 NOTE: ’\’ line wrapping per RFC 8792

 POST /gnap HTTP/1.1
 Host: server.example.com
 Content-Type: application/jose
 Content-Length: 1047

 eyJhbGciOiJSUzI1NiIsImNyZWF0ZWQiOjE2MTg4ODQ0NzUsImh0bSI6IlBPU1QiLCJ\
 raWQiOiJnbmFwLXJzYSIsInR5cCI6ImduYXAtYmluZGluZytqd3NkIiwidXJpIjoiaH\
 R0cHM6Ly9zZXJ2ZXIuZXhhbXBsZS5jb20vZ25hcCJ9.CnsKICAgICJhY2Nlc3NfdG9r\
 ZW4iOiB7CiAgICAgICAgImFjY2VzcyI6IFsKICAgICAgICAgICAgImRvbHBoaW4tbWV\
 0YWRhdGEiCiAgICAgICAgXQogICAgfSwKICAgICJpbnRlcmFjdCI6IHsKICAgICAgIC\
 Aic3RhcnQiOiBbInJlZGlyZWN0Il0sCiAgICAgICAgImZpbmlzaCI6IHsKICAgICAgI\
 CAgICAgIm1ldGhvZCI6ICJyZWRpcmVjdCIsCiAgICAgICAgICAgICJ1cmkiOiAiaHR0\
 cHM6Ly9jbGllbnQuZm9vL2NhbGxiYWNrIiwKICAgICAgICAgICAgIm5vbmNlIjogIlZ\
 KTE82QTRDQVlMQlhIVFIwS1JPIgogICAgICAgIH0KICAgIH0sCiAgICAiY2xpZW50Ij\
 ogewogICAgICAicHJvb2YiOiAiandzIiwKICAgICAgImtleSI6IHsKICAgICAgICAia\
 ndrIjogewogICAgICAgICAgICAia2lkIjogImduYXAtcnNhIiwKICAgICAgICAgICAg\
 Imt0eSI6ICJSU0EiLAogICAgICAgICAgICAiZSI6ICJBUUFCIiwKICAgICAgICAgICA\
 gImFsZyI6ICJSUzI1NiIsCiAgICAgICAgICAgICJuIjogImhZT0otWE9LSVNkTU1TaG\
 5fRzRXOW0yMG1UMFZXdFFCc21CQmtJMmNtUnQ0QWk4QmZZZEhzRnpBdFlLT2pwQlIxU\
 nBLcEptVkt4SUdOeTBnNlozYWQyWFlzaDhLb3dseVZ5OElrWjhOTXdTcmNVSUJaR1lY\
 akhwd2p6dmZHdlhIXzVLSmxuUjNfdVJVcDRaNFVqazJiQ2FLZWdEbjExVjJ2eEU0MWh\
 xYVBVbmhSWnhlMGpSRVRkZHpzRTNtdTFTSzhkVENST2p3VWwxNG1VTm84aVRyVG00bj\
 BxRGFkejhCa1BvLXV2NEJDMGJ1blMwSzNiQV8zVWdWcDd6QmxRRm9GbkxUTzJ1V3Bfb\
 XVMRVdHbDY3Z0JxOU1PM2JyS1hmR2hpM2tPenl3endQVHVxLWNWUUR5RU43YUwwU3hD\
 YjNIYzRJZHFEYU1nOHFIVXlPYnBQaXREUSIKICAgICAgICB9CiAgICAgIH0KICAgICA\
 gImRpc3BsYXkiOiB7CiAgICAgICAgIm5hbWUiOiAiTXkgQ2xpZW50IERpc3BsYXkgTm\
 FtZSIsCiAgICAgICAgInVyaSI6ICJodHRwczovL2NsaWVudC5mb28vIgogICAgICB9L\
 AogICAgfSwKICAgICJzdWJqZWN0IjogewogICAgICAgICJmb3JtYXRzIjogWyJpc3Nf\
 c3ViIiwgIm9wYXF1ZSJdCiAgICB9Cn0K.MwNoVMQp5hVxI0mCs9LlOUdFtkDXaA1_eT\
 vOXq7DOGrtDKH7q4vP2xUq3fH2jRAZqnobo0WdPP3eM3NH5QUjW8pa6_QpwdIWkK7r-\
 u_52puE0lPBp7J4U2w4l9gIbg8iknsmWmXeY5F6wiGT8ptfuEYGgmloAJd9LIeNvD3U\
 LW2h2dz1Pn2eDnbyvgB0Ugae0BoZB4f69fKWj8Z9wvTIjk1LZJN1PcL7_zT8Lrlic9a\
 PyzT7Q9ovkd1s-4whE7TrnGUzFc5mgWUn_gsOpsP5mIIljoEEv-FqOW2RyNYulOZl0Q\
 8EnnDHV_vPzrHlUarbGg4YffgtwkQhdK72-JOxYQ

 When the verifier receives an attached JWS request, it MUST parse and
 validate the JWS object. The signature MUST be validated against the
 expected key of the signer. All required fields MUST be present and
 their values MUST be valid. All fields MUST match the corresponding
 portions of the HTTP message. For example, the htm field of the JWS
 header has to be the same as the HTTP verb used in the request.

 Note that this proof method depends on a specific cryptographic
 algorithm, SHA-256, in two ways: the ath hash algorithm is hardcoded,
 and computing the payload of the detached/attached signature also
 uses a hardcoded hash. A future version of this document may address

Richer & Imbault Expires 21 September 2024 [Page 132]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 crypto-agility for both these uses by replacing ath with a new header
 that upgrades the algorithm, and possibly defining a new header that
 indicates the HTTP content’s hash method.

7.3.4.1. Key Rotation using Attached JWS

 When rotating a key using Attached JWS, the message, which includes
 the new public key value or reference, is first signed with the old
 key using a JWS object with typ header value "gnap-binding-rotation-
 jws". The value of the JWS object is then taken as the payload of a
 new JWS object, to be signed by the new key.

8. Resource Access Rights

 GNAP provides a rich structure for describing the protected resources
 hosted by RSs and accessed by client software. This structure is
 used when the client instance requests an access token (Section 2.1)
 and when an access token is returned (Section 3.2). GNAP’s structure
 is designed to be analogous to the OAuth 2.0 Rich Authorization
 Request data structure defined in [RFC9396].

 The root of this structure is a JSON array. The elements of the JSON
 array represent rights of access that are associated with the access
 token. Individual rights of access can be defined by the RS as
 either an object or a string. The resulting access is the union of
 all elements within the array.

 The access associated with the access token is described using
 objects that each contain multiple dimensions of access. Each object
 contains a REQUIRED type property that determines the type of API
 that the token is used for and the structure of the rest of the
 object. There is no expected interoperability between different type
 definitions.

 type (string): The type of resource request as a string. This field
 MAY define which other fields are allowed in the request object.
 REQUIRED.

 The value of the type field is under the control of the AS. This
 field MUST be compared using an exact byte match of the string value
 against known types by the AS. The AS MUST ensure that there is no
 collision between different authorization data types that it
 supports. The AS MUST NOT do any collation or normalization of data
 types during comparison. It is RECOMMENDED that designers of
 general-purpose APIs use a URI for this field to avoid collisions
 between multiple API types protected by a single AS.

Richer & Imbault Expires 21 September 2024 [Page 133]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 While it is expected that many APIs will have their own properties,
 this specification defines a set of common data fields that are
 designed to be usable across different types of APIs. This
 specification does not require the use of these common fields by an
 API definition but, instead, provides them as reusable generic
 components for API designers to make use of. The allowable values of
 all fields are determined by the API being protected, as defined by a
 particular type value.

 actions (array of strings): The types of actions the client instance
 will take at the RS as an array of strings. For example, a client
 instance asking for a combination of "read" and "write" access.

 locations (array of strings): The location of the RS as an array of
 strings. These strings are typically URIs identifying the
 location of the RS.

 datatypes (array of strings): The kinds of data available to the
 client instance at the RS’s API as an array of strings. For
 example, a client instance asking for access to raw "image" data
 and "metadata" at a photograph API.

 identifier (string): A string identifier indicating a specific
 resource at the RS. For example, a patient identifier for a
 medical API or a bank account number for a financial API.

 privileges (array of strings): The types or levels of privilege
 being requested at the resource. For example, a client instance
 asking for administrative level access, or access when the
 resource owner is no longer online.

 The following non-normative example is describing three kinds of
 access (read, write, delete) to each of two different locations and
 two different data types (metadata, images) for a single access token
 using the fictitious photo-api type definition.

Richer & Imbault Expires 21 September 2024 [Page 134]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 "access": [
 {
 "type": "photo-api",
 "actions": [
 "read",
 "write",
 "delete"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 }
]

 While the exact semantics of interpreting the fields of an access
 request object is subject to the definition of the type, it is
 expected that the access requested for each object in the array is
 the cross-product of all fields of the object. That is to say, the
 object represents a request for all actions listed to be used at all
 locations listed for all possible datatypes listed within the object.
 Assuming the request above was granted, the client instance could
 assume that it would be able to do a read action against the images
 on the first server as well as a delete action on the metadata of the
 second server, or any other combination of these fields, using the
 same access token.

 To request a different combination of access, such as requesting one
 of the possible actions against one of the possible locations and a
 different choice of possible actions against a different one of the
 possible locations, the client instance can include multiple separate
 objects in the resources array. The total access rights for the
 resulting access token is the union of all objects. The following
 non-normative example uses the same fictitious photo-api type
 definition to request a single access token with more specifically
 targeted access rights by using two discrete objects within the
 request.

Richer & Imbault Expires 21 September 2024 [Page 135]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 "access": [
 {
 "type": "photo-api",
 "actions": [
 "read"
],
 "locations": [
 "https://server.example.net/"
],
 "datatypes": [
 "images"
]
 },
 {
 "type": "photo-api",
 "actions": [
 "write",
 "delete"
],
 "locations": [
 "https://resource.local/other"
],
 "datatypes": [
 "metadata"
]
 }
]

 The access requested here is for read access to images on one server
 while simultaneously requesting write and delete access for metadata
 on a different server, but importantly without requesting write or
 delete access to images on the first server.

 It is anticipated that API designers will use a combination of common
 fields defined in this specification as well as fields specific to
 the API itself. The following non-normative example shows the use of
 both common and API-specific fields as part of two different
 fictitious API type values. The first access request includes the
 actions, locations, and datatypes fields specified here as well as
 the API-specific geolocation field. The second access request
 includes the actions and identifier fields specified here as well as
 the API-specific currency field.

Richer & Imbault Expires 21 September 2024 [Page 136]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 "access": [
 {
 "type": "photo-api",
 "actions": [
 "read",
 "write"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
],
 "geolocation": [
 { lat: -32.364, lng: 153.207 },
 { lat: -35.364, lng: 158.207 }
]
 },
 {
 "type": "financial-transaction",
 "actions": [
 "withdraw"
],
 "identifier": "account-14-32-32-3",
 "currency": "USD"
 }
]

 If this request is approved, the resulting access token’s access
 rights will be the union of the requested types of access for each of
 the two APIs, just as above.

8.1. Requesting Resources By Reference

 Instead of sending an object describing the requested resource
 (Section 8), access rights MAY be communicated as a string known to
 the AS representing the access being requested. Just like access
 rights communicated as an object, access rights communicated as
 reference strings indicate a specific access at a protected resource.
 In the following non-normative example, three distinct resource
 access rights are being requested.

 "access": [
 "read", "dolphin-metadata", "some other thing"
]

Richer & Imbault Expires 21 September 2024 [Page 137]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 This value is opaque to the client instance and MAY be any valid JSON
 string, and therefore could include spaces, unicode characters, and
 properly escaped string sequences. However, in some situations the
 value is intended to be seen and understood by the client software’s
 developer. In such cases, the API designer choosing any such human-
 readable strings SHOULD take steps to ensure the string values are
 not easily confused by a developer, such as by limiting the strings
 to easily disambiguated characters.

 This functionality is similar in practice to OAuth 2.0’s scope
 parameter [RFC6749], where a single string represents the set of
 access rights requested by the client instance. As such, the
 reference string could contain any valid OAuth 2.0 scope value as in
 Appendix C.5. Note that the reference string here is not bound to
 the same character restrictions as in OAuth 2.0’s scope definition.

 A single access array MAY include both object-type and string-type
 resource items. In this non-normative example, the client instance
 is requesting access to a photo-api and financial-transaction API
 type as well as the reference values of read, dolphin-metadata, and
 some other thing.

Richer & Imbault Expires 21 September 2024 [Page 138]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 "access": [
 {
 "type": "photo-api",
 "actions": [
 "read",
 "write",
 "delete"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 },
 "read",
 "dolphin-metadata",
 {
 "type": "financial-transaction",
 "actions": [
 "withdraw"
],
 "identifier": "account-14-32-32-3",
 "currency": "USD"
 },
 "some other thing"
]

 The requested access is the union of all elements of the array,
 including both objects and reference strings.

 In order to facilitate the use of both object and reference strings
 to access the same kind of APIs, the API designer can define a clear
 mapping between these forms. One possible approach for choosing
 reference string values is to use the same value as the type
 parameter from the fully-specified object, with the API defining a
 set of default behaviors in this case. For example, an API
 definition could declare the following string:

 "access": [
 "photo-api"
]

 As being equivalent to the following fully-defined object:

Richer & Imbault Expires 21 September 2024 [Page 139]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 "access": [
 {
 "type": "photo-api",
 "actions": ["read", "write", "delete"],
 "datatypes": ["metadata", "image"]
 }
]

 The exact mechanisms for relating reference strings is up to the API
 designer. These are enforced by the AS, and the details are out of
 scope for this specification.

9. Discovery

 By design, GNAP minimizes the need for any pre-flight discovery. To
 begin a request, the client instance only needs to know the grant
 endpoint of the AS (a single URI) and which keys it will use to sign
 the request. Everything else can be negotiated dynamically in the
 course of the protocol.

 However, the AS can have limits on its allowed functionality. If the
 client instance wants to optimize its calls to the AS before making a
 request, it MAY send an HTTP OPTIONS request to the grant request
 endpoint to retrieve the server’s discovery information. The AS MUST
 respond with a JSON document with Content-Type application/json
 containing a single object with the following fields:

 grant_request_endpoint (string): The location of the AS’s grant
 request endpoint. The location MUST be an absolute URL [RFC3986]
 with a scheme component (which MUST be "https"), a host component,
 and optionally, port, path and query components and no fragment
 components. This URL MUST match the URL the client instance used
 to make the discovery request. REQUIRED.

 interaction_start_modes_supported (array of strings): A list of the
 AS’s interaction start methods. The values of this list
 correspond to the possible values for the interaction start
 section (Section 2.5.1) of the request and MUST be values from the
 GNAP Interaction Start Modes Registry (Section 11.9). OPTIONAL.

 interaction_finish_methods_supported (array of strings): A list of
 the AS’s interaction finish methods. The values of this list
 correspond to the possible values for the method element of the
 interaction finish section (Section 2.5.2) of the request and MUST
 be values from the GNAP Interaction Finish Methods Registry
 (Section 11.10). OPTIONAL.

 key_proofs_supported (array of strings): A list of the AS’s

Richer & Imbault Expires 21 September 2024 [Page 140]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 supported key proofing mechanisms. The values of this list
 correspond to possible values of the proof field of the key
 section (Section 7.1) of the request and MUST be values from the
 GNAP Key Proofing Methods Registry (Section 11.16). OPTIONAL.

 sub_id_formats_supported (array of strings): A list of the AS’s
 supported subject identifier formats. The values of this list
 correspond to possible values of the subject identifier section
 (Section 2.2) of the request and MUST be values from the Subject
 Identifier Formats Registry established by [RFC9493]. OPTIONAL.

 assertion_formats_supported (array of strings): A list of the AS’s
 supported assertion formats. The values of this list correspond
 to possible values of the subject assertion section (Section 2.2)
 of the request and MUST be values from the GNAP Assertion Formats
 Registry (Section 11.6). OPTIONAL.

 key_rotation_supported (boolean): The boolean "true" indicates that
 rotation of access token bound keys by the client (Section 6.1.1)
 is supported by the AS. The absence of this field or a boolean
 "false" value indicates that this feature is not supported.

 The information returned from this method is for optimization
 purposes only. The AS MAY deny any request, or any portion of a
 request, even if it lists a capability as supported. For example, a
 given client instance can be registered with the mtls key proofing
 mechanism, but the AS also returns other proofing methods from the
 discovery document, then the AS will still deny a request from that
 client instance using a different proofing mechanism. Similarly, an
 AS with key_rotation_supported set to "true" can still deny any
 request for rotating any access token’s key for a variety of reasons.

 Additional fields can be defined the GNAP Authorization Server
 Discovery Fields Registry (Section 11.18).

9.1. RS-first Method of AS Discovery

 If the client instance calls an RS without an access token, or with
 an invalid access token, the RS SHOULD be explicit about the fact
 that GNAP needs to be used to access the resource by responding with
 the WWW-Authenticate header field and a GNAP challenge.

 In some situations, the client instance might want to know with which
 specific AS it needs to negotiate for access to that RS. The RS MAY
 additionally return the following OPTIONAL parameters:

 as_uri: The URI of the grant endpoint of the GNAP AS. Used by the
 client instance to call the AS to request an access token.

Richer & Imbault Expires 21 September 2024 [Page 141]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 referrer: The URI of the GNAP RS. Sent by the client instance in
 the Referer header as part of the grant request.

 access: An opaque access reference as defined in Section 8.1. MUST
 be sufficient for at least the action the client instance was
 attempting to take at the RS and MAY allow additional access
 rights as well. Sent by the client as an access right in the
 grant request.

 The client instance SHOULD then use both the referrer and access
 parameters in its access token request. The client instance MUST
 check that the referrer parameter is equal to the URI of the RS using
 the simple string comparison method in Section 6.2.1 of [RFC3986].

 The means for the RS to determine the value for the access reference
 are out of scope of this specification, but some dynamic methods are
 discussed in [I-D.ietf-gnap-resource-servers].

 When receiving the following response from the RS:

 NOTE: ’\’ line wrapping per RFC 8792

 WWW-Authenticate: \
 GNAP as_uri=https://as.example/tx\
 ;access=FWWIKYBQ6U56NL1\
 ;referrer=https://rs.example

 The client instance then makes a request to the as_uri as described
 in Section 2, with the value of referrer passed as an HTTP Referer
 header field and the access reference passed unchanged into the
 access array in the access_token portion of the request. The client
 instance MAY request additional resources and other information.

 In the following non-normative example, the client instance is
 requesting a single access token using the opaque access reference
 FWWIKYBQ6U56NL1 received from the RS in addition to the dolphin-
 metadata that the client instance has been configured with out of
 band.

Richer & Imbault Expires 21 September 2024 [Page 142]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 POST /tx HTTP/1.1
 Host: as.example
 Referer: https://rs.example/resource
 Content-Type: application/json
 Signature-Input: sig1=...
 Signature: sig1=...
 Content-Digest: sha-256=...

 {
 "access_token": {
 "access": [
 "FWWIKYBQ6U56NL1",
 "dolphin-metadata"
]
 },
 "client": "KHRS6X63AJ7C7C4AZ9AO"
 }

 The client instance includes the Referer header field as a way for
 the AS to know that the process is initiated through a discovery
 process at the RS.

 If issued, the resulting access token would contain sufficient access
 to be used at both referenced resources.

 Security considerations, especially related to the potential of a
 compromised RS (Section 13.37) redirecting the requests of an
 otherwise properly authenticated client, need to be carefully
 considered when allowing such a discovery process. This risk can be
 mitigated by an alternative pre-registration process so that the
 client knows which AS protects which RS. There are also privacy
 considerations related to revealing which AS is protecting a given
 resource, discussed in Section 14.4.1.

9.2. Dynamic grant endpoint discovery

 Additional methods of discovering the appropriate grant endpoint for
 a given application are outside the scope of this specification.
 This limitation is intentional, as many applications rely on static
 configuration between the client instance and AS, as is common in
 OAuth 2.0. However, the dynamic nature of GNAP makes it a prime
 candidate for other extensions defining methods for discovery of the
 appropriate AS grant endpoint at runtime. Advanced use cases could
 define contextual methods for contextually providing this endpoint to
 the client instance securely. Furthermore, GNAP’s design
 intentionally requires the client instance to only know the grant
 endpoint and not additional parameters, since other functions and
 values can be disclosed and negotiated during the grant process.

Richer & Imbault Expires 21 September 2024 [Page 143]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

10. Acknowledgements

 The editors would like to thank the feedback of the following
 individuals for their reviews, implementations, and contributions:
 Åke Axeland, Aaron Parecki, Adam Omar Oueidat, Andrii Deinega,
 Annabelle Backman, Dick Hardt, Dmitri Zagidulin, Dmitry Barinov,
 Fabien Imbault, Florian Helmschmidt, Francis Pouatcha, George
 Fletcher, Haardik Haardik, Hamid Massaoud, Jacky Yuan, Joseph Heenan,
 Justin Richer, Kathleen Moriarty, Leif Johansson, Mike Jones, Mike
 Varley, Nat Sakimura, Takahiko Kawasaki, Takahiro Tsuchiya, Yaron
 Sheffer.

 The editors would also like to thank the GNAP working group design
 team of Kathleen Moriarty, Fabien Imbault, Dick Hardt, Mike Jones,
 and Justin Richer, who incorporated elements from the XAuth and XYZ
 proposals to create the first version of this document.

 In addition, the editors would like to thank Aaron Parecki and Mike
 Jones for insights into how to integrate identity and authentication
 systems into the core protocol, and Justin Richer and Dick Hardt for
 the use cases, diagrams, and insights provided in the XYZ and XAuth
 proposals that have been incorporated here. The editors would like
 to especially thank Mike Varley and the team at SecureKey for
 feedback and development of early versions of the XYZ protocol that
 fed into this standards work.

 Finally, the editors want to acknowledge the immense contributions of
 Aaron Parecki to the content of this document. We thank him for his
 insight, input, and hard work, without which GNAP would not have
 grown to what it is.

11. IANA Considerations

 IANA is requested to add values to existing registries and to create
 16 registries for the Grant Negotiation and Authorization Protocol
 and to populate those registries with initial values as described in
 this section.

 All use of value typing is based on [RFC8259] data types and MUST be
 one of the following: number, object, string, boolean, or array.
 When the type is array, the contents of the array MUST be specified,
 as in "array of objects" when one subtype is allowed or "array of
 strings/objects" when multiple simultaneous subtypes are allowed.
 When the type is object, the structure of the object MUST be
 specified in the definition. If a parameter is available in
 different types, each type SHOULD be registered separately.

 General guidance for extension parameters is found in Appendix E.

Richer & Imbault Expires 21 September 2024 [Page 144]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

11.1. HTTP Authentication Scheme Registration

 This specification requests registration of the following scheme in
 the "Hypertext Transfer Protocol (HTTP) Authentication Scheme
 Registry" defined be Section 18.5 of [HTTP]:

 * Authentication Scheme Name: GNAP

 * Reference: Section 7.2 of RFC nnnn

11.2. Media Type Registration

 This section requests registration of the following media types
 [RFC2046] in the "Media Types" registry [IANA.MediaTypes] in the
 manner described in [RFC6838].

 To indicate that the content is a GNAP message to be bound with a
 detached JWS mechanism:

 * Type name: application

 * Subtype name: gnap-binding-jwsd

 * Required parameters: n/a

 * Optional parameters: n/a

 * Encoding considerations: binary

 * Security considerations: See Section 13 of RFC nnnn

 * Interoperability considerations: n/a

 * Published specification: RFC nnnn

 * Applications that use this media type: GNAP

 * Fragment identifier considerations: n/a

 * Additional information:

 - Magic number(s): n/a

 - File extension(s): n/a

 - Macintosh file type code(s): n/a

Richer & Imbault Expires 21 September 2024 [Page 145]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 * Person & email address to contact for further information: IETF
 GNAP Working Group, txauth@ietf.org

 * Intended usage: COMMON

 * Restrictions on usage: none

 * Author: IETF GNAP Working Group, txauth@ietf.org

 * Change Controller: IETF

 * Provisional registration? No

 To indicate that the content is a GNAP message to be bound with an
 attached JWS mechanism:

 * Type name: application

 * Subtype name: gnap-binding-jws

 * Required parameters: n/a

 * Optional parameters: n/a

 * Encoding considerations: binary

 * Security considerations: See Section 13 of RFC nnnn

 * Interoperability considerations: n/a

 * Published specification: RFC nnnn

 * Applications that use this media type: GNAP

 * Fragment identifier considerations: n/a

 * Additional information:

 - Magic number(s): n/a

 - File extension(s): n/a

 - Macintosh file type code(s): n/a

 * Person & email address to contact for further information: IETF
 GNAP Working Group, txauth@ietf.org

 * Intended usage: COMMON

Richer & Imbault Expires 21 September 2024 [Page 146]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 * Restrictions on usage: none

 * Author: IETF GNAP Working Group, txauth@ietf.org

 * Change Controller: IETF

 * Provisional registration? No

 To indicate that the content is a GNAP token rotation message to be
 bound with a detached JWS mechanism:

 * Type name: application

 * Subtype name: gnap-binding-rotation-jwsd

 * Required parameters: n/a

 * Optional parameters: n/a

 * Encoding considerations: binary

 * Security considerations: See Section 13 of RFC nnnn

 * Interoperability considerations: n/a

 * Published specification: RFC nnnn

 * Applications that use this media type: GNAP

 * Fragment identifier considerations: n/a

 * Additional information:

 - Magic number(s): n/a

 - File extension(s): n/a

 - Macintosh file type code(s): n/a

 * Person & email address to contact for further information: IETF
 GNAP Working Group, txauth@ietf.org

 * Intended usage: COMMON

 * Restrictions on usage: none

 * Author: IETF GNAP Working Group, txauth@ietf.org

Richer & Imbault Expires 21 September 2024 [Page 147]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 * Change Controller: IETF

 * Provisional registration? No

 To indicate that the content is a GNAP token rotation message to be
 bound with an attached JWS mechanism:

 * Type name: application

 * Subtype name: gnap-binding-rotation-jws

 * Required parameters: n/a

 * Optional parameters: n/a

 * Encoding considerations: binary

 * Security considerations: See Section 13 of RFC nnnn

 * Interoperability considerations: n/a

 * Published specification: RFC nnnn

 * Applications that use this media type: GNAP

 * Fragment identifier considerations: n/a

 * Additional information:

 - Magic number(s): n/a

 - File extension(s): n/a

 - Macintosh file type code(s): n/a

 * Person & email address to contact for further information: IETF
 GNAP Working Group, txauth@ietf.org

 * Intended usage: COMMON

 * Restrictions on usage: none

 * Author: IETF GNAP Working Group, txauth@ietf.org

 * Change Controller: IETF

 * Provisional registration? No

Richer & Imbault Expires 21 September 2024 [Page 148]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

11.3. GNAP Grant Request Parameters

 This document defines a GNAP grant request, for which IANA is asked
 to create and maintain a new registry titled "GNAP Grant Request
 Parameters". Initial values for this registry are given in
 Section 11.3.2. Future assignments and modifications to existing
 assignment are to be made through the Specification Required
 registration policy [RFC8126].

 The Designated Expert (DE) is expected to ensure that all
 registrations follow the template presented in Section 11.3.1. The
 DE is expected to ensure that the request parameter’s definition is
 sufficiently orthogonal to existing functionality provided by
 existing parameters. The DE is expected to ensure that registrations
 for the same name with different types are sufficiently close in
 functionality so as not to cause confusion for developers. The DE is
 expected to ensure that the request parameter’s definition specifies
 the expected behavior of the AS in response to the request parameter
 for each potential state of the grant request.

11.3.1. Registration Template

 Name:
 An identifier for the parameter.

 Type:
 The JSON type allowed for the value.

 Specification document(s):
 Reference to the document(s) that specify the value, preferably
 including a URI that can be used to retrieve a copy of the
 document(s). An indication of the relevant sections may also be
 included but is not required.

11.3.2. Initial Contents

 +==============+==================+===========================+
 | Name | Type | Specification document(s) |
 +==============+==================+===========================+
 | access_token | object | Section 2.1.1 of RFC nnnn |
 +--------------+------------------+---------------------------+
 | access_token | array of objects | Section 2.1.2 of RFC nnnn |
 +--------------+------------------+---------------------------+
 | subject | object | Section 2.2 of RFC nnnn |
 +--------------+------------------+---------------------------+
 | client | object | Section 2.3 of RFC nnnn |
 +--------------+------------------+---------------------------+
 | client | string | Section 2.3.1 of RFC nnnn |

Richer & Imbault Expires 21 September 2024 [Page 149]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 +--------------+------------------+---------------------------+
 | user | object | Section 2.4 of RFC nnnn |
 +--------------+------------------+---------------------------+
 | user | string | Section 2.4.1 of RFC nnnn |
 +--------------+------------------+---------------------------+
 | interact | object | Section 2.5 of RFC nnnn |
 +--------------+------------------+---------------------------+
 | interact_ref | string | Section 5.1 of RFC nnnn |
 +--------------+------------------+---------------------------+

 Table 1

11.4. GNAP Access Token Flags

 This document defines a GNAP access token flags, for which IANA is
 asked to create and maintain a new registry titled "GNAP Access Token
 Flags". Initial values for this registry are given in
 Section 11.4.2. Future assignments and modifications to existing
 assignment are to be made through the Specification Required
 registration policy [RFC8126].

 The DE is expected to ensure that all registrations follow the
 template presented in Section 11.4.1. The DE is expected to ensure
 that the flag specifies whether it applies to requests for tokens to
 the AS, responses with tokens from the AS, or both.

11.4.1. Registration Template

 Name:
 An identifier for the parameter.

 Allowed Use:
 Where the flag is allowed to occur. Possible values are
 "Request", "Response", and "Request, Response".

 Specification document(s):
 Reference to the document(s) that specify the value, preferably
 including a URI that can be used to retrieve a copy of the
 document(s). An indication of the relevant sections may also be
 included but is not required.

Richer & Imbault Expires 21 September 2024 [Page 150]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

11.4.2. Initial Contents

 +=========+===================+===========================+
 | Name | Allowed Use | Specification document(s) |
 +=========+===================+===========================+
 | bearer | Request, Response | Section 2.1.1 and |
 | | | Section 3.2.1 of RFC nnnn |
 +---------+-------------------+---------------------------+
 | durable | Response | Section 3.2.1 of RFC nnnn |
 +---------+-------------------+---------------------------+

 Table 2

11.5. GNAP Subject Information Request Fields

 This document defines a means to request subject information from the
 AS to the client instance, for which IANA is asked to create and
 maintain a new registry titled "GNAP Subject Information Request
 Fields". Initial values for this registry are given in
 Section 11.5.2. Future assignments and modifications to existing
 assignment are to be made through the Specification Required
 registration policy [RFC8126].

 The DE is expected to ensure that all registrations follow the
 template presented in Section 11.5.1. The DE is expected to ensure
 that registrations for the same name with different types are
 sufficiently close in functionality so as not to cause confusion for
 developers.

11.5.1. Registration Template

 Name:
 An identifier for the parameter.

 Type:
 The JSON type allowed for the value.

 Specification document(s):
 Reference to the document(s) that specify the value, preferably
 including a URI that can be used to retrieve a copy of the
 document(s). An indication of the relevant sections may also be
 included but is not required.

Richer & Imbault Expires 21 September 2024 [Page 151]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

11.5.2. Initial Contents

 +===================+==================+===========================+
 | Name | Type | Specification document(s) |
 +===================+==================+===========================+
 | sub_id_formats | array of strings | Section 2.2 of RFC nnnn |
 +-------------------+------------------+---------------------------+
 | assertion_formats | array of strings | Section 2.2 of RFC nnnn |
 +-------------------+------------------+---------------------------+
 | sub_ids | array of objects | Section 2.2 of RFC nnnn |
 +-------------------+------------------+---------------------------+

 Table 3

11.6. GNAP Assertion Formats

 This document defines a means to pass identity assertions between the
 AS and client instance, for which IANA is asked to create and
 maintain a new registry titled "GNAP Assertion Formats". Initial
 values for this registry are given in Section 11.6.2. Future
 assignments and modifications to existing assignment are to be made
 through the Specification Required registration policy [RFC8126].

 The DE is expected to ensure that all registrations follow the
 template presented in Section 11.6.1. The DE is expected to ensure
 that the definition specifies the serialization format of the
 assertion value as used within GNAP.

11.6.1. Registration Template

 Name:
 An identifier for the assertion format.

 Specification document(s):
 Reference to the document(s) that specify the value, preferably
 including a URI that can be used to retrieve a copy of the
 document(s). An indication of the relevant sections may also be
 included but is not required.

11.6.2. Initial Contents

 +==========+===========================+
 | Name | Specification document(s) |
 +==========+===========================+
 | id_token | Section 3.4.1 of RFC nnnn |
 +----------+---------------------------+
 | saml2 | Section 3.4.1 of RFC nnnn |
 +----------+---------------------------+

Richer & Imbault Expires 21 September 2024 [Page 152]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 Table 4

11.7. GNAP Client Instance Fields

 This document defines a means to send information about the client
 instance, for which IANA is asked to create and maintain a new
 registry titled "GNAP Client Instance Fields". Initial values for
 this registry are given in Section 11.7.2. Future assignments and
 modifications to existing assignment are to be made through the
 Specification Required registration policy [RFC8126].

 The DE is expected to ensure that all registrations follow the
 template presented in Section 11.7.1. The DE is expected to ensure
 that registrations for the same name with different types are
 sufficiently close in functionality so as not to cause confusion for
 developers.

11.7.1. Registration Template

 Name:
 An identifier for the parameter.

 Type:
 The JSON type allowed for the value.

 Specification document(s):
 Reference to the document(s) that specify the value, preferably
 including a URI that can be used to retrieve a copy of the
 document(s). An indication of the relevant sections may also be
 included but is not required.

11.7.2. Initial Contents

 +==========+========+===========================+
 | Name | Type | Specification document(s) |
 +==========+========+===========================+
 | key | object | Section 7.1 of RFC nnnn |
 +----------+--------+---------------------------+
 | key | string | Section 7.1.1 of RFC nnnn |
 +----------+--------+---------------------------+
 | class_id | string | Section 2.3 of RFC nnnn |
 +----------+--------+---------------------------+
 | display | object | Section 2.3.2 of RFC nnnn |
 +----------+--------+---------------------------+

 Table 5

Richer & Imbault Expires 21 September 2024 [Page 153]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

11.8. GNAP Client Instance Display Fields

 This document defines a means to send end-user facing displayable
 information about the client instance, for which IANA is asked to
 create and maintain a new registry titled "GNAP Client Instance
 Display Fields". Initial values for this registry are given in
 Section 11.8.2. Future assignments and modifications to existing
 assignment are to be made through the Specification Required
 registration policy [RFC8126].

 The DE is expected to ensure that all registrations follow the
 template presented in Section 11.8.1. The DE is expected to ensure
 that registrations for the same name with different types are
 sufficiently close in functionality so as not to cause confusion for
 developers.

11.8.1. Registration Template

 Name:
 An identifier for the parameter.

 Type:
 The JSON type allowed for the value.

 Specification document(s):
 Reference to the document(s) that specify the value, preferably
 including a URI that can be used to retrieve a copy of the
 document(s). An indication of the relevant sections may also be
 included but is not required.

11.8.2. Initial Contents

 +==========+========+===========================+
 | Name | Type | Specification document(s) |
 +==========+========+===========================+
 | name | string | Section 2.3.2 of RFC nnnn |
 +----------+--------+---------------------------+
 | uri | string | Section 2.3.2 of RFC nnnn |
 +----------+--------+---------------------------+
 | logo_uri | string | Section 2.3.2 of RFC nnnn |
 +----------+--------+---------------------------+

 Table 6

Richer & Imbault Expires 21 September 2024 [Page 154]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

11.9. GNAP Interaction Start Modes

 This document defines a means for the client instance to begin
 interaction between the end-user and the AS, for which IANA is asked
 to create and maintain a new registry titled "GNAP Interaction Start
 Modes". Initial values for this registry are given in
 Section 11.9.2. Future assignments and modifications to existing
 assignment are to be made through the Specification Required
 registration policy [RFC8126].

 The DE is expected to ensure that all registrations follow the
 template presented in Section 11.9.1. The DE is expected to ensure
 that registrations for the same name with different types are
 sufficiently close in functionality so as not to cause confusion for
 developers. The DE is expected to ensure that any registration using
 an "object" type declares all additional parameters, their
 optionality, and purpose. The DE is expected to ensure that the
 start mode clearly defines what actions the client is expected to
 take to begin interaction, what the expected user experience is, and
 any security considerations for this communication from either party.
 The DE is expected to ensure that the start mode documents
 incompatibilities with other start modes or finish methods, if
 applicable. The DE is expected to ensure that the start mode
 provides enough information to uniquely identify the grant request
 during the interaction. For example, tn the redirect and app modes,
 this is done using a unique URI (including its parameters). In the
 user_code and user_code_uri mode, this is done using the value of the
 user code.

11.9.1. Registration Template

 Mode:
 An identifier for the interaction start mode.

 Type:
 The JSON type for the value, either "string" or "object", as
 described in Section 2.5.1.

 Specification document(s):
 Reference to the document(s) that specify the value, preferably
 including a URI that can be used to retrieve a copy of the
 document(s). An indication of the relevant sections may also be
 included but is not required.

Richer & Imbault Expires 21 September 2024 [Page 155]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

11.9.2. Initial Contents

 +===============+========+=============================+
 | Mode | Type | Specification document(s) |
 +===============+========+=============================+
 | redirect | string | Section 2.5.1.1 of RFC nnnn |
 +---------------+--------+-----------------------------+
 | app | string | Section 2.5.1.2 of RFC nnnn |
 +---------------+--------+-----------------------------+
 | user_code | string | Section 2.5.1.3 of RFC nnnn |
 +---------------+--------+-----------------------------+
 | user_code_uri | string | Section 2.5.1.4 of RFC nnnn |
 +---------------+--------+-----------------------------+

 Table 7

11.10. GNAP Interaction Finish Methods

 This document defines a means for the client instance to be notified
 of the end of interaction between the end-user and the AS, for which
 IANA is asked to create and maintain a new registry titled "GNAP
 Interaction Finish Methods". Initial values for this registry are
 given in Section 11.10.2. Future assignments and modifications to
 existing assignment are to be made through the Specification Required
 registration policy [RFC8126].

 The DE is expected to ensure that all registrations follow the
 template presented in Section 11.10.1. The DE is expected to ensure
 that all finish methods clearly define what actions the AS is
 expected to take, what listening methods the client instance needs to
 enable, and any security considerations for this communication from
 either party. The DE is expected to ensure that all finish methods
 document incompatibilities with any start modes, if applicable.

11.10.1. Registration Template

 Method:
 An identifier for the interaction finish method.

 Specification document(s):
 Reference to the document(s) that specify the value, preferably
 including a URI that can be used to retrieve a copy of the
 document(s). An indication of the relevant sections may also be
 included but is not required.

Richer & Imbault Expires 21 September 2024 [Page 156]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

11.10.2. Initial Contents

 +==========+=============================+
 | Mode | Specification document(s) |
 +==========+=============================+
 | redirect | Section 2.5.2.1 of RFC nnnn |
 +----------+-----------------------------+
 | push | Section 2.5.2.2 of RFC nnnn |
 +----------+-----------------------------+

 Table 8

11.11. GNAP Interaction Hints

 This document defines a set of hints that a client instance can
 provide to the AS to facilitate interaction with the end user, for
 which IANA is asked to create and maintain a new registry titled
 "GNAP Interaction Hints". Initial values for this registry are given
 in Section 11.11.2. Future assignments and modifications to existing
 assignment are to be made through the Specification Required
 registration policy [RFC8126].

 The DE is expected to ensure that all registrations follow the
 template presented in Section 11.11.1. The DE is expected to ensure
 that all interaction hints clearly document the expected behaviors of
 the AS in response to the hint, and that an AS not processing the
 hint does not impede the operation of the AS or client instance.

11.11.1. Registration Template

 Name:
 An identifier for the parameter.

 Specification document(s):
 Reference to the document(s) that specify the value, preferably
 including a URI that can be used to retrieve a copy of the
 document(s). An indication of the relevant sections may also be
 included but is not required.

11.11.2. Initial Contents

 +============+===========================+
 | Mode | Specification document(s) |
 +============+===========================+
 | ui_locales | Section 2.5.3 of RFC nnnn |
 +------------+---------------------------+

 Table 9

Richer & Imbault Expires 21 September 2024 [Page 157]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

11.12. GNAP Grant Response Parameters

 This document defines a GNAP grant response, for which IANA is asked
 to create and maintain a new registry titled "GNAP Grant Response
 Parameters". Initial values for this registry are given in
 Section 11.12.2. Future assignments and modifications to existing
 assignment are to be made through the Specification Required
 registration policy [RFC8126].

 The DE is expected to ensure that all registrations follow the
 template presented in Section 11.12.1. The DE is expected to ensure
 that the response parameter’s definition is sufficiently orthogonal
 to existing functionality provided by existing parameters. The DE is
 expected to ensure that registrations for the same name with
 different types are sufficiently close in functionality so as not to
 cause confusion for developers. The DE is expected to ensure that
 the response parameter’s definition specifies grant states for which
 the client instance can expect this parameter to appear in a response
 message.

11.12.1. Registration Template

 Name:
 An identifier for the parameter.

 Type:
 The JSON type allowed for the value.

 Specification document(s):
 Reference to the document(s) that specify the value, preferably
 including a URI that can be used to retrieve a copy of the
 document(s). An indication of the relevant sections may also be
 included but is not required.

11.12.2. Initial Contents

 +=============+==================+===========================+
 | Name | Type | Specification document(s) |
 +=============+==================+===========================+
 | continue | object | Section 3.1 of RFC nnnn |
 +-------------+------------------+---------------------------+
 | acces_token | object | Section 3.2.1 of RFC nnnn |
 +-------------+------------------+---------------------------+
 | acces_token | array of objects | Section 3.2.2 of RFC nnnn |
 +-------------+------------------+---------------------------+
 | interact | object | Section 3.3 of RFC nnnn |
 +-------------+------------------+---------------------------+
 | subject | object | Section 3.4 of RFC nnnn |

Richer & Imbault Expires 21 September 2024 [Page 158]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 +-------------+------------------+---------------------------+
 | instance_id | string | Section 3.5 of RFC nnnn |
 +-------------+------------------+---------------------------+
 | error | object | Section 3.6 of RFC nnnn |
 +-------------+------------------+---------------------------+

 Table 10

11.13. GNAP Interaction Mode Responses

 This document defines a means for the AS to provide to the client
 instance information that is required to complete a particular
 interaction mode, for which IANA is asked to create and maintain a
 new registry titled "GNAP Interaction Mode Responses". Initial
 values for this registry are given in Section 11.13.2. Future
 assignments and modifications to existing assignment are to be made
 through the Specification Required registration policy [RFC8126].

 The DE is expected to ensure that all registrations follow the
 template presented in Section 11.13.1. If the name of the
 registration matches the name of an interaction start mode, the DE is
 expected to ensure that the response parameter is unambiguously
 associated with the interaction start mode of the same name.

11.13.1. Registration Template

 Name:
 An identifier for the parameter.

 Specification document(s):
 Reference to the document(s) that specify the value, preferably
 including a URI that can be used to retrieve a copy of the
 document(s). An indication of the relevant sections may also be
 included but is not required.

11.13.2. Initial Contents

 +===============+===========================+
 | Name | Specification document(s) |
 +===============+===========================+
 | redirect | Section 3.3 of RFC nnnn |
 +---------------+---------------------------+
 | app | Section 3.3 of RFC nnnn |
 +---------------+---------------------------+
 | user_code | Section 3.3 of RFC nnnn |
 +---------------+---------------------------+
 | user_code_uri | Section 3.3 of RFC nnnn |
 +---------------+---------------------------+

Richer & Imbault Expires 21 September 2024 [Page 159]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 | finish | Section 3.3 of RFC nnnn |
 +---------------+---------------------------+
 | expires_in | Section 3.3 of RFC nnnn |
 +---------------+---------------------------+

 Table 11

11.14. GNAP Subject Information Response Fields

 This document defines a means to return subject information from the
 AS to the client instance, for which IANA is asked to create and
 maintain a new registry titled "GNAP Subject Information Response
 Fields". Initial values for this registry are given in
 Section 11.14.2. Future assignments and modifications to existing
 assignment are to be made through the Specification Required
 registration policy [RFC8126].

 The DE is expected to ensure that all registrations follow the
 template presented in Section 11.14.1. The DE is expected to ensure
 that registrations for the same name with different types are
 sufficiently close in functionality so as not to cause confusion for
 developers.

11.14.1. Registration Template

 Name:
 An identifier for the parameter.

 Type:
 The JSON type allowed for the value.

 Specification document(s):
 Reference to the document(s) that specify the value, preferably
 including a URI that can be used to retrieve a copy of the
 document(s). An indication of the relevant sections may also be
 included but is not required.

11.14.2. Initial Contents

 +============+==================+===========================+
 | Name | Type | Specification document(s) |
 +============+==================+===========================+
 | sub_ids | array of objects | Section 3.4 of RFC nnnn |
 +------------+------------------+---------------------------+
 | assertions | array of objects | Section 3.4 of RFC nnnn |
 +------------+------------------+---------------------------+
 | updated_at | string | Section 3.4 of RFC nnnn |
 +------------+------------------+---------------------------+

Richer & Imbault Expires 21 September 2024 [Page 160]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 Table 12

11.15. GNAP Error Codes

 This document defines a set of errors that the AS can return to the
 client instance, for which IANA is asked to create and maintain a new
 registry titled "GNAP Error Codes". Initial values for this registry
 are given in Section 11.15.2. Future assignments and modifications
 to existing assignment are to be made through the Specification
 Required registration policy [RFC8126].

 The DE is expected to ensure that all registrations follow the
 template presented in Section 11.15.1. The DE is expected to ensure
 that the error response is sufficiently unique from other errors to
 provide actionable information to the client instance. The DE is
 expected to ensure that the definition of the error response
 specifies all conditions in which the error response is returned, and
 what the client instance’s expected action is.

11.15.1. Registration Template

 Error:
 A unique string code for the error.

 Specification document(s):
 Reference to the document(s) that specify the value, preferably
 including a URI that can be used to retrieve a copy of the
 document(s). An indication of the relevant sections may also be
 included but is not required.

11.15.2. Initial Contents

 +============================+===========================+
 | Error | Specification document(s) |
 +============================+===========================+
 | invalid_request | Section 3.6 of RFC nnnn |
 +----------------------------+---------------------------+
 | invalid_client | Section 3.6 of RFC nnnn |
 +----------------------------+---------------------------+
 | invalid_interaction | Section 3.6 of RFC nnnn |
 +----------------------------+---------------------------+
 | invalid_flag | Section 3.6 of RFC nnnn |
 +----------------------------+---------------------------+
 | invalid_rotation | Section 3.6 of RFC nnnn |
 +----------------------------+---------------------------+
 | key_rotation_not_supported | Section 3.6 of RFC nnnn |
 +----------------------------+---------------------------+
 | invalid_continuation | Section 3.6 of RFC nnnn |

Richer & Imbault Expires 21 September 2024 [Page 161]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 +----------------------------+---------------------------+
 | user_denied | Section 3.6 of RFC nnnn |
 +----------------------------+---------------------------+
 | request_denied | Section 3.6 of RFC nnnn |
 +----------------------------+---------------------------+
 | unknown_interaction | Section 3.6 of RFC nnnn |
 +----------------------------+---------------------------+
 | too_fast | Section 3.6 of RFC nnnn |
 +----------------------------+---------------------------+
 | too_many_attempts | Section 3.6 of RFC nnnn |
 +----------------------------+---------------------------+

 Table 13

11.16. GNAP Key Proofing Methods

 This document defines methods that the client instance can use to
 prove possession of a key, for which IANA is asked to create and
 maintain a new registry titled "GNAP Key Proofing Methods". Initial
 values for this registry are given in Section 11.16.2. Future
 assignments and modifications to existing assignment are to be made
 through the Specification Required registration policy [RFC8126].

 The DE is expected to ensure that all registrations follow the
 template presented in Section 11.16.1. The DE is expected to ensure
 that registrations for the same name with different types are
 sufficiently close in functionality so as not to cause confusion for
 developers. The DE is expected to ensure that the proofing method
 provides sufficient coverage of and binding to the protocol messages
 to which it is applied. The DE is expected to ensure that the
 proofing method definition clearly enumerates how all requirements in
 Section 7.3 are fulfilled by the definition.

11.16.1. Registration Template

 Method:
 A unique string code for the key proofing method.

 Type:
 The JSON type allowed for the value.

 Specification document(s):
 Reference to the document(s) that specify the value, preferably
 including a URI that can be used to retrieve a copy of the
 document(s). An indication of the relevant sections may also be
 included but is not required.

Richer & Imbault Expires 21 September 2024 [Page 162]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

11.16.2. Initial Contents

 +=========+========+===========================+
 | Method | Type | Specification document(s) |
 +=========+========+===========================+
 | httpsig | string | Section 7.3.1 of RFC nnnn |
 +---------+--------+---------------------------+
 | httpsig | object | Section 7.3.1 of RFC nnnn |
 +---------+--------+---------------------------+
 | mtls | string | Section 7.3.2 of RFC nnnn |
 +---------+--------+---------------------------+
 | jwsd | string | Section 7.3.3 of RFC nnnn |
 +---------+--------+---------------------------+
 | jws | string | Section 7.3.4 of RFC nnnn |
 +---------+--------+---------------------------+

 Table 14

11.17. GNAP Key Formats

 This document defines formats for a public key value, for which IANA
 is asked to create and maintain a new registry titled "GNAP Key
 Formats". Initial values for this registry are given in
 Section 11.17.2. Future assignments and modifications to existing
 assignment are to be made through the Specification Required
 registration policy [RFC8126].

 The DE is expected to ensure that all registrations follow the
 template presented in Section 11.17.1. The DE is expected to ensure
 the key format specifies the structure and serialization of the key
 material.

11.17.1. Registration Template

 Format:
 A unique string code for the key format.

 Specification document(s):
 Reference to the document(s) that specify the value, preferably
 including a URI that can be used to retrieve a copy of the
 document(s). An indication of the relevant sections may also be
 included but is not required.

Richer & Imbault Expires 21 September 2024 [Page 163]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

11.17.2. Initial Contents

 +===========+===========================+
 | Format | Specification document(s) |
 +===========+===========================+
 | jwk | Section 7.1 of RFC nnnn |
 +-----------+---------------------------+
 | cert | Section 7.1 of RFC nnnn |
 +-----------+---------------------------+
 | cert#S256 | Section 7.1 of RFC nnnn |
 +-----------+---------------------------+

 Table 15

11.18. GNAP Authorization Server Discovery Fields

 This document defines a discovery document for an AS, for which IANA
 is asked to create and maintain a new registry titled "GNAP
 Authorization Server Discovery Fields". Initial values for this
 registry are given in Section 11.18.2. Future assignments and
 modifications to existing assignment are to be made through the
 Specification Required registration policy [RFC8126].

 The DE is expected to ensure that all registrations follow the
 template presented in Section 11.18.1. The DE is expected to ensure
 that registrations for the same name with different types are
 sufficiently close in functionality so as not to cause confusion for
 developers. The DE is expected to ensure that the values in the
 discovery document are sufficient to provide optimization and hints
 to the client instance, but that knowledge of the discovered value is
 not required for starting a transaction with the AS.

11.18.1. Registration Template

 Name:
 An identifier for the parameter.

 Type:
 The JSON type allowed for the value.

 Specification document(s):
 Reference to the document(s) that specify the value, preferably
 including a URI that can be used to retrieve a copy of the
 document(s). An indication of the relevant sections may also be
 included but is not required.

Richer & Imbault Expires 21 September 2024 [Page 164]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

11.18.2. Initial Contents

 +======================================+==========+===============+
 | Name | Type | Specification |
 | | | document(s) |
 +======================================+==========+===============+
 | grant_request_endpoint | string | Section 9 of |
 | | | RFC nnnn |
 +--------------------------------------+----------+---------------+
 | interaction_start_modes_supported | array of | Section 9 of |
 | | strings | RFC nnnn |
 +--------------------------------------+----------+---------------+
 | interaction_finish_methods_supported | array of | Section 9 of |
 | | strings | RFC nnnn |
 +--------------------------------------+----------+---------------+
 | key_proofs_supported | array of | Section 9 of |
 | | strings | RFC nnnn |
 +--------------------------------------+----------+---------------+
 | sub_id_formats_supported | array of | Section 9 of |
 | | strings | RFC nnnn |
 +--------------------------------------+----------+---------------+
 | assertion_formats_supported | array of | Section 9 of |
 | | strings | RFC nnnn |
 +--------------------------------------+----------+---------------+
 | key_rotation_supported | boolean | Section 9 of |
 | | | RFC nnnn |
 +--------------------------------------+----------+---------------+

 Table 16

12. Implementation Status

 Note: To be removed by RFC editor before publication.

 GNAP Authorization Service in Rust implementation by David Skyberg.
 https://github.com/dskyberg/gnap (https://github.com/dskyberg/gnap)
 Prototype implementation of AS and client in Rust. MIT license.

 GNAP JS Client from Interop Alliance, implementation by Dmitri
 Zagidulin. https://github.com/interop-alliance/gnap-client-js
 (https://github.com/interop-alliance/gnap-client-js) Prototype
 implementation of client in JavaScript. MIT License.

 Rafiki from Interledger Foundation. https://github.com/interledger/
 rafiki (https://github.com/interledger/rafiki) Production
 implementation of AS in JavaScript. Apache 2.0 license.

Richer & Imbault Expires 21 September 2024 [Page 165]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 Sample GNAP Client in PHP implementation by Aaron Parecki.
 https://github.com/aaronpk/gnap-client-php
 (https://github.com/aaronpk/gnap-client-php) Prototype implementation
 of web application client and CLI client in PHP, with common support
 library. CC0 license.

 SUNET Auth Server from SUNET. https://github.com/SUNET/sunet-auth-
 server (https://github.com/SUNET/sunet-auth-server) Production
 implementation of AS in Python. BSD license.

 Trustbloc from Gen Digital.
 https://github.com/trustbloc/docs/blob/main/readthedocs/designs/
 auth.md
 (https://github.com/trustbloc/docs/blob/main/readthedocs/designs/
 auth.md) Production implementation of AS and client in Go. Apache
 2.0 license.

 Verified.ME from SecureKey. https://verified.me/
 (https://verified.me/) Production implementation of AS, client and
 RS. Proprietary license.

 XYZ from Bespoke Engineering, implementation by Justin Richer.
 https://github.com/bspk/oauth.xyz-java (https://github.com/bspk/
 oauth.xyz-java) Advanced prototype implementation of AS, client, and
 RS in Java, with common support library. Prototype implementation of
 SPA client in JavaScript. Apache 2.0 license.

13. Security Considerations

 In addition to the normative requirements in this document,
 implementors are strongly encouraged to consider these additional
 security considerations in implementations and deployments of GNAP.

13.1. TLS Protection in Transit

 All requests in GNAP made over untrusted network connections have to
 be made over TLS as outlined in [BCP195] to protect the contents of
 the request and response from manipulation and interception by an
 attacker. This includes all requests from a client instance to the
 AS, all requests from the client instance to an RS, and any requests
 back to a client instance such as the push-based interaction finish
 method. Additionally, all requests between a browser and other
 components, such as during redirect-based interaction, need to be
 made over TLS or use equivalent protection such as a network
 connection local to the browser ("localhost").

Richer & Imbault Expires 21 September 2024 [Page 166]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 Even though requests from the client instance to the AS are signed,
 the signature method alone does not protect the request from
 interception by an attacker. TLS protects the response as well as
 the request, preventing an attacker from intercepting requested
 information as it is returned. This is particularly important in the
 core protocol for security artifacts such as nonces and for personal
 information such as subject information.

 The use of key-bound access tokens does not negate the requirement
 for protecting calls to the RS with TLS. While the keys and
 signatures associated a bound access token will prevent an attacker
 from using a stolen token, without TLS an attacker would be able to
 watch the data being sent to the RS and returned from the RS during
 legitimate use of the client instance under attack. Additionally,
 without TLS an attacker would be able to profile the calls made
 between the client instance and RS, possibly gaining information
 about the functioning of the API between the client software and RS
 software that would be otherwise unknown to the attacker.

 Note that connections from the end user and RO’s browser also need to
 be be protected with TLS. This applies during initial redirects to
 an AS’s components during interaction, during any interaction with
 the resource owner, and during any redirect back to the client
 instance. Without TLS protection on these portions of the process,
 an attacker could wait for a valid request to start and then take
 over the resource owner’s interaction session.

13.2. Signing Requests from the Client Software

 Even though all requests in GNAP need to be transmitted over TLS or
 its equivalent, the use of TLS alone is not sufficient to protect all
 parts of a multi-party and multi-stage protocol like GNAP, and TLS is
 not targeted at tying multiple requests to each other over time. To
 account for this, GNAP makes use of message-level protection and key
 presentation mechanisms that strongly associate a request with a key
 held by the client instance (see Section 7).

 During the initial request from a client instance to the AS, the
 client instance has to identify and prove possession of a
 cryptographic key. If the key is known to the AS, such as if it is
 previously registered or dereferenceable to a trusted source, the AS
 can associate a set of policies to the client instance identified by
 the key. Without the requirement that the client instance prove that
 it holds that key, the AS could not trust that the connection came
 from any particular client and could not apply any associated
 policies.

Richer & Imbault Expires 21 September 2024 [Page 167]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 Even more importantly, the client instance proving possession of a
 key on the first request allows the AS to associate future requests
 with each other by binding all future requests in that transaction to
 the same key. The access token used for grant continuation is bound
 to the same key and proofing mechanism used by the client instance in
 its initial request, which means that the client instance needs to
 prove possession of that same key in future requests allowing the AS
 to be sure that the same client instance is executing the follow-ups
 for a given ongoing grant request. Therefore, the AS has to ensure
 that all subsequent requests for a grant are associated with the same
 key that started the grant, or the most recent rotation of that key.
 This need holds true even if the initial key is previously unknown to
 the AS, such as would be the case when a client instance creates an
 ephemeral key for its request. Without this ongoing association, an
 attacker would be able to impersonate a client instance in the midst
 of a grant request, potentially stealing access tokens and subject
 information with impunity.

 Additionally, all access tokens in GNAP default to be associated with
 the key that was presented during the grant request that created the
 access token. This association allows an RS to know that the
 presenter of the access token is the same party that the token was
 issued to, as identified by their keys. While non-bound bearer
 tokens are an option in GNAP, these types of tokens have their own
 tradeoffs discussed in Section 13.9.

 TLS functions at the transport layer, ensuring that only the parties
 on either end of that connection can read the information passed
 along that connection. Each time a new connection is made, such as
 for a new HTTP request, a new trust is re-established that is mostly
 unrelated to previous connections. While modern TLS does make use of
 session resumption, this still needs to be augmented with
 authentication methods to determine the identity of parties on the
 connections. In other words, it is not possible with TLS alone to
 know that the same party is making a set of calls over time, since
 each time a new TLS connection is established, both the client and
 the server (or the server only when using Section 7.3.2) have to
 validate the other party’s identity. Such a verification can be
 achieved via methods described in [RFC9525], but these are not enough
 to establish the identity of the client instance in many cases.

 To counter this, GNAP defines a set of key binding methods in
 Section 7.3 that allow authentication and proof of possession by the
 caller, which is usually the client instance. These methods are
 intended to be used in addition to TLS on all connections.

Richer & Imbault Expires 21 September 2024 [Page 168]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

13.3. MTLS Message Integrity

 The MTLS key proofing mechanism (Section 7.3.2) provides a means for
 a client instance to present a key using a certificate at the TLS
 layer. Since TLS protects the entire HTTP message in transit,
 verification of the TLS client certificate presented with the message
 provides a sufficient binding between the two. However, since TLS is
 functioning at a separate layer from HTTP, there is no direct
 connection between the TLS key presentation and the message itself,
 other than the fact that the message was presented over the TLS
 channel. That is to say, any HTTP message can be presented over the
 TLS channel in question with the same level of trust. The verifier
 is responsible for ensuring the key in the TLS client certificate is
 the one expected for a particular request. For example, if the
 request is a grant request (Section 2), the AS needs to compare the
 TLS client certificate presented at the TLS layer to the key
 identified in the request content itself (either by value or through
 a referenced identifier).

 Furthermore, the prevalence of the TLS-terminating reverse proxy
 (TTRP) pattern in deployments adds a wrinkle to the situation. In
 this common pattern, the TTRP validates the TLS connection and then
 forwards the HTTP message contents onward to an internal system for
 processing. The system processing the HTTP message no longer has
 access to the original TLS connection’s information and context. To
 compensate for this, the TTRP could inject the TLS client certificate
 into the forwarded request as a header parameter using [RFC9111],
 giving the downstream system access to the certificate information.
 The TTRP has to be trusted to provide accurate certificate
 information, and the connection between the TTRP and the downstream
 system also has to be protected. The TTRP could provide some
 additional assurance, for example, by adding its own signature to the
 Client-Cert header field using [RFC9421]. This signature would be
 effectively ignored by GNAP (since it would not use GNAP’s tag
 parameter value) but would be understood by the downstream service as
 part of its deployment.

 Additional considerations for different types of deployment patterns
 and key distribution mechanisms for MTLS are found in Section 13.4.

13.4. MTLS Deployment Patterns

 GNAP does not specify how a client instance’s keys could be made
 known to the AS ahead of time. Public Key Infrastructure (PKI) can
 be used to manage the keys used by client instances when calling the
 AS, allowing the AS to trust a root key from a trusted authority.
 This method is particularly relevant to the MTLS key proofing method,
 where the client instance presents its certificate to the AS as part

Richer & Imbault Expires 21 September 2024 [Page 169]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 of the TLS connection. An AS using PKI to validate the MTLS
 connection would need to ensure that the presented certificate was
 issued by a trusted certificate authority before allowing the
 connection to continue. PKI-based certificates would allow a key to
 be revoked and rotated through management at the certificate
 authority without requiring additional registration or management at
 the AS. The PKI required to manage mutually-authenticated TLS has
 historically been difficult to deploy, especially at scale, but it
 remains an appropriate solution for systems where the required
 management overhead is not an impediment.

 MTLS in GNAP need not use a PKI backing, as self-signed certificates
 and certificates from untrusted authorities can still be presented as
 part of a TLS connection. In this case, the verifier would validate
 the connection but accept whatever certificate was presented by the
 client software. This specific certificate can then be bound to all
 future connections from that client software by being bound to the
 resulting access tokens, in a trust-on-first-use pattern. See
 Section 13.3 for more considerations on MTLS as a key proofing
 mechanism.

13.5. Protection of Client Instance Key Material

 Client instances are identified by their unique keys, and anyone with
 access to a client instance’s key material will be able to
 impersonate that client instance to all parties. This is true for
 both calls to the AS as well as calls to an RS using an access token
 bound to the client instance’s unique key. As a consequence, it is
 of utmost importance for a client instance to protect its private key
 material.

 Different types of client software have different methods for
 creating, managing, and registering keys. GNAP explicitly allows for
 ephemeral clients such as single-page applications (SPAs) and single-
 user clients (such as mobile applications) to create and present
 their own keys during the initial grant request without any explicit
 pre-registration step. The client software can securely generate a
 keypair on-device and present the public key, along with proof of
 holding the associated private key, to the AS as part of the initial
 request. To facilitate trust in these ephemeral keys, GNAP further
 allows for an extensible set of client information to be passed with
 the request. This information can include device posture and third-
 party attestations of the client software’s provenance and
 authenticity, depending on the needs and capabilities of the client
 software and its deployment.

Richer & Imbault Expires 21 September 2024 [Page 170]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 From GNAP’s perspective, each distinct key is a different client
 instance. However, multiple client instances can be grouped together
 by an AS policy and treated similarly to each other. For instance,
 if an AS knows of several different keys for different servers within
 a cluster, the AS can decide that authorization of one of these
 servers applies to all other servers within the cluster. An AS that
 chooses to do this needs to be careful with how it groups different
 client keys together in its policy, since the breach of one instance
 would have direct effects on the others in the cluster.

 Additionally, if an end user controls multiple instances of a single
 type of client software, such as having an application installed on
 multiple devices, each of these instances is expected to have a
 separate key and be issued separate access tokens. However, if the
 AS is able to group these separate instances together as described
 above, it can streamline the authorization process for new instances
 of the same client software. For example, if two client instances
 can present proof of a valid installation of a piece of client
 software, the AS would be able to associate the approval of the first
 instance of this software to all related instances. The AS could
 then choose to bypass an explicit prompt of the resource owner for
 approval during authorization, since such approval has already been
 given. An AS doing such a process would need to take assurance
 measures that the different instances are in fact correlated and
 authentic, as well as ensuring the expected resource owner is in
 control of the client instance.

 Finally, if multiple instances of client software each have the same
 key, then from GNAP’s perspective, these are functionally the same
 client instance as GNAP has no reasonable way to differentiate
 between them. This situation could happen if multiple instances
 within a cluster can securely share secret information among
 themselves. Even though there are multiple copies of the software,
 the shared key makes these copies all present as a single instance.
 It is considered bad practice to share keys between copies of
 software unless they are very tightly integrated with each other and
 can be closely managed. It is particularly bad practice to allow an
 end user to copy keys between client instances and to willingly use
 the same key in multiple instances.

13.6. Protection of Authorization Server

 The AS performs critical functions in GNAP, including authenticating
 client software, managing interactions with end users to gather
 consent and provide notice, and issuing access tokens for client
 instances to present to resource servers. As such, protecting the AS
 is central to any GNAP deployment.

Richer & Imbault Expires 21 September 2024 [Page 171]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 If an attacker is able to gain control over an AS, they would be able
 to create fraudulent tokens and manipulate registration information
 to allow for malicious clients. These tokens and clients would be
 trusted by other components in the ecosystem under the protection of
 the AS.

 If the AS is using signed access tokens, an attacker in control of
 the AS’s signing keys would be able to manufacture fraudulent tokens
 for use at RS’s under the protection of the AS.

 If an attacker is able to impersonate an AS, they would be able to
 trick legitimate client instances into making signed requests for
 information which could potentially be proxied to a real AS. To
 combat this, all communications to the AS need to be made over TLS or
 its equivalent, and the software making the connection has to
 validate the certificate chain of the host it is connecting to.

 Consequently, protecting, monitoring, and auditing the AS is
 paramount to preserving the security of a GNAP-protected ecosystem.
 The AS presents attackers with a valuable target for attack.
 Fortunately, the core focus and function of the AS is to provide
 security for the ecosystem, unlike the RS whose focus is to provide
 an API or the client software whose focus is to access the API.

13.7. Symmetric and Asymmetric Client Instance Keys

 Many of the cryptographic methods used by GNAP for key-proofing can
 support both asymmetric and symmetric cryptography, and can be
 extended to use a wide variety of mechanisms. Implementers will find
 useful the available guidelines on cryptographic key management
 provided in [RFC4107]. While symmetric cryptographic systems have
 some benefits in speed and simplicity, they have a distinct drawback
 that both parties need access to the same key in order to do both
 signing and verification of the message. When more than two parties
 share the same symmetric key, data origin authentication is not
 provided. Any party that knows the symmetric key can compute a valid
 MAC; therefore, the contents could originate from any one of the
 parties.

 Use of symmetric cryptography means that when the client instance
 calls the AS to request a token, the AS needs to know the exact value
 of the client instance’s key (or be able to derive it) in order to
 validate the key proof signature. With asymmetric keys, the client
 needs only to send its public key to the AS to allow for verification
 that the client holds the associated private key, regardless of
 whether that key was pre-registered or not with the AS.

Richer & Imbault Expires 21 September 2024 [Page 172]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 Symmetric keys also have the expected advantage of providing better
 protection against quantum threats in the future. Also, these types
 of keys (and their secure derivations) are widely supported among
 many cloud-based key management systems.

 When used to bind to an access token, a key value must be known by
 the RS in order to validate the proof signature on the request.
 Common methods for communicating these proofing keys include putting
 information in a structured access token and allowing the RS to look
 up the associated key material against the value of the access token.
 With symmetric cryptography, both of these methods would expose the
 signing key to the RS, and in the case of an structured access token,
 potentially to any party that can see the access token itself unless
 the token’s payload has been encrypted. Any of these parties would
 then be able to make calls using the access token by creating a valid
 signature using the shared key. With asymmetric cryptography, the RS
 needs to know only the public key associated with the token in order
 to validate the request, and therefore the RS cannot create any new
 signed calls.

 While both signing approaches are allowed, GNAP treats these two
 classes of keys somewhat differently. Only the public portion of
 asymmetric keys are allowed to be sent by value in requests to the AS
 when establishing a connection. Since sending a symmetric key (or
 the private portion of an asymmetric key) would expose the signing
 material to any parties on the request path, including any attackers,
 sending these kinds of keys by value is prohibited. Symmetric keys
 can still be used by client instances, but only if the client
 instance can send a reference to the key and not its value. This
 approach allows the AS to use pre-registered symmetric keys as well
 as key derivation schemes to take advantage of symmetric cryptography
 but without requiring key distribution at runtime, which would expose
 the keys in transit.

 Both the AS and client software can use systems such as hardware
 security modules to strengthen their key security storage and
 generation for both asymmetric and symmetric keys (see also
 Section 7.1.2).

13.8. Generation of Access Tokens

 The content of access tokens need to be such that only the generating
 AS would be able to create them, and the contents cannot be
 manipulated by an attacker to gain different or additional access
 rights.

Richer & Imbault Expires 21 September 2024 [Page 173]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 One method for accomplishing this is to use a cryptographically
 random value for the access token, generated by the AS using a secure
 randomization function with sufficiently high entropy. The odds of
 an attacker guessing the output of the randomization function to
 collide with a valid access token are exceedingly small, and even
 then the attacker would not have any control over what the access
 token would represent since that information would be held close by
 the AS.

 Another method for accomplishing this is to use a structured token
 that is cryptographically signed. In this case, the payload of the
 access token declares to the RS what the token is good for, but the
 signature applied by the AS during token generation covers this
 payload. Only the AS can create such a signature and therefore only
 the AS can create such a signed token. The odds of an attacker being
 able to guess a signature value with a useful payload are exceedingly
 small. This technique only works if all targeted RS’s check the
 signature of the access token. Any RS that does not validate the
 signature of all presented tokens would be susceptible to injection
 of a modified or falsified token. Furthermore, an AS has to
 carefully protect the keys used to sign access tokens, since anyone
 with access to these signing keys would be able to create seemingly-
 valid access tokens using them.

13.9. Bearer Access Tokens

 Bearer access tokens can be used by any party that has access to the
 token itself, without any additional information. As a natural
 consequence, any RS that a bearer token is presented to has the
 technical capability of presenting that bearer token to another RS,
 as long as the token is valid. It also means that any party that is
 able capture of the token value in storage or in transit is able to
 use the access token. While bearer tokens are inherently simpler,
 this simplicity has been misapplied and abused in making needlessly
 insecure systems. The downsides of bearer tokens have become more
 pertinent lately as stronger authentication systems have caused some
 attacks to shift to target tokens and APIs.

Richer & Imbault Expires 21 September 2024 [Page 174]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 In GNAP, key-bound access tokens are the default due to their higher
 security properties. While bearer tokens can be used in GNAP, their
 use should be limited to cases where the simplicity benefits outweigh
 the significant security downsides. One common deployment pattern is
 to use a gateway that takes in key-bound tokens on the outside, and
 verifies the signatures on the incoming requests, but translates the
 requests to a bearer token for use by trusted internal systems. The
 bearer tokens are never issued or available outside of the internal
 systems, greatly limiting the exposure of the less secure tokens but
 allowing the internal deployment to benefit from the advantages of
 bearer tokens.

13.10. Key-Bound Access Tokens

 Key-bound access tokens, as the name suggests, are bound to a
 specific key and must be presented along with proof of that key
 during use. The key itself is not presented at the same time as the
 token, so even if a token value is captured, it cannot be used to
 make a new request. This is particularly true for an RS, which will
 see the token value but will not see the keys used to make the
 request (assuming asymmetric cryptography is in use, see
 Section 13.7).

 Key-bound access tokens provide this additional layer of protection
 only when the RS checks the signature of the message presented with
 the token. Acceptance of an invalid presentation signature, or
 failure to check the signature entirely, would allow an attacker to
 make calls with a captured access token without having access to the
 related signing key material.

 In addition to validating the signature of the presentation message
 itself, the RS also needs to ensure that the signing key used is
 appropriate for the presented token. If an RS does not ensure that
 the right keys were used to sign a message with a specific token, an
 attacker would be able to capture an access token and sign the
 request with their own keys, thereby negating the benefits of using
 key-bound access tokens.

 The RS also needs to ensure that sufficient portions of the message
 are covered by the signature. Any items outside the signature could
 still affect the API’s processing decisions, but these items would
 not be strongly bound to the token presentation. As such, an
 attacker could capture a valid request, then manipulate portions of
 the request outside of the signature envelope in order to cause
 unwanted actions at the protected API.

Richer & Imbault Expires 21 September 2024 [Page 175]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 Some key-bound tokens are susceptible to replay attacks, depending on
 the details of the signing method used. Key proofing mechanisms used
 with access tokens therefore need to use replay protection mechanisms
 covered under the signature such as a per-message nonce, a reasonably
 short time validity window, or other uniqueness constraints. The
 details of using these will vary depending on the key proofing
 mechanism in use, but for example, HTTP Message Signatures has both a
 created and nonce signature parameter as well as the ability to cover
 significant portions of the HTTP message. All of these can be used
 to limit the attack surface.

13.11. Exposure of End-user Credentials to Client Instance

 As a delegation protocol, one of the main goals of GNAP is to prevent
 the client software from being exposed to any credentials or
 information about the end user or resource owner as a requirement of
 the delegation process. By using the variety of interaction
 mechanisms, the resource owner can interact with the AS without ever
 authenticating to the client software, and without the client
 software having to impersonate the resource owner through replay of
 their credentials.

 Consequently, no interaction methods defined in the GNAP core require
 the end user to enter their credentials, but it is technologically
 possible for an extension to be defined to carry such values. Such
 an extension would be dangerous as it would allow rogue client
 software to directly collect, store, and replay the end user’s
 credentials outside of any legitimate use within a GNAP request.

 The concerns of such an extension could be mitigated through use of a
 challenge and response unlocked by the end user’s credentials. For
 example, the AS presents a challenge as part of an interaction start
 method, and the client instance signs that challenge using a key
 derived from a password presented by the end user. It would be
 possible for the client software to collect this password in a secure
 software enclave without exposing the password to the rest of the
 client software or putting it across the wire to the AS. The AS can
 validate this challenge response against a known password for the
 identified end user. While an approach such as this does not remove
 all of the concerns surrounding such a password-based scheme, it is
 at least possible to implement in a more secure fashion than simply
 collecting and replaying the password. Even so, such schemes should
 only ever be used by trusted clients due to the ease of abusing them.

Richer & Imbault Expires 21 September 2024 [Page 176]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

13.12. Mixing Up Authorization Servers

 If a client instance is able to work with multiple AS’s
 simultaneously, it is possible for an attacker to add a compromised
 AS to the client instance’s configuration and cause the client
 software to start a request at the compromised AS. This AS could
 then proxy the client’s request to a valid AS in order to attempt to
 get the resource owner to approve access for the legitimate client
 instance.

 A client instance needs to always be aware of which AS it is talking
 to throughout a grant process, and ensure that any callback for one
 AS does not get conflated with the callback to different AS. The
 interaction finish hash calculation in Section 4.2.3 allows a client
 instance to protect against this kind of substitution, but only if
 the client instance validates the hash. If the client instance does
 not use an interaction finish method or does not check the
 interaction finish hash value, the compromised AS can be granted a
 valid access token on behalf of the resource owner. See
 [AXELAND2021] for details of one such attack, which has been since
 addressed in this document by including the grant endpoint in the
 interaction hash calculation. Note that the client instance still
 needs to validate the hash for the attack to be prevented.

13.13. Processing of Client-Presented User Information

 GNAP allows the client instance to present assertions and identifiers
 of the current user to the AS as part of the initial request. This
 information should only ever be taken by the AS as a hint, since the
 AS has no way to tell if the represented person is present at the
 client software, without using an interaction mechanism. This
 information does not guarantee the given user is there, but it does
 constitute a statement by the client software that the AS can take
 into account.

 For example, if a specific user is claimed to be present prior to
 interaction, but a different user is shown to be present during
 interaction, the AS can either determine this to be an error or
 signal to the client instance through returned subject information
 that the current user has changed from what the client instance
 thought. This user information can also be used by the AS to
 streamline the interaction process when the user is present. For
 example, instead of having the user type in their account identifier
 during interaction at a redirected URI, the AS can immediately
 challenge the user for their account credentials. Alternatively, if
 an existing session is detected, the AS can determine that it matches
 the identifier provided by the client and subsequently skip an
 explicit authentication event by the resource owner.

Richer & Imbault Expires 21 September 2024 [Page 177]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 In cases where the AS trusts the client software more completely, due
 to policy or by previous approval of a given client instance, the AS
 can take this user information as a statement that the user is
 present and could issue access tokens and release subject information
 without interaction. The AS should only take such action in very
 limited circumstances, as a client instance could assert whatever it
 likes for the user’s identifiers in its request. The AS can limit
 the possibility of this by issuing randomized opaque identifiers to
 client instances to represent different end user accounts after an
 initial login.

 When a client instance presents an assertion to the AS, the AS needs
 to evaluate that assertion. Since the AS is unlikely to be the
 intended audience of an assertion held by the client software, the AS
 will need to evaluate the assertion in a different context. Even in
 this case, the AS can still evaluate that the assertion was generated
 by a trusted party, was appropriately signed, and is within any time
 validity windows stated by the assertion. If the client instance’s
 audience identifier is known to the AS and can be associated with the
 client instance’s presented key, the AS can also evaluate that the
 appropriate client instance is presenting the claimed assertion. All
 of this will prevent an attacker from presenting a manufactured
 assertion, or one captured from an untrusted system. However,
 without validating the audience of the assertion, a captured
 assertion could be presented by the client instance to impersonate a
 given end user. In such cases, the assertion offers little more
 protection than a simple identifier would.

 A special case exists where the AS is the generator of the assertion
 being presented by the client instance. In these cases, the AS can
 validate that it did issue the assertion and it is associated with
 the client instance presenting the assertion.

13.14. Client Instance Pre-registration

 Each client instance is identified by its own unique key, and for
 some kinds of client software such as a web server or backend system,
 this identification can be facilitated by registering a single key
 for a piece of client software ahead of time. This registration can
 be associated with a set of display attributes to be used during the
 authorization process, identifying the client software to the user.
 In these cases, it can be assumed that only one instance of client
 software will exist, likely to serve many different users.

 A client’s registration record needs to include its identifying key.
 Furthermore, it is the case that any clients using symmetric
 cryptography for key proofing mechanisms need to have their keys pre-
 registered. The registration should also include any information

Richer & Imbault Expires 21 September 2024 [Page 178]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 that would aid in the authorization process, such as a display name
 and logo. The registration record can also limit a given client to
 ask for certain kinds of information and access, or be limited to
 specific interaction mechanisms at runtime.

 It also is sensible to pre-register client instances when the
 software is acting autonomously, without the need for a runtime
 approval by a resource owner or any interaction with an end user. In
 these cases, an AS needs to rest on the trust decisions that have
 been determined prior to runtime in determining what rights and
 tokens to grant to a given client instance.

 However, it does not make sense to pre-register many types of
 clients. Single-page applications (SPAs) and mobile/desktop
 applications in particular present problems with pre-registration.
 For SPAs, the instances are ephemeral in nature and long-term
 registration of a single instance leads to significant storage and
 management overhead at the AS. For mobile applications, each
 installation of the client software is a separate instance, and
 sharing a key among all instances would be detrimental to security as
 the compromise of any single installation would compromise all copies
 for all users.

 An AS can treat these classes of client software differently from
 each other, perhaps by allowing access to certain high-value APIs
 only to pre-registered known clients, or by requiring an active end
 user delegation of authority to any client software not pre-
 registered.

 An AS can also provide warnings and caveats to resource owners during
 the authorization process, allowing the user to make an informed
 decision regarding the software they are authorizing. For example,
 if the AS has done vetting of the client software and this specific
 instance, it can present a different authorization screen compared to
 a client instance that is presenting all of its information at
 runtime.

 Finally, an AS can use platform attestations and other signals from
 the client instance at runtime to determine whether the software
 making the request is legitimate or not. The details of such
 attestations are outside the scope of the core protocol, but the
 client portion of a grant request provides a natural extension point
 to such information through the Client Instance Fields registry
 (Section 11.7).

Richer & Imbault Expires 21 September 2024 [Page 179]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

13.15. Client Instance Impersonation

 If client instances are allowed to set their own user-facing display
 information, such as a display name and website URL, a malicious
 client instance could impersonate legitimate client software for the
 purposes of tricking users into authorizing the malicious client.

 Requiring clients to pre-register does not fully mitigate this
 problem since many pre-registration systems have self-service portals
 for management of client registration, allowing authenticated
 developers to enter self-asserted information into the management
 portal.

 An AS can mitigate this by actively filtering all self-asserted
 values presented by client software, both dynamically as part of GNAP
 and through a registration portal, to limit the kinds of
 impersonation that would be done.

 An AS can also warn the resource owner about the provenance of the
 information it is displaying, allowing the resource owner to make a
 more informed delegation decision. For example, an AS can visually
 differentiate between a client instance that can be traced back to a
 specific developer’s registration and an instance that has self-
 asserted its own display information.

13.16. Client-Hosted Logo URI

 The logo_uri client display field defined in Section 2.3.2 allows the
 client instance to specify a URI from which an image can be fetched
 for display during authorization decisions. When the URI points to
 an externally hosted resource (as opposed to a data: URI), the
 logo_uri field presents challenges in addition to the considerations
 in Section 13.15.

 When a logo_uri is externally hosted, the client software (or the
 host of the asset) can change the contents of the logo without
 informing the AS. Since the logo is considered an aspect of the
 client software’s identity, this flexibility allows for a more
 dynamically-managed client instance that makes use of the distributed
 systems.

 However, this same flexibility allows the host of the asset to change
 the hosted file in a malicious way, such as replacing the image
 content with malicious software for download or imitating a different
 piece of client software. Additionally, the act of fetching the URI
 could accidentally leak information to the image host in the HTTP
 Referer header field, if one is sent. Even though GNAP intentionally
 does not include security parameters in front-channel URI’s wherever

Richer & Imbault Expires 21 September 2024 [Page 180]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 possible, the AS still should take steps to ensure that this
 information does not leak accidentally, such as setting a referrer
 policy on image links or displaying images only from paged served
 from a URI with no sensitive security or identity information.

 To avoid these issues, the AS can insist on the use of data: URIs,
 though that might not be practical for all types of client software.
 Alternatively, the AS could pre-fetch the content of the URI and
 present its own copy to the resource owner instead. This practice
 opens the AS to potential SSRF attacks, as discussed in
 Section 13.34.

13.17. Interception of Information in the Browser

 Most information passed through the web-browser is susceptible to
 interception and possible manipulation by elements within the browser
 such as scripts loaded within pages. Information in the URI is
 exposed through browser and server logs, and can also leak to other
 parties through HTTP Referer headers.

 GNAP’s design limits the information passed directly through the
 browser, allowing for opaque URIs in most circumstances. For the
 redirect-based interaction finish mechanism, named query parameters
 are used to carry unguessable opaque values. For these, GNAP
 requires creation and validation of a cryptographic hash to protect
 the query parameters added to the URI and associate them with an
 ongoing grant process and values not passed in the URI. The client
 instance has to properly validate this hash to prevent an attacker
 from injecting an interaction reference intended for a different AS
 or client instance.

 Several interaction start mechanisms use URIs created by the AS and
 passed to the client instance. While these URIs are opaque to the
 client instance, it’s possible for the AS to include parameters,
 paths, and other pieces of information that could leak security data
 or be manipulated by a party in the middle of the transaction. An AS
 implementation can avoid this problem by creating URIs using
 unguessable values that are randomized for each new grant request.

13.18. Callback URI Manipulation

 The callback URI used in interaction finish mechanisms is defined by
 the client instance. This URI is opaque to the AS, but can contain
 information relevant to the client instance’s operations. In
 particular, the client instance can include state information to
 allow the callback request to be associated with an ongoing grant
 request.

Richer & Imbault Expires 21 September 2024 [Page 181]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 Since this URI is exposed to the end user’s browser, it is
 susceptible to both logging and manipulation in transit before the
 request is made to the client software. As such, a client instance
 should never put security-critical or private information into the
 callback URI in a cleartext form. For example, if the client
 software includes a post-redirect target URI in its callback URI to
 the AS, this target URI could be manipulated by an attacker, creating
 an open redirector at the client. Instead, a client instance can use
 an unguessable identifier in the URI that can then be used by the
 client software to look up the details of the pending request. Since
 this approach requires some form of statefulness by the client
 software during the redirection process, clients that are not capable
 of holding state through a redirect should not use redirect-based
 interaction mechanisms.

13.19. Redirection Status Codes

 As already described in [I-D.ietf-oauth-security-topics], a server
 should never use the HTTP 307 status code to redirect a request that
 potentially contains user credentials. If an HTTP redirect is used
 for such a request, the HTTP status code 303 "See Other" should be
 used instead.

 The status code 307, as defined in the HTTP standard [HTTP], requires
 the user agent to preserve the method and content of a request, thus
 submitting the content of the POST request to the redirect target.
 In the HTTP standard [HTTP], only the status code 303 unambiguously
 enforces rewriting the HTTP POST request to an HTTP GET request,
 which eliminates the POST content from the redirected request. For
 all other status codes, including status code 302, user agents are
 allowed not to rewrite a POST request into a GET request and thus to
 resubmit the contents.

 The use of status code 307 results in a vulnerability when using the
 redirect interaction finish method (Section 3.3.5). With this
 method, the AS potentially prompts the RO to enter their credentials
 in a form that is then submitted back to the AS (using an HTTP POST
 request). The AS checks the credentials and, if successful, may
 directly redirect the RO to the client instance’s redirect URI. Due
 to the use of status code 307, the RO’s user agent now transmits the
 RO’s credentials to the client instance. A malicious client instance
 can then use the obtained credentials to impersonate the RO at the
 AS.

 Redirection away from the initial URI in an interaction session could
 also leak information found in that initial URI through the HTTP
 Referer header field, which would be sent by the user agent to the
 redirect target. To avoid such leakage, a server can first redirect

Richer & Imbault Expires 21 September 2024 [Page 182]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 to an internal interstitial page without any identifying or sensitive
 information on the URI before processing the request. When the user
 agent is ultimately redirected from this page, no part of the
 original interaction URI will be found in the Referer header.

13.20. Interception of Responses from the AS

 Responses from the AS contain information vital to both the security
 and privacy operations of GNAP. This information includes nonces
 used in cryptographic calculations, subject identifiers, assertions,
 public keys, and information about what client software is requesting
 and was granted.

 In addition, if bearer tokens are used or keys are issued alongside a
 bound access token, the response from the AS contains all information
 necessary for use of the contained access token. Any party that is
 capable of viewing such a response, such as an intermediary proxy,
 would be able to exfiltrate and use this token. If the access token
 is instead bound to the client instance’s presented key,
 intermediaries no longer have sufficient information to use the
 token. They can still, however, gain information about the end user
 as well as the actions of the client software.

13.21. Key Distribution

 GNAP does not define ways for the client instances keys to be
 provided to the client instances, particularly in light of how those
 keys are made known to the AS. These keys could be generated
 dynamically on the client software or pre-registered at the AS in a
 static developer portal. The keys for client instances could also be
 distributed as part of the deployment process of instances of the
 client software. For example, an application installation framework
 could generate a keypair for each copy of client software, then both
 install it into the client software upon installation and registering
 that instance with the AS.

 Alternatively, it’s possible for the AS to generate keys to be used
 with access tokens that are separate from the keys used by the client
 instance to request tokens. In this method, the AS would generate
 the asymmetric keypair or symmetric key and return the public key or
 key reference, to the client instance alongside the access token
 itself. The means for the AS to return generated key values to the
 client instance are out of scope, since GNAP does not allow the
 transmission of private or shared key information within the protocol
 itself.

Richer & Imbault Expires 21 September 2024 [Page 183]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 Additionally, if the token is bound to a key other than the client
 instance’s presented key, this opens a possible attack surface for an
 attacker’s AS to request an access token then substitute their own
 key material in the response to the client instance. The attacker’s
 AS would need to be able to use the same key as the client instance,
 but this setup would allow an attacker’s AS to make use of a
 compromised key within a system. This attack can be prevented by
 only binding access tokens to the client instance’s presented keys,
 and by having client instances have a strong association between
 which keys they expect to use and the AS they expect to use them on.
 This attack is also only able to be propagated on client instances
 that talk to more than one AS at runtime, which can be limited by the
 client software.

13.22. Key Rotation Policy

 When keys are rotated, there could be a delay in the propagation of
 that rotation to various components in the AS’s ecosystem. The AS
 can define its own policy regarding the timeout of the previously-
 bound key, either making it immediately obsolete or allowing for a
 limited grace period during which both the previously-bound key and
 the current key can be used for signing requests. Such a grace
 period can be useful when there are multiple running copies of the
 client that are coordinated with each other. For example, the client
 software could be deployed as a cloud service with multiple
 orchestrated nodes. Each of these copies is deployed using the same
 key and therefore all the nodes represent the same client instance to
 the AS. In such cases, it can be difficult, or even impossible, to
 update the keys on all these copies in the same instant.

 The need for accommodating such known delays in the system needs to
 be balanced with the risk of allowing an old key to still be used.
 Narrowly restricting the exposure opportunities for exploit at the AS
 in terms of time, place, and method makes exploit significantly more
 difficult, especially if the exception happens only once. For
 example, the AS can reject requests from the previously-bound key (or
 any previous one before it) to cause rotation to a new key, or at
 least ensure that the rotation happens in an idempotent way to the
 same new key.

 See also the related considerations for token values in
 Section 13.33.

Richer & Imbault Expires 21 September 2024 [Page 184]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

13.23. Interaction Finish Modes and Polling

 During the interaction process, the client instance usually hands
 control of the user experience over to another component, be it the
 system browser, another application, or some action the resource
 owner is instructed to take on another device. By using an
 interaction finish method, the client instance can be securely
 notified by the AS when the interaction is completed and the next
 phase of the protocol should occur. This process includes
 information that the client instance can use to validate the finish
 call from the AS and prevent some injection, session hijacking, and
 phishing attacks.

 Some types of client deployment are unable to receive an interaction
 finish message. Without an interaction finish method to notify it,
 the client instance will need to poll the grant continuation API
 while waiting for the resource owner to approve or deny the request.
 An attacker could take advantage of this situation by capturing the
 interaction start parameters and phishing a legitimate user into
 authorizing the attacker’s waiting client instance, which would in
 turn have no way of associating the completed interaction from the
 targeted user with the start of the request from the attacker.

 However, it is important to note that this pattern is practically
 indistinguishable from some legitimate use cases. For example, a
 smart device emits a code for the resource owner to enter on a
 separate device. The smart device has to poll because the expected
 behavior is that the interaction will take place on the separate
 device, without a way to return information to the original device’s
 context.

 As such, developers need to weigh the risks of forgoing an
 interaction finish method against the deployment capabilities of the
 client software and its environment. Due to the increased security,
 an interaction finish method should be employed whenever possible.

13.24. Session Management for Interaction Finish Methods

 When using an interaction finish method such as redirect or push, the
 client instance receives an unsolicited inbound request from an
 unknown party over HTTPS. The client instance needs to be able to
 successfully associate this incoming request with a specific pending
 grant request being managed by the client instance. If the client
 instance is not careful and precise about this, an attacker could
 associate their own session at the client instance with a stolen
 interaction response. The means of preventing this varies by the
 type of client software and interaction methods in use. Some common
 patterns are enumerated here.

Richer & Imbault Expires 21 September 2024 [Page 185]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 If the end user interacts with the client instance through a web
 browser and the redirect interaction finish method is used, the
 client instance can ensure that the incoming HTTP request from the
 finish method is presented in the same browser session that the grant
 request was started in. This technique is particularly useful when
 the redirect interaction start mode is used as well, since in many
 cases the end user will follow the redirection with the same browser
 that they are using to interact with the client instance. The client
 instance can then store the relevant pending grant information in the
 session, either in the browser storage directly (such as with a
 single-page application) or in an associated session store on a back-
 end server. In both cases, when the incoming request reaches the
 client instance, the session information can be used to ensure that
 the same party that started the request is present as the request
 finishes.

 Ensuring that the same party that started a request is present when
 that request finishes can prevent phishing attacks, where an attacker
 starts a request at an honest client instance and tricks an honest RO
 into authorizing it. For example, if an honest end user (that also
 acts as the RO) wants to start a request through a client instance
 controlled by the attacker, the attacker can start a request at an
 honest client instance and then redirect the honest end user to the
 interaction URI from the attackers session with the honest client
 instance. If the honest end user then fails to realize that they are
 not authorizing the attacker-controlled client instance (with which
 it started its request) but instead the honest client instance when
 interacting with the AS, the attacker’s session with the honest
 client instance would be authorized. This would give the attacker
 access to the honest end user’s resources that the honest client
 instance is authorized to access. However, if after the interaction
 the AS redirects the honest end user back to the client instance
 whose grant request the end user just authorized, the honest end user
 is redirected to the honest client instance. The honest client
 instance can then detect that the end user is not the party that
 started the request, since the request at the honest client instance
 was started by the attacker. This detection can prevent the attack.
 This is related to the discussion in Section 13.15, because again the
 attack can be prevented by the AS informing the user as much as
 possible about the client instance that is to be authorized.

 If the end user does not interact with the client instance through a
 web browser or the interaction start method does not use the same
 browser or device that the end user is interacting through (such as
 the launch of a second device through a scannable code or
 presentation of a user code) the client instance will not be able to
 strongly associate an incoming HTTP request with an established
 session with the end user. This is also true when the push

Richer & Imbault Expires 21 September 2024 [Page 186]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 interaction finish method is used, since the HTTP request comes
 directly from the interaction component of the AS. In these
 circumstances, the client instance can at least ensure that the
 incoming HTTP request can be uniquely associated with an ongoing
 grant request by making the interaction finish callback URI unique
 for the grant when making the interaction request (Section 2.5.2).
 Mobile applications and other client instances that generally serve
 only a single end user at a time can use this unique incoming URL to
 differentiate between a legitimate incoming request and an attacker’s
 stolen request.

13.25. Calculating Interaction Hash

 While the use of GNAP’s signing mechanisms and token-protected grant
 API provides significant security protections to the protocol, the
 interaction reference mechanism is susceptible to monitoring,
 capture, and injection by an attacker. To combat this, GNAP requires
 the calculation and verification of an interaction hash. A client
 instance might be tempted to skip this step, but doing so leaves the
 client instance open to injection and manipulation by an attacker
 that could lead to additional issues.

 The calculation of the interaction hash value provides defense in
 depth, allowing a client instance to protect itself from spurious
 injection of interaction references when using an interaction finish
 method. The AS is protected during this attack through the
 continuation access token being bound to the expected interaction
 reference, but without hash calculation, the attacker could cause the
 client to make an HTTP request on command, which could itself be
 manipulated -- for example, by including a malicious value in the
 interaction reference designed to attack the AS. With both of these
 in place, an attacker attempting to substitute the interaction
 reference is stopped in several places.

Richer & Imbault Expires 21 September 2024 [Page 187]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 .----. .------. +--------+ +--------+
User		Attacker		Client		AS
				Instance		
		+=(1)=>				
				+-(2)->		
					<-(3)-+	
			<=(4)=+			
		+==(5)================>				
			<================(6)==+			
+==(A)================>						
				+-(B)->		
					<-(C)-+	
	<=================(D)=+					
+==(E)================================>						
	<=(7)=+					
+==(F)================>						
				+-(G)->		
 ‘----‘ ‘------‘ +--------+ +--------+

 Figure 11: Figure 11: Interaction hash attack

 * Prerequisites: The client instance can allow multiple end users to
 access the same AS. The attacker is attempting to associate their
 rights with the target user’s session.

 * (1) The attacker starts a session at the client instance.

 * (2) The client instance creates a grant request with nonce CN1.

 * (3) The AS responds to the grant request with a need to interact,
 nonce SN1, and a continuation token, CT1.

 * (4) The client instructs the attacker to interact at the AS.

 * (5) The attacker interacts at the AS.

 * (6) The AS completes the interact finish with interact ref IR1 and
 interact hash IH1 calculated from (CN1 + SN1 + IR1 + AS). The
 attacker prevents IR1 from returning to the client instance.

Richer & Imbault Expires 21 September 2024 [Page 188]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 * (A) The target user starts a session at the client instance.

 * (B) The client instance creates a grant request with nonce CN2.

 * (C) The AS responds to the grant request with a need to interact,
 nonce SN2, and a continuation token, CT2.

 * (D) The client instance instructs the user to interact at the AS.

 * (E) The target user interacts at the AS.

 * (7) Before the target user can complete their interaction, the
 attacker delivers their own interact ref IR1 into the user’s
 session. The attacker cannot calculate the appropriate hash
 because the attacker does not have access to CN2 and SN2.

 * (F) The target user triggers the interaction finish in their own
 session with the attacker’s IR1.

 * (G) If the client instance is checking the interaction hash, the
 attack stops here because the hash calculation of (CN2 + SN2 + IR1
 + AS) will fail. If the client instance does not check the
 interaction hash, the client instance will be tricked into
 submitting the interaction reference to the AS. Here, the AS will
 reject the interaction request because it is presented against CT2
 and not CT1 as expected. However, an attacker who has potentially
 injected CT1 as the value of CT2 would be able to continue the
 attack.

 Even with additional checks in place, client instances using
 interaction finish mechanisms are responsible for checking the
 interaction hash to provide security to the overall system.

13.26. Storage of Information During Interaction and Continuation

 When starting an interactive grant request, a client application has
 a number of protocol elements that it needs to manage, including
 nonces, references, keys, access tokens, and other elements. During
 the interaction process, the client instance usually hands control of
 the user experience over to another component, be it the system
 browser, another application, or some action the resource owner is
 instructed to take on another device. In order for the client
 instance to make its continuation call, it will need to recall all of
 these protocol elements at a future time. Usually this means the
 client instance will need to store these protocol elements in some
 retrievable fashion.

Richer & Imbault Expires 21 September 2024 [Page 189]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 If the security protocol elements are stored on the end user’s
 device, such as in browser storage or in local application data
 stores, capture and exfiltration of this information could allow an
 attacker to continue a pending transaction instead of the client
 instance. Client software can make use of secure storage mechanisms,
 including hardware-based key and data storage, to prevent such
 exfiltration.

 Note that in GNAP, the client instance has to choose its interaction
 finish URI prior to making the first call to the AS. As such, the
 interaction finish URI will often have a unique identifier for the
 ongoing request, allowing the client instance to access the correct
 portion of its storage. Since this URI is passed to other parties
 and often used through a browser, this URI should not contain any
 security-sensitive information that would be valuable to an attacker,
 such as any token identifier, nonce, or user information. Instead, a
 cryptographically random value is suggested, and that value should be
 used to index into a secure session or storage mechanism.

13.27. Denial of Service (DoS) through Grant Continuation

 When a client instance starts off an interactive process, it will
 eventually need to continue the grant request in a subsequent message
 to the AS. It’s possible for a naive client implementation to
 continuously send continuation requests to the AS while waiting for
 approval, especially if no interaction finish method is used. Such
 constant requests could overwhelm the AS’s ability to respond to both
 these and other requests.

 To mitigate this for well-behaved client software, the continuation
 response contains a wait parameter that is intended to tell the
 client instance how long it should wait until making its next
 request. This value can be used to back off client software that is
 checking too quickly by returning increasing wait times for a single
 client instance.

 If client software ignores the wait value and makes its continuation
 calls too quickly, or if the client software assumes the absence of
 the wait values means it should poll immediately, the AS can choose
 to return errors to the offending client instance, including possibly
 canceling the ongoing grant request. With well-meaning client
 software these errors can indicate a need to change the client
 software’s programmed behavior.

Richer & Imbault Expires 21 September 2024 [Page 190]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

13.28. Exhaustion of Random Value Space

 Several parts of the GNAP process make use of unguessable randomized
 values, such as nonces, tokens, user codes, and randomized URIs.
 Since these values are intended to be unique, a sufficiently powerful
 attacker could make a large number of requests to trigger generation
 of randomized values in an attempt to exhaust the random number
 generation space. While this attack is particularly applicable to
 the AS, client software could likewise be targeted by an attacker
 triggering new grant requests against an AS.

 To mitigate this, software can ensure that its random values are
 chosen from a significantly large pool that exhaustion of that pool
 is prohibitive for an attacker. Additionally, the random values can
 be time-boxed in such a way as their validity windows are reasonably
 short. Since many of the random values used within GNAP are used
 within limited portions of the protocol, it is reasonable for a
 particular random value to be valid for only a small amount of time.
 For example, the nonces used for interaction finish hash calculation
 need only to be valid while the client instance is waiting for the
 finish callback and can be functionally expired when the interaction
 has completed. Similarly, artifacts like access tokens and the
 interaction reference can be limited to have lifetimes tied to their
 functional utility. Finally, each different category of artifact
 (nonce, token, reference, identifier, etc.) can be generated from a
 separate random pool of values instead of a single global value
 space.

13.29. Front-channel URIs

 Some interaction methods in GNAP make use of URIs accessed through
 the end user’s browser, known collectively as front-channel
 communication. These URIs are most notably present in the redirect
 interaction start method and the redirect interaction finish mode.
 Since these URIs are intended to be given to the end user, the end
 user and their browser will be subjected to anything hosted at that
 URI including viruses, malware, and phishing scams. This kind of
 risk is inherent to all redirection-based protocols, including GNAP
 when used in this way.

Richer & Imbault Expires 21 September 2024 [Page 191]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 When talking to a new or unknown AS, a client instance might want to
 check the URI from the interaction start against a blocklist and warn
 the end user before redirecting them. Many client instances will
 provide an interstitial message prior to redirection in order to
 prepare the user for control of the user experience being handed to
 the domain of the AS, and such a method could be used to warn the
 user of potential threats. For instance, a rogue AS impersonating a
 well-known service provider. Client software can also prevent this
 by managing an allowlist of known and trusted AS’s.

 Alternatively, an attacker could start a GNAP request with a known
 and trusted AS but include their own attack site URI as the callback
 for the redirect finish method. The attacker would then send the
 interaction start URI to the victim and get them to click on it.
 Since the URI is at the known AS, the victim is inclined to do so.
 The victim will then be prompted to approve the attacker’s
 application, and in most circumstances the victim will then be
 redirected to the attacker’s site whether or not the user approved
 the request. The AS could mitigate this partially by using a
 blocklist and allowlist of interaction finish URIs during the client
 instance’s initial request, but this approach can be especially
 difficult if the URI has any dynamic portion chosen by the client
 software. The AS can couple these checks with policies associated
 with the client instance that has been authenticated in the request.
 If the AS has any doubt about the interaction finish URI, the AS can
 provide an interstitial warning to the end user before processing the
 redirect.

 Ultimately, all protocols that use redirect-based communication
 through the user’s browser are susceptible to having an attacker try
 to co-opt one or more of those URIs in order to harm the user. It is
 the responsibility of the AS and the client software to provide
 appropriate warnings, education, and mitigation to protect end users.

13.30. Processing Assertions

 Identity assertions can be used in GNAP to convey subject
 information, both from the AS to the client instance in a response
 (Section 3.4) and from the client instance to the AS in a request
 (Section 2.2). In both of these circumstances, when an assertion is
 passed in GNAP, the receiver of the assertion needs to parse and
 process the assertion. As assertions are complex artifacts with
 their own syntax and security, special care needs to be taken to
 prevent the assertion values from being used as an attack vector.

Richer & Imbault Expires 21 September 2024 [Page 192]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 All assertion processing needs to account for the security aspects of
 the assertion format in use. In particular, the processor needs to
 parse the assertion from a JSON string object, and apply the
 appropriate cryptographic processes to ensure the integrity of the
 assertion.

 For example, when SAML 2 assertions are used, the receiver has to
 parse an XML document. There are many well-known security
 vulnerabilities in XML parsers, and the XML standard itself can be
 attacked through the use of processing instructions and entity
 expansions to cause problems with the processor. Therefore, any
 system capable of processing SAML 2 assertions also needs to have a
 secure and correct XML parser. In addition to this, the SAML 2
 specification uses XML Signatures, which have their own
 implementation problems that need to be accounted for. Similar
 requirements exist for OpenID Connect’s ID token, which is based on
 the JSON Web Token (JWT) format and the related JSON Object Signing
 And Encryption (JOSE) cryptography suite.

13.31. Stolen Token Replay

 If a client instance can request tokens at multiple AS’s, and the
 client instance uses the same keys to make its requests across those
 different AS’s, then it is possible for an attacker to replay a
 stolen token issued by an honest AS from a compromised AS, thereby
 binding the stolen token to the client instance’s key in a different
 context. The attacker can manipulate the client instance into using
 the stolen token at an RS, particularly at an RS that is expecting a
 token from the honest AS. Since the honest AS issued the token and
 the client instance presents the token with its expected bound key,
 the attack succeeds.

 This attack has several preconditions. In this attack, the attacker
 does not need access to the client instance’s key and cannot use the
 stolen token directly at the RS, but the attacker is able to get the
 access token value in some fashion. The client instance also needs
 to be configured to talk to multiple AS’s, including the attacker’s
 controlled AS. Finally, the client instance needs to be able to be
 manipulated by the attacker to call the RS while using a token issued
 from the stolen AS. The RS does not need to be compromised or made
 to trust the attacker’s AS.

Richer & Imbault Expires 21 September 2024 [Page 193]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 To protect against this attack, the client instance can use a
 different key for each AS that it talks to. Since the replayed token
 will be bound to the key used at the honest AS, the uncompromised RS
 will reject the call since the client instance will be using the key
 used at the attacker’s AS instead with the same token. When the MTLS
 key proofing method is used, a client instance can use self-signed
 certificates to use a different key for each AS that it talks to, as
 discussed in Section 13.4.

 Additionally, the client instance can keep a strong association
 between the RS and a specific AS that it trusts to issue tokens for
 that RS. This strong binding also helps against some forms of AS
 mix-up attacks (Section 13.12). Managing this binding is outside the
 scope of GNAP core, but it can be managed either as a configuration
 element for the client instance or dynamically through discovering
 the AS from the RS (Section 9.1).

 The details of this attack are available in [HELMSCHMIDT2022] with
 additional discussion and considerations.

13.32. Self-contained Stateless Access Tokens

 The contents and format of the access token are at the discretion of
 the AS, and are opaque to the client instance within GNAP. As
 discussed in the companion document,
 [I-D.ietf-gnap-resource-servers], the AS and RS can make use of
 stateless access tokens with an internal structure and format. These
 access tokens allow an RS to validate the token without having to
 make any external calls at runtime, allowing for benefits in some
 deployments, the discussion of which are outside the scope of this
 specification.

Richer & Imbault Expires 21 September 2024 [Page 194]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 However, the use of such self-contained access tokens has an effect
 on the ability of the AS to provide certain functionality defined
 within this specification. Specifically, since the access token is
 self-contained, it is difficult or impossible for an AS to signal to
 all RS’s within an ecosystem when a specific access token has been
 revoked. Therefore, an AS in such an ecosystem should probably not
 offer token revocation functionality to client instances, since the
 client instance’s calls to such an endpoint is effectively
 meaningless. However, a client instance calling the token revocation
 function will also throw out its copy of the token, so such a placebo
 endpoint might not be completely meaningless. Token rotation
 similarly difficult because the AS has to revoke the old access token
 after a rotation call has been made. If the access tokens are
 completely self-contained and non-revocable, this means that there
 will be a period of time during which both the old and new access
 tokens are valid and usable, which is an increased security risk for
 the environment.

 These problems can be mitigated by keeping the validity time windows
 of self-contained access tokens reasonably short, limiting the time
 after a revocation event that a revoked token could be used.
 Additionally, the AS could proactively signal to RS’s under its
 control identifiers for revoked tokens that have yet to expire. This
 type of information push would be expected to be relatively small and
 infrequent, and its implementation is outside the scope of this
 specification.

13.33. Network Problems and Token and Grant Management

 If a client instance makes a call to rotate an access token but the
 network connection is dropped before the client instance receives the
 response with the new access token, the system as a whole can end up
 in an inconsistent state, where the AS has already rotated the old
 access token and invalidated it, but the client instance only has
 access to the invalidated access token and not the newly rotated
 token value. If the client instance retries the rotation request, it
 would fail because the client is no longer presenting a valid and
 current access token. A similar situation can occur during grant
 continuation, where the same client instance calls to continue or
 update a grant request without successfully receiving the results of
 the update.

 To combat this, both grant Management (Section 5) and token
 management (Section 6) can be designed to be idempotent, where
 subsequent calls to the same function with the same credentials are
 meant to produce the same results. For example, multiple calls to
 rotate the same access token need to result in the same rotated token
 value, within a reasonable time window.

Richer & Imbault Expires 21 September 2024 [Page 195]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 In practice, an AS can hold on to an old token value for such limited
 purposes. For example, to support rotating access tokens over
 unreliable networks, the AS receives the initial request to rotate an
 access token and creates a new token value and returns it. The AS
 also marks the old token value as having been used to create the
 newly-rotated token value. If the AS sees the old token value within
 a small enough time window, such as a few seconds since the first
 rotation attempt, the AS can return the same rotated access token
 value. Furthermore, once the system has seen the newly-rotated token
 in use, the original token can be discarded because the client
 instance has proved that it did receive the token. The result of
 this is a system that is eventually self-consistent without placing
 an undue complexity burden on the client instance to manage
 problematic networks.

13.34. Server-side Request Forgery (SSRF)

 There are several places within GNAP where a URI can be given to a
 party causing it to fetch that URI during normal operation of the
 protocol. If an attacker is able to control the value of one of
 these URIs within the protocol, the attacker could cause the target
 system to execute a request on a URI that is within reach of the
 target system but normally unavailable to the attacker. For example,
 an attacker sending a URL of http://localhost/admin to cause the
 server to access an internal function on itself, or
 https://192.168.0.14/ to call a service behind a firewall. Even if
 the attacker does not gain access to the results of the call, the
 side effects of such requests coming from a trusted host can be
 problematic to the security and sanctity of such otherwise unexposed
 endpoints. This can be particularly problematic if such a URI is
 used to call non-HTTP endpoints, such as remote code execution
 services local to the AS.

Richer & Imbault Expires 21 September 2024 [Page 196]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 In GNAP, the most vulnerable place in the core protocol is the
 push-based post-interaction finish method (Section 4.2.2), as the
 client instance is less trusted than the AS and can use this method
 to make the AS call an arbitrary URI. While it is not required by
 the protocol, the AS can fetch other client-instance provided URIs
 such as the logo image or home page, for verification or privacy-
 preserving purposes before displaying them to the resource owner as
 part of a consent screen. Even if the AS does not fetch these URIs,
 their use in GNAP’s normal operation could cause an attack against
 the end user’s browser as it fetches these same attack URIs.
 Furthermore, extensions to GNAP that allow or require URI fetch could
 also be similarly susceptible, such as a system for having the AS
 fetch a client instance’s keys from a presented URI instead of the
 client instance presenting the key by value. Such extensions are
 outside the scope of this specification, but any system deploying
 such an extension would need to be aware of this issue.

 To help mitigate this problem, similar approaches to protecting
 parties against malicious redirects (Section 13.29) can be used. For
 example, all URIs that can result in a direct request being made by a
 party in the protocol can be filtered through an allowlist or
 blocklist. For example, an AS that supports the push based
 interaction finish can compare the callback URI in the interaction
 request to a known URI for a pre-registered client instance, or it
 can ensure that the URI is not on a blocklist of sensitive URLs such
 as internal network addresses. However, note that because these
 types of calls happen outside of the view of human interaction, it is
 not usually feasible to provide notification and warning to someone
 before the request needs to be executed, as is the case with
 redirection URLs. As such, SSRF is somewhat more difficult to manage
 at runtime, and systems should generally refuse to fetch a URI if
 unsure.

13.35. Multiple Key Formats

 All keys presented by value are allowed to be in only a single
 format. While it would seem beneficial to allow keys to be sent in
 multiple formats, in case the receiver doesn’t understand one or more
 of the formats used, there would be security issues with such a
 feature. If multiple keys formats were allowed, receivers of these
 key definitions would need to be able to make sure that it’s the same
 key represented in each field and not simply use one of the key
 formats without checking for equivalence. If equivalence were not
 carefully checked, it is possible for an attacker to insert their own
 key into one of the formats without needing to have control over the
 other formats. This could potentially lead to a situation where one
 key is used by part of the system (such as identifying the client
 instance) and a different key in a different format in the same

Richer & Imbault Expires 21 September 2024 [Page 197]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 message is used for other things (such as calculating signature
 validity). However, in such cases, it is impossible for the receiver
 to ensure that all formats contain the same key information since it
 is assumed that the receiver cannot understand all of the formats.

 To combat this, all keys presented by value have to be in exactly one
 supported format known by the receiver as discussed in Section 7.1.
 In most cases, a client instance is going to be configured with its
 keys in a single format, and it will simply present that format as-is
 to the AS in its request. A client instance capable of multiple
 formats can use AS discovery (Section 9) to determine which formats
 are supported, if desired. An AS should be generous in supporting
 many different key formats to allow different types of client
 software and client instance deployments. An AS implementation
 should try to support multiple formats to allow a variety of client
 software to connect.

13.36. Asynchronous Interactions

 GNAP allows the RO to be contacted by the AS asynchronously, outside
 the regular flow of the protocol. This allows for some advanced use
 cases, such as cross-user authentication or information release, but
 such advanced use cases have some distinct issues that implementors
 need to be fully aware of before using these features.

 First, in many applications, the return of a subject information to
 the client instance could indicate to the client instance that the
 end-user is the party represented by that information, functionally
 allowing the end-user to authenticate to the client application.
 While the details of a fully functional authentication protocol are
 outside the scope of GNAP, it is a common exercise for a client
 instance to be requesting information about the end user. This is
 facilitated by the several interaction methods (Section 4.1) defined
 in GNAP that allow the end user to begin interaction directly with
 the AS. However, when the subject of the information is
 intentionally not the end-user, the client application will need some
 way to differentiate between requests for authentication of the end
 user and requests for information about a different user. Confusing
 these states could lead to an attacker having their account
 associated with a privileged user. Client instances can mitigate
 this by having distinct code paths for primary end user
 authentication and requesting subject information about secondary
 users, such as in a call center. In such use cases, the client
 software used by the resource owner (the caller) and the end-user
 (the agent) are generally distinct, allowing the AS to differentiate
 between the agent’s corporate device making the request and the
 caller’s personal device approving the request.

Richer & Imbault Expires 21 September 2024 [Page 198]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 Second, RO’s interacting asynchronously do not usually have the same
 context as an end user in an application attempting to perform the
 task needing authorization. As such, the asynchronous requests for
 authorization coming to the RO from the AS might have very little to
 do with what the RO is doing at the time. This situation can
 consequently lead to authorization fatigue on the part of the RO,
 where any incoming authorization request is quickly approved and
 dispatched without the RO making a proper verification of the
 request. An attacker can exploit this fatigue and get the RO to
 authorize the attacker’s system for access. To mitigate this, AS
 systems deploying asynchronous authorization should only prompt the
 RO when the RO is expecting such a request, and significant user
 experience engineering efforts need to be employed to ensure the RO
 can clearly make the appropriate security decision. Furthermore,
 audit capability, and the ability to undo access decisions that may
 be ongoing, is particularly important in the asynchronous case.

13.37. Compromised RS

 An attacker may aim to gain access to confidential or sensitive
 resources. The measures for hardening and monitoring resource server
 systems (beyond protection with access tokens) is out of the scope of
 this document, but the use of GNAP to protect a system does not
 absolve the resource server of following best practices. GNAP
 generally considers a breach can occur, and therefore advises to
 prefer key-bound tokens whenever possible, which at least limits the
 impact of access token leakage by a compromised or malicious RS.

13.38. AS-Provided Token Keys

 While the most common token issuance pattern is to bind the access
 token to the client instance’s presented key, it is possible for the
 AS to provide a binding key along with an access token, as shown by
 the key field of the token response in Section 3.2.1. This practice
 allows for an AS to generate and manage the keys associated with
 tokens independently of the keys known to client instances.

 If the key material is returned by value from the AS, then the client
 instance will simply use this key value when presenting the token.
 This can be exploited by an attacker to issue a compromised token to
 an unsuspecting client, assuming that the client instance trusts the
 attacker’s AS to issue tokens for the target RS. In this attack, the
 attacker first gets a token bound to a key under the attacker’s
 control. This token is likely bound to an authorization or account
 controlled by the attacker. The attacker then re-issues that same
 token to the client instance, this time acting as an AS. The
 attacker can return their own key to the client instance, tricking
 the client instance into using the attacker’s token. Such an attack

Richer & Imbault Expires 21 September 2024 [Page 199]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 is also possible when the key is returned by reference, if the
 attacker is able to provide a reference meaningful to the client
 instance that references a key under the attacker’s control. This
 substitution attack is similar to some of the main issues found with
 bearer tokens as discussed in Section 13.9.

 Returning a key with an access token should be limited to only
 circumstances where both the client and AS can be verified to be
 honest, and further only when the tradeoff of not using a client
 instance’s own keys is worth the additional risk.

14. Privacy Considerations

 The privacy considerations in this section are modeled after the list
 of privacy threats in [RFC6973], "Privacy Considerations for Internet
 Protocols", and either explain how these threats are mitigated or
 advise how the threats relate to GNAP.

14.1. Surveillance

 Surveillance is the observation or monitoring of an individual’s
 communications or activities. Surveillance can be conducted by
 observers or eavesdroppers at any point along the communications
 path.

 GNAP assumes the TLS protection used throughout the spec is intact.
 Without the protection of TLS, there are many points throughout the
 use of GNAP that would lead to possible surveillance. Even with the
 proper use of TLS, surveillance could occur by several parties
 outside of the TLS-protected channels, as discussed in the sections
 below.

14.1.1. Surveillance by the Client

 The purpose of GNAP is to authorize clients to be able to access
 information on behalf of a user. So while it is expected that the
 client may be aware of the user’s identity as well as data being
 fetched for that user, in some cases the extent of the client may be
 beyond what the user is aware of. For example, a client may be
 implemented as multiple distinct pieces of software, such as a
 logging service or a mobile app that reports usage data to an
 external backend service. Each of these pieces could gain
 information about the user without the user being aware of this
 action.

 When the client software uses a hosted asset for its components, such
 as its logo image, the fetch of these assets can reveal user actions
 to the host. If the AS presents the logo URI to the resource owner

Richer & Imbault Expires 21 September 2024 [Page 200]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 in a browser page, the browser will fetch the logo URL from the
 authorization screen. This fetch will tell the host of the logo
 image that someone is accessing an instance of the client software
 and requesting access for it. This is particularly problematic when
 the host of the asset is not the client software itself, such as when
 a content delivery network is used.

14.1.2. Surveillance by the Authorization Server

 The role of the authorization server is to manage the authorization
 of client instances to protect access to the user’s data. In this
 role, the authorization server is by definition aware of each
 authorization of a client instance by a user. When the authorization
 server shares user information with the client instance, it needs to
 make sure that it has the permission from that user to do so.

 Additionally, as part of the authorization grant process, the
 authorization server may be aware of which resource servers the
 client intends to use an access token at. However, it is possible to
 design a system using GNAP in which this knowledge is not made
 available to the authorization server, such as by avoiding the use of
 the locations object in the authorization request.

 If the authorization server’s implementation of access tokens is such
 that it requires a resource server call back to the authorization
 server to validate them, then the authorization server will be aware
 of which resource servers are actively in use and by which users and
 which clients. To avoid this possibility, the authorization server
 would need to structure access tokens in such a way that they can be
 validated by the resource server without notifying the authorization
 server that the token is being validated.

14.2. Stored Data

 Several parties in the GNAP process are expected to persist data at
 least temporarily, if not semi-permanently, for the normal
 functioning of the system. If compromised, this could lead to
 exposure of sensitive information. This section documents the
 potentially sensitive information each party in GNAP is expected to
 store for normal operation. Naturally it is possible that any party
 is storing information for longer than technically necessary of the
 protocol mechanics (such as audit logs, etc).

 The authorization server is expected to store subject identifiers for
 users indefinitely, in order to be able to include them in the
 responses to clients. The authorization server is also expected to
 store client key identifiers associated with display information
 about the client such as its name and logo.

Richer & Imbault Expires 21 September 2024 [Page 201]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 The client is expected to store its client instance key indefinitely,
 in order to authenticate to the authorization server for the normal
 functioning of the GNAP flows. Additionally, the client will be
 temporarily storing artifacts issued by the authorization server
 during a flow, and these artifacts ought to be discarded by the
 client when the transaction is complete.

 The resource server is not required to store any state for its normal
 operation, as far as its part in implementing GNAP. Depending on the
 implementation of access tokens, the resource server may need to
 cache public keys from the authorization server in order to validate
 access tokens.

14.3. Intrusion

 Intrusion refers to the ability of various parties to send
 unsolicited messages or cause denial of service for unrelated
 parties.

 If the resource owner is different from the end user, there is an
 opportunity for the end user to cause unsolicited messages to be sent
 to the resource owner if the system prompts the resource owner for
 consent when an end user attempts to access their data.

 The format and contents of subject identifiers are intentionally not
 defined by GNAP. If the authorization server uses values for subject
 identifiers that are also identifiers for communication channels,
 (e.g. an email address or phone number), this opens up the
 possibility for a client to learn this information when it was not
 otherwise authorized to access this kind of data about the user.

14.4. Correlation

 The threat of correlation is the combination of various pieces of
 information related to an individual in a way that defies their
 expectations of what others know about them.

14.4.1. Correlation by Clients

 The biggest risk of correlation in GNAP is when an authorization
 server returns stable consistent user identifiers to multiple
 different applications. In this case, applications created by
 different parties would be able to correlate these user identifiers
 out of band in order to know which users they have in common.

 The most common example of this in practice is tracking for
 advertising purposes, such that a client shares their list of user
 IDs with an ad platform that is then able to retarget ads to

Richer & Imbault Expires 21 September 2024 [Page 202]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 applications created by other parties. In contrast, a positive
 example of correlation is a corporate acquisition where two
 previously unrelated clients now do need to be able to identify the
 same user between the two clients, such as when software systems are
 intentionally connected by the end user.

 Another means of correlation comes from the use of RS-first discovery
 (Section 9.1). A client instance knowing nothing other than an RS’s
 URL could make an unauthenticated call to the RS and learn which AS
 protects the resources there. If the client instance knows something
 about the AS, such as it being a single-user AS or belonging to a
 specific organization, the client instance could, through
 association, learn things about the resource without ever gaining
 access to the resource itself.

14.4.2. Correlation by Resource Servers

 Unrelated resource servers also have an opportunity to correlate
 users if the authorization server includes stable user identifiers in
 access tokens or in access token introspection responses.

 In some cases a resource server may not actually need to be able to
 identify users, (such as a resource server providing access to a
 company cafeteria menu which only needs to validate whether the user
 is a current employee), so authorization servers should be thoughtful
 of when user identifiers are actually necessary to communicate to
 resource servers for the functioning of the system.

 However, note that the lack of inclusion of a user identifier in an
 access token may be a risk if there is a concern that two users may
 voluntarily share access tokens between them in order to access
 protected resources. For example, if a website wants to limit access
 to only people over 18, and such does not need to know any user
 identifiers, an access token may be issued by an AS contains only the
 claim "over 18". If the user is aware that this access token doesn’t
 reference them individually, they may be willing to share the access
 token with a user who is under 18 in order to let them get access to
 the website. (Note that the binding of an access token to a non-
 extractable client instance key also prevents the access token from
 being voluntarily shared.)

Richer & Imbault Expires 21 September 2024 [Page 203]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

14.4.3. Correlation by Authorization Servers

 Clients are expected to be identified by their client instance key.
 If a particular client instance key is used at more than one
 authorization server, this could open up the possibility for multiple
 unrelated authorization servers to correlate client instances. This
 is especially a problem in the common case where a client instance is
 used by a single individual, as it would allow the authorization
 servers to correlate that individual between them. If this is a
 concern of a client, the client should use distinct keys with each
 authorization server.

14.5. Disclosure in Shared References

 Throughout many parts of GNAP, the parties pass shared references
 between each other, sometimes in place of the values themselves. For
 example the interact_ref value used throughout the flow. These
 references are intended to be random strings and should not contain
 any private or sensitive data that would potentially leak information
 between parties.

15. References

15.1. Normative References

 [BCP195] Best Current Practice 195,
 <https://www.rfc-editor.org/info/bcp195>.
 At the time of writing, this BCP comprises the following:

 Moriarty, K. and S. Farrell, "Deprecating TLS 1.0 and TLS
 1.1", BCP 195, RFC 8996, DOI 10.17487/RFC8996, March 2021,
 <https://www.rfc-editor.org/info/rfc8996>.

 Sheffer, Y., Saint-Andre, P., and T. Fossati,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", BCP 195, RFC 9325, DOI 10.17487/RFC9325, November
 2022, <https://www.rfc-editor.org/info/rfc9325>.

 [HASH-ALG] IANA, "Named Information Hash Algorithm Registry", n.d.,
 <https://www.iana.org/assignments/named-information/named-
 information.xhtml#hash-alg>.

 [HTTP] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "HTTP Semantics", STD 97, RFC 9110,
 DOI 10.17487/RFC9110, June 2022,
 <https://www.rfc-editor.org/rfc/rfc9110>.

Richer & Imbault Expires 21 September 2024 [Page 204]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 [OIDC] Sakimura, N., Bradley, J., Jones, M., de Medeiros, B., and
 C. Mortimore, "OpenID Connect Core 1.0 incorporating
 errata set 1", November 2014,
 <https://openid.net/specs/openid-connect-core-1_0.html>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC2397] Masinter, L., "The "data" URL scheme", RFC 2397,
 DOI 10.17487/RFC2397, August 1998,
 <https://www.rfc-editor.org/rfc/rfc2397>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <https://www.rfc-editor.org/rfc/rfc3339>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/rfc/rfc3986>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/rfc/rfc4648>.

 [RFC5646] Phillips, A., Ed. and M. Davis, Ed., "Tags for Identifying
 Languages", BCP 47, RFC 5646, DOI 10.17487/RFC5646,
 September 2009, <https://www.rfc-editor.org/rfc/rfc5646>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
 RFC 6749, DOI 10.17487/RFC6749, October 2012,
 <https://www.rfc-editor.org/rfc/rfc6749>.

 [RFC6750] Jones, M. and D. Hardt, "The OAuth 2.0 Authorization
 Framework: Bearer Token Usage", RFC 6750,
 DOI 10.17487/RFC6750, October 2012,
 <https://www.rfc-editor.org/rfc/rfc6750>.

 [RFC7468] Josefsson, S. and S. Leonard, "Textual Encodings of PKIX,
 PKCS, and CMS Structures", RFC 7468, DOI 10.17487/RFC7468,
 April 2015, <https://www.rfc-editor.org/rfc/rfc7468>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <https://www.rfc-editor.org/rfc/rfc7515>.

Richer & Imbault Expires 21 September 2024 [Page 205]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 [RFC7517] Jones, M., "JSON Web Key (JWK)", RFC 7517,
 DOI 10.17487/RFC7517, May 2015,
 <https://www.rfc-editor.org/rfc/rfc7517>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/rfc/rfc8259>.

 [RFC8705] Campbell, B., Bradley, J., Sakimura, N., and T.
 Lodderstedt, "OAuth 2.0 Mutual-TLS Client Authentication
 and Certificate-Bound Access Tokens", RFC 8705,
 DOI 10.17487/RFC8705, February 2020,
 <https://www.rfc-editor.org/rfc/rfc8705>.

 [RFC9111] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "HTTP Caching", STD 98, RFC 9111,
 DOI 10.17487/RFC9111, June 2022,
 <https://www.rfc-editor.org/rfc/rfc9111>.

 [RFC9421] Backman, A., Ed., Richer, J., Ed., and M. Sporny, "HTTP
 Message Signatures", RFC 9421, DOI 10.17487/RFC9421,
 February 2024, <https://www.rfc-editor.org/rfc/rfc9421>.

 [RFC9493] Backman, A., Ed., Scurtescu, M., and P. Jain, "Subject
 Identifiers for Security Event Tokens", RFC 9493,
 DOI 10.17487/RFC9493, December 2023,
 <https://www.rfc-editor.org/rfc/rfc9493>.

 [RFC9530] Polli, R. and L. Pardue, "Digest Fields", RFC 9530,
 DOI 10.17487/RFC9530, February 2024,
 <https://www.rfc-editor.org/rfc/rfc9530>.

 [SAML2] Cantor, S., Kemp, J., Philpott, R., and E. Maler,
 "Assertions and Protocol for the OASIS Security Assertion
 Markup Language (SAML) V2.0", March 2005,
 <https://docs.oasis-open.org/security/saml/v2.0/saml-core-
 2.0-os.pdf>.

15.2. Informative References

Richer & Imbault Expires 21 September 2024 [Page 206]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 [AXELAND2021]
 Axeland, Å. and O. Oueidat, "Security Analysis of Attack
 Surfaces on the Grant Negotiation and Authorization
 Protocol", 2021,
 <https://odr.chalmers.se/handle/20.500.12380/304105>.

 [HELMSCHMIDT2022]
 Helmschmidt, F., "Security Analysis of the Grant
 Negotiation and Authorization Protocol", 2022,
 <http://dx.doi.org/10.18419/opus-12203>.

 [I-D.ietf-gnap-resource-servers]
 Richer, J. and F. Imbault, "Grant Negotiation and
 Authorization Protocol Resource Server Connections", Work
 in Progress, Internet-Draft, draft-ietf-gnap-resource-
 servers-05, 19 February 2024,
 <https://datatracker.ietf.org/doc/html/draft-ietf-gnap-
 resource-servers-05>.

 [I-D.ietf-oauth-security-topics]
 Lodderstedt, T., Bradley, J., Labunets, A., and D. Fett,
 "OAuth 2.0 Security Best Current Practice", Work in
 Progress, Internet-Draft, draft-ietf-oauth-security-
 topics-25, 8 February 2024,
 <https://datatracker.ietf.org/doc/html/draft-ietf-oauth-
 security-topics-25>.

 [IANA.MediaTypes]
 IANA, "Media Types", n.d.,
 <https://www.iana.org/assignments/media-types/media-
 types.xhtml>.

 [promise-theory]
 Burgess, M. and J. Bergstra, "Promise theory", January
 2014, <http://markburgess.org/promises.html>.

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 DOI 10.17487/RFC2046, November 1996,
 <https://www.rfc-editor.org/rfc/rfc2046>.

 [RFC4107] Bellovin, S. and R. Housley, "Guidelines for Cryptographic
 Key Management", BCP 107, RFC 4107, DOI 10.17487/RFC4107,
 June 2005, <https://www.rfc-editor.org/rfc/rfc4107>.

Richer & Imbault Expires 21 September 2024 [Page 207]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 [RFC6202] Loreto, S., Saint-Andre, P., Salsano, S., and G. Wilkins,
 "Known Issues and Best Practices for the Use of Long
 Polling and Streaming in Bidirectional HTTP", RFC 6202,
 DOI 10.17487/RFC6202, April 2011,
 <https://www.rfc-editor.org/rfc/rfc6202>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,
 RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <https://www.rfc-editor.org/rfc/rfc6838>.

 [RFC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols", RFC 6973,
 DOI 10.17487/RFC6973, July 2013,
 <https://www.rfc-editor.org/rfc/rfc6973>.

 [RFC7518] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
 DOI 10.17487/RFC7518, May 2015,
 <https://www.rfc-editor.org/rfc/rfc7518>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/rfc/rfc8126>.

 [RFC8264] Saint-Andre, P. and M. Blanchet, "PRECIS Framework:
 Preparation, Enforcement, and Comparison of
 Internationalized Strings in Application Protocols",
 RFC 8264, DOI 10.17487/RFC8264, October 2017,
 <https://www.rfc-editor.org/rfc/rfc8264>.

 [RFC8707] Campbell, B., Bradley, J., and H. Tschofenig, "Resource
 Indicators for OAuth 2.0", RFC 8707, DOI 10.17487/RFC8707,
 February 2020, <https://www.rfc-editor.org/rfc/rfc8707>.

 [RFC8792] Watsen, K., Auerswald, E., Farrel, A., and Q. Wu,
 "Handling Long Lines in Content of Internet-Drafts and
 RFCs", RFC 8792, DOI 10.17487/RFC8792, June 2020,
 <https://www.rfc-editor.org/rfc/rfc8792>.

 [RFC9396] Lodderstedt, T., Richer, J., and B. Campbell, "OAuth 2.0
 Rich Authorization Requests", RFC 9396,
 DOI 10.17487/RFC9396, May 2023,
 <https://www.rfc-editor.org/rfc/rfc9396>.

Richer & Imbault Expires 21 September 2024 [Page 208]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 [RFC9440] Campbell, B. and M. Bishop, "Client-Cert HTTP Header
 Field", RFC 9440, DOI 10.17487/RFC9440, July 2023,
 <https://www.rfc-editor.org/rfc/rfc9440>.

 [RFC9525] Saint-Andre, P. and R. Salz, "Service Identity in TLS",
 RFC 9525, DOI 10.17487/RFC9525, November 2023,
 <https://www.rfc-editor.org/rfc/rfc9525>.

 [SP80063C] Grassi, P., Nadeau, E., Richer, J., Squire, S., Fenton,
 J., Lefkovitz, N., Danker, J., Choong, Y., Greene, K., and
 M. Theofanos, "Digital Identity Guidelines: Federation and
 Assertions", June 2017,
 <https://doi.org/10.6028/NIST.SP.800-63c>.

Appendix A. Document History

 Note: To be removed by RFC editor before publication.

 * 20

 - Updated recommendations for user code lengths.

 * 19

 - Updates from IESG reviews.

 - Updated JOSE types to no longer use subtypes.

 - Added media type registrations.

 * 18

 - Updates from IESG reviews.

 * 17

 - Updates from IESG reviews.

 * 16

 - Updates from AD review.

 - Added security considerations on token substitution attack.

 * 15

 - Editorial updates from shepherd review.

Richer & Imbault Expires 21 September 2024 [Page 209]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 - Clarify character set constraints of user codes.

 * 14

 - Update token rotation to use URI + management token.

 - Fix key rotation with HTTP Signatures based on security
 analysis.

 * -13

 - Editoral changes from chair review.

 - Clarify that user codes are ungessable.

 - Fix user code examples.

 - Clarify expectations for extensions to interaction start and
 finish methods.

 - Fix references.

 - Add IANA designated expert instructions.

 - Clarify new vs. updated access tokens, and call out no need for
 refresh tokens in OAuth 2 comparison section.

 - Add instructions on assertion processing.

 - Explicitly list user reference lifetime management.

 * -12

 - Make default hash algorithm SHA256 instead of SHA3-512.

 - Remove previous_key from key rotation.

 - Defined requirements for key rotation methods.

 - Add specificity to context of subject identifier being the AS.

 - Editorial updates and protocol clarification.

 * -11

 - Error as object or string, more complete set of error codes

 - Added key rotation in token management.

Richer & Imbault Expires 21 September 2024 [Page 210]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 - Restrict keys to a single format per message.

 - Discussed security issues of multiple key formats.

 - Make token character set more strict.

 - Add note on long-polling in continuation requests.

 - Removed "Models" section.

 - Rewrote guidance and requirements for extensions.

 - Require all URIs to be absolute throughout protocol.

 - Make response from RS a "SHOULD" instead of a "MAY".

 - Added a way for the client instance to ask for a specific
 user’s information, separate from the end-user.

 - Added security considerations for asynchronous authorization.

 - Added security considerations for compromised RS.

 - Added interoperability profiles.

 - Added implementation status section.

 * -10

 - Added note on relating access rights sent as strings to rights
 sent as objects.

 - Expand proofing methods to allow definition by object, with
 single string as optimization for common cases.

 - Removed "split_token" functionality.

 - Collapse "user_code" into a string instead of an object.

 - References hash algorithm identifiers from the existing IANA
 registry

 - Allow interaction responses to time out.

 - Added explicit protocol state discussion.

 - Added RO policy use case.

Richer & Imbault Expires 21 September 2024 [Page 211]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 * -09

 - Added security considerations on redirection status codes.

 - Added security considerations on cuckoo token attack.

 - Made token management URL required on token rotation.

 - Added considerations on token rotation and self-contained
 tokens.

 - Added security considerations for SSRF.

 - Moved normative requirements about end user presence to
 security considerations.

 - Clarified default wait times for continuation requests
 (including polling).

 - Clarified URI vs. URL.

 - Added "user_code_uri" mode, removed "uri" from "user_code"
 mode.

 - Consistently formatted all parameter lists.

 - Updated examples for HTTP Signatures.

 * -08

 - Update definition for "Client" to account for the case of no
 end user.

 - Change definition for "Subject".

 - Expanded security and privacy considerations for more
 situations.

 - Added cross-links from security and privacy considerations.

 - Editorial updates.

 * -07

 - Replace user handle by opaque identifier

 - Added trust relationships

Richer & Imbault Expires 21 September 2024 [Page 212]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 - Added privacy considerations section

 - Added security considerations.

 * -06

 - Removed "capabilities" and "existing_grant" protocol fields.

 - Removed separate "instance_id" field.

 - Split "interaction_methods_supported" into
 "interaction_start_modes_supported" and
 "interaction_finish_methods_supported".

 - Added AS endpoint to hash calculation to fix mix-up attack.

 - Added "privileges" field to resource access request object.

 - Moved client-facing RS response back from GNAP-RS document.

 - Removed oauthpop key binding.

 - Removed dpop key binding.

 - Added example DID identifier.

 - Changed token response booleans to flag structure to match
 request.

 - Updated signature examples to use HTTP Message Signatures.

 * -05

 - Changed "interaction_methods" to
 "interaction_methods_supported".

 - Changed "key_proofs" to "key_proofs_supported".

 - Changed "assertions" to "assertions_supported".

 - Updated discovery and field names for subject formats.

 - Add an appendix to provide protocol rationale, compared to
 OAuth2.

 - Updated subject information definition.

 - Refactored the RS-centric components into a new document.

Richer & Imbault Expires 21 September 2024 [Page 213]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 - Updated cryptographic proof of possession methods to match
 current reference syntax.

 - Updated proofing language to use "signer" and "verifier"
 generically.

 - Updated cryptographic proof of possession examples.

 - Editorial cleanup and fixes.

 - Diagram cleanup and fixes.

 * -04

 - Updated terminology.

 - Refactored key presentation and binding.

 - Refactored "interact" request to group start and end modes.

 - Changed access token request and response syntax.

 - Changed DPoP digest field to ’htd’ to match proposed FAPI
 profile.

 - Include the access token hash in the DPoP message.

 - Removed closed issue links.

 - Removed function to read state of grant request by client.

 - Closed issues related to reading and updating access tokens.

 * -03

 - Changed "resource client" terminology to separate "client
 instance" and "client software".

 - Removed OpenID Connect "claims" parameter.

 - Dropped "short URI" redirect.

 - Access token is mandatory for continuation.

 - Removed closed issue links.

 - Editorial fixes.

Richer & Imbault Expires 21 September 2024 [Page 214]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 * -02

 - Moved all "editor’s note" items to GitHub Issues.

 - Added JSON types to fields.

 - Changed "GNAP Protocol" to "GNAP".

 - Editorial fixes.

 * -01

 - "updated_at" subject info timestamp now in ISO 8601 string
 format.

 - Editorial fixes.

 - Added Aaron and Fabien as document authors.

 * -00

 - Initial working group draft.

Appendix B. Compared to OAuth 2.0

 GNAP’s protocol design differs from OAuth 2.0’s in several
 fundamental ways:

 1. *Consent and authorization flexibility:*

 OAuth 2.0 generally assumes the user has access to a web browser.
 The type of interaction available is fixed by the grant type, and
 the most common interactive grant types start in the browser.
 OAuth 2.0 assumes that the user using the client software is the
 same user that will interact with the AS to approve access.

 GNAP allows various patterns to manage authorizations and
 consents required to fulfill this requested delegation, including
 information sent by the client instance, information supplied by
 external parties, and information gathered through the
 interaction process. GNAP allows a client instance to list
 different ways that it can start and finish an interaction, and
 these can be mixed together as needed for different use cases.
 GNAP interactions can use a browser, but don’t have to. Methods
 can use inter-application messaging protocols, out-of-band data
 transfer, or anything else. GNAP allows extensions to define new
 ways to start and finish an interaction, as new methods and
 platforms are expected to become available over time. GNAP is

Richer & Imbault Expires 21 September 2024 [Page 215]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 designed to allow the end user and the resource owner to be two
 different people, but still works in the optimized case of them
 being the same party.

 2. *Intent registration and inline negotiation:*

 OAuth 2.0 uses different "grant types" that start at different
 endpoints for different purposes. Many of these require
 discovery of several interrelated parameters.

 GNAP requests all start with the same type of request to the same
 endpoint at the AS. Next steps are negotiated between the client
 instance and AS based on software capabilities, policies
 surrounding requested access, and the overall context of the
 ongoing request. GNAP defines a continuation API that allows the
 client instance and AS to request and send additional information
 from each other over multiple steps. This continuation API uses
 the same access token protection that other GNAP-protected APIs
 use. GNAP allows discovery to optimize the requests but it isn’t
 required thanks to the negotiation capabilities.

 GNAP is able to handle the life-cycle of an authorization
 request, and therefore simplifies the mental model surrounding
 OAuth2. For instance, there’s no need for refresh tokens when
 the API enables proper rotation of access tokens.

 3. *Client instances:*

 OAuth 2.0 requires all clients to be registered at the AS and to
 use a client_id known to the AS as part of the protocol. This
 client_id is generally assumed to be assigned by a trusted
 authority during a registration process, and OAuth places a lot
 of trust on the client_id as a result. Dynamic registration
 allows different classes of clients to get a client_id at
 runtime, even if they only ever use it for one request.

 GNAP allows the client instance to present an unknown key to the
 AS and use that key to protect the ongoing request. GNAP’s
 client instance identifier mechanism allows for pre-registered
 clients and dynamically registered clients to exist as an
 optimized case without requiring the identifier as part of the
 protocol at all times.

 4. *Expanded delegation:*

 OAuth 2.0 defines the "scope" parameter for controlling access to
 APIs. This parameter has been coopted to mean a number of
 different things in different protocols, including flags for

Richer & Imbault Expires 21 September 2024 [Page 216]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 turning special behavior on and off, including the return of data
 apart from the access token. The "resource" indicator (defined
 in [RFC8707]) and RAR extensions (as defined in [RFC9396]) expand
 on the "scope" concept in similar but different ways.

 GNAP defines a rich structure for requesting access (analogous to
 RAR), with string references as an optimization (analogous to
 scopes). GNAP defines methods for requesting directly-returned
 user information, separate from API access. This information
 includes identifiers for the current user and structured
 assertions. The core GNAP protocol makes no assumptions or
 demands on the format or contents of the access token, but the RS
 extension allows a negotiation of token formats between the AS
 and RS.

 5. *Cryptography-based security:*

 OAuth 2.0 uses shared bearer secrets, including the client_secret
 and access token, and advanced authentication and sender
 constraint have been built on after the fact in inconsistent
 ways.

 In GNAP, all communication between the client instance and AS is
 bound to a key held by the client instance. GNAP uses the same
 cryptographic mechanisms for both authenticating the client (to
 the AS) and binding the access token (to the RS and the AS).
 GNAP allows extensions to define new cryptographic protection
 mechanisms, as new methods are expected to become available over
 time. GNAP does not have a notion of "public clients" because
 key information can always be sent and used dynamically.

 6. *Privacy and usable security:*

 OAuth 2.0’s deployment model assumes a strong binding between the
 AS and the RS.

 GNAP is designed to be interoperable with decentralized identity
 standards and to provide a human-centric authorization layer. In
 addition to the core protocol, GNAP supports various patterns of
 communication between RSs and ASs through extensions. GNAP tries
 to limit the odds of a consolidation to just a handful of super-
 popular AS services.

Richer & Imbault Expires 21 September 2024 [Page 217]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

Appendix C. Example Protocol Flows

 The protocol defined in this specification provides a number of
 features that can be combined to solve many different kinds of
 authentication scenarios. This section seeks to show examples of how
 the protocol would be applied for different situations.

 Some longer fields, particularly cryptographic information, have been
 truncated for display purposes in these examples.

C.1. Redirect-Based User Interaction

 In this scenario, the user is the RO and has access to a web browser,
 and the client instance can take front-channel callbacks on the same
 device as the user. This combination is analogous to the OAuth 2.0
 Authorization Code grant type.

 The client instance initiates the request to the AS. Here the client
 instance identifies itself using its public key.

 POST /tx HTTP/1.1
 Host: server.example.com
 Content-Type: application/json
 Signature-Input: sig1=...
 Signature: sig1=...
 Content-Digest: sha-256=...

 {
 "access_token": {
 "access": [
 {
 "actions": [
 "read",
 "write",
 "dolphin"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 }
],
 },
 "client": {

Richer & Imbault Expires 21 September 2024 [Page 218]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 "key": {
 "proof": "httpsig",
 "jwk": {
 "kty": "RSA",
 "e": "AQAB",
 "kid": "xyz-1",
 "alg": "RS256",
 "n": "kOB5rR4Jv0GMeLaY6_It_r3ORwdf8ci_JtffXyaSx8..."
 }
 }
 },
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.example.net/return/123455",
 "nonce": "LKLTI25DK82FX4T4QFZC"
 }
 }
 }

 The AS processes the request and determines that the RO needs to
 interact. The AS returns the following response giving the client
 instance the information it needs to connect. The AS has also
 indicated to the client instance that it can use the given instance
 identifier to identify itself in future requests (Section 2.3.1).

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "interact": {
 "redirect":
 "https://server.example.com/interact/4CF492MLVMSW9MKM",
 "finish": "MBDOFXG4Y5CVJCX821LH"
 }
 "continue": {
 "access_token": {
 "value": "80UPRY5NM33OMUKMKSKU"
 },
 "uri": "https://server.example.com/continue"
 },
 "instance_id": "7C7C4AZ9KHRS6X63AJAO"
 }

Richer & Imbault Expires 21 September 2024 [Page 219]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 The client instance saves the response and redirects the user to the
 interaction start mode’s "redirect" URI by sending the following HTTP
 message to the user’s browser.

 HTTP 303 Found
 Location: https://server.example.com/interact/4CF492MLVMSW9MKM

 The user’s browser fetches the AS’s interaction URI. The user logs
 in, is identified as the RO for the resource being requested, and
 approves the request. Since the AS has a callback parameter that was
 sent in the initial request’s interaction finish method, the AS
 generates the interaction reference, calculates the hash, and
 redirects the user back to the client instance with these additional
 values added as query parameters.

 NOTE: ’\’ line wrapping per RFC 8792

 HTTP 302 Found
 Location: https://client.example.net/return/123455\
 ?hash=x-gguKWTj8rQf7d7i3w3UhzvuJ5bpOlKyAlVpLxBffY\
 &interact_ref=4IFWWIKYBC2PQ6U56NL1

 The client instance receives this request from the user’s browser.
 The client instance ensures that this is the same user that was sent
 out by validating session information and retrieves the stored
 pending request. The client instance uses the values in this to
 validate the hash parameter. The client instance then calls the
 continuation URI using the associated continuation access token and
 presents the interaction reference in the request content. The
 client instance signs the request as above.

 POST /continue HTTP/1.1
 Host: server.example.com
 Content-Type: application/json
 Authorization: GNAP 80UPRY5NM33OMUKMKSKU
 Signature-Input: sig1=...
 Signature: sig1=...
 Content-Digest: sha-256=...

 {
 "interact_ref": "4IFWWIKYBC2PQ6U56NL1"
 }

 The AS retrieves the pending request by looking up the pending grant
 request associated with the presented continuation access token.
 Seeing that the grant is approved, the AS issues an access token and
 returns this to the client instance.

Richer & Imbault Expires 21 September 2024 [Page 220]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 NOTE: ’\’ line wrapping per RFC 8792

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "manage": "https://server.example.com/token/PRY5NM33O\
 M4TB8N6BW7OZB8CDFONP219RP1L",
 "access": [{
 "actions": [
 "read",
 "write",
 "dolphin"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 }]
 },
 "continue": {
 "access_token": {
 "value": "80UPRY5NM33OMUKMKSKU"
 },
 "uri": "https://server.example.com/continue"
 }
 }

C.2. Secondary Device Interaction

 In this scenario, the user does not have access to a web browser on
 the device and must use a secondary device to interact with the AS.
 The client instance can display a user code or a printable QR code.
 The client instance is not able to accept callbacks from the AS and
 needs to poll for updates while waiting for the user to authorize the
 request.

 The client instance initiates the request to the AS.

Richer & Imbault Expires 21 September 2024 [Page 221]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 POST /tx HTTP/1.1
 Host: server.example.com
 Content-Type: application/json
 Signature-Input: sig1=...
 Signature: sig1=...
 Content-Digest: sha-256=...

 {
 "access_token": {
 "access": [
 "dolphin-metadata", "some other thing"
],
 },
 "client": "7C7C4AZ9KHRS6X63AJAO",
 "interact": {
 "start": ["redirect", "user_code"]
 }
 }

 The AS processes this and determines that the RO needs to interact.
 The AS supports both redirect URIs and user codes for interaction, so
 it includes both. Since there is no interaction finish mode, the AS
 does not include a nonce, but does include a "wait" parameter on the
 continuation section because it expects the client instance to poll
 for results.

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "interact": {
 "redirect": "https://srv.ex/MXKHQ",
 "user_code": {
 "code": "A1BC3DFF"
 }
 },
 "continue": {
 "access_token": {
 "value": "80UPRY5NM33OMUKMKSKU"
 },
 "uri": "https://server.example.com/continue/VGJKPTKC50",
 "wait": 60
 }
 }

Richer & Imbault Expires 21 September 2024 [Page 222]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 The client instance saves the response and displays the user code
 visually on its screen along with the static device URI. The client
 instance also displays the short interaction URI as a QR code to be
 scanned.

 If the user scans the code, they are taken to the interaction
 endpoint and the AS looks up the current pending request based on the
 incoming URI. If the user instead goes to the static page and enters
 the code manually, the AS looks up the current pending request based
 on the value of the user code. In both cases, the user logs in, is
 identified as the RO for the resource being requested, and approves
 the request. Once the request has been approved, the AS displays to
 the user a message to return to their device.

 Meanwhile, the client instance periodically polls the AS every 60
 seconds at the continuation URI. The client instance signs the
 request using the same key and method that it did in the first
 request.

 POST /continue/VGJKPTKC50 HTTP/1.1
 Host: server.example.com
 Authorization: GNAP 80UPRY5NM33OMUKMKSKU
 Signature-Input: sig1=...
 Signature: sig1=...
 Content-Digest: sha-256=...

 The AS retrieves the pending request based on the pending grant
 request associated with the continuation access token and determines
 that it has not yet been authorized. The AS indicates to the client
 instance that no access token has yet been issued but it can continue
 to call after another 60 second timeout.

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "continue": {
 "access_token": {
 "value": "G7YQT4KQQ5TZY9SLSS5E"
 },
 "uri": "https://server.example.com/continue/ATWHO4Q1WV",
 "wait": 60
 }
 }

Richer & Imbault Expires 21 September 2024 [Page 223]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 Note that the continuation URI and access token have been rotated
 since they were used by the client instance to make this call. The
 client instance polls the continuation URI after a 60 second timeout
 using this new information.

 POST /continue/ATWHO4Q1WV HTTP/1.1
 Host: server.example.com
 Authorization: GNAP G7YQT4KQQ5TZY9SLSS5E
 Signature-Input: sig1=...
 Signature: sig1=...
 Content-Digest: sha-256=...

 The AS retrieves the pending request based on the URI and access
 token, determines that it has been approved, and issues an access
 token for the client to use at the RS.

 NOTE: ’\’ line wrapping per RFC 8792

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "manage": "https://server.example.com/token/PRY5NM33O\
 M4TB8N6BW7OZB8CDFONP219RP1L",
 "access": [
 "dolphin-metadata", "some other thing"
]
 }
 }

C.3. No User Involvement

 In this scenario, the client instance is requesting access on its own
 behalf, with no user to interact with.

 The client instance creates a request to the AS, identifying itself
 with its public key and using MTLS to make the request.

Richer & Imbault Expires 21 September 2024 [Page 224]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 POST /tx HTTP/1.1
 Host: server.example.com
 Content-Type: application/json

 {
 "access_token": {
 "access": [
 "backend service", "nightly-routine-3"
],
 },
 "client": {
 "key": {
 "proof": "mtls",
 "cert#S256": "bwcK0esc3ACC3DB2Y5_lESsXE8o9ltc05O89jdN-dg2"
 }
 }
 }

 The AS processes this and determines that the client instance can ask
 for the requested resources and issues an access token.

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "manage": "https://server.example.com/token",
 "access": [
 "backend service", "nightly-routine-3"
]
 }
 }

C.4. Asynchronous Authorization

 In this scenario, the client instance is requesting on behalf of a
 specific RO, but has no way to interact with the user. The AS can
 asynchronously reach out to the RO for approval in this scenario.

 The client instance starts the request at the AS by requesting a set
 of resources. The client instance also identifies a particular user.

Richer & Imbault Expires 21 September 2024 [Page 225]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 POST /tx HTTP/1.1
 Host: server.example.com
 Content-Type: application/json
 Signature-Input: sig1=...
 Signature: sig1=...
 Content-Digest: sha-256=...

 {
 "access_token": {
 "access": [
 {
 "type": "photo-api",
 "actions": [
 "read",
 "write",
 "dolphin"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 },
 "read", "dolphin-metadata",
 {
 "type": "financial-transaction",
 "actions": [
 "withdraw"
],
 "identifier": "account-14-32-32-3",
 "currency": "USD"
 },
 "some other thing"
],
 },
 "client": "7C7C4AZ9KHRS6X63AJAO",
 "user": {
 "sub_ids": [{
 "format": "opaque",
 "id": "J2G8G8O4AZ"
 }]
 }
 }

Richer & Imbault Expires 21 September 2024 [Page 226]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 The AS processes this and determines that the RO needs to interact.
 The AS determines that it can reach the identified user
 asynchronously and that the identified user does have the ability to
 approve this request. The AS indicates to the client instance that
 it can poll for continuation.

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "continue": {
 "access_token": {
 "value": "80UPRY5NM33OMUKMKSKU"
 },
 "uri": "https://server.example.com/continue",
 "wait": 60
 }
 }

 The AS reaches out to the RO and prompts them for consent. In this
 example scenario, the AS has an application that it can push
 notifications in to for the specified account.

 Meanwhile, the client instance periodically polls the AS every 60
 seconds at the continuation URI.

 POST /continue HTTP/1.1
 Host: server.example.com
 Authorization: GNAP 80UPRY5NM33OMUKMKSKU
 Signature-Input: sig1=...
 Signature: sig1=...

 The AS retrieves the pending request based on the continuation access
 token and determines that it has not yet been authorized. The AS
 indicates to the client instance that no access token has yet been
 issued but it can continue to call after another 60 second timeout.

Richer & Imbault Expires 21 September 2024 [Page 227]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "continue": {
 "access_token": {
 "value": "BI9QNW6V9W3XFJK4R02D"
 },
 "uri": "https://server.example.com/continue",
 "wait": 60
 }
 }

 Note that the continuation access token value has been rotated since
 it was used by the client instance to make this call. The client
 instance polls the continuation URI after a 60 second timeout using
 the new token.

 POST /continue HTTP/1.1
 Host: server.example.com
 Authorization: GNAP BI9QNW6V9W3XFJK4R02D
 Signature-Input: sig1=...
 Signature: sig1=...

 The AS retrieves the pending request based on the handle and
 determines that it has been approved and it issues an access token.

 NOTE: ’\’ line wrapping per RFC 8792

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "access_token": {
 "value": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "manage": "https://server.example.com/token/PRY5NM33O\
 M4TB8N6BW7OZB8CDFONP219RP1L",
 "access": [
 "dolphin-metadata", "some other thing"
]
 }
 }

Richer & Imbault Expires 21 September 2024 [Page 228]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

C.5. Applying OAuth 2.0 Scopes and Client IDs

 While GNAP is not designed to be directly compatible with OAuth 2.0
 [RFC6749], considerations have been made to enable the use of OAuth
 2.0 concepts and constructs more smoothly within GNAP.

 In this scenario, the client developer has a client_id and set of
 scope values from their OAuth 2.0 system and wants to apply them to
 the new protocol. Traditionally, the OAuth 2.0 client developer
 would put their client_id and scope values as parameters into a
 redirect request to the authorization endpoint.

 NOTE: ’\’ line wrapping per RFC 8792

 HTTP 302 Found
 Location: https://server.example.com/authorize\
 ?client_id=7C7C4AZ9KHRS6X63AJAO\
 &scope=read%20write%20dolphin\
 &redirect_uri=https://client.example.net/return\
 &response_type=code\
 &state=123455

 Now the developer wants to make an analogous request to the AS using
 GNAP. To do so, the client instance makes an HTTP POST and places
 the OAuth 2.0 values in the appropriate places.

Richer & Imbault Expires 21 September 2024 [Page 229]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 POST /tx HTTP/1.1
 Host: server.example.com
 Content-Type: application/json
 Signature-Input: sig1=...
 Signature: sig1=...
 Content-Digest: sha-256=...

 {
 "access_token": {
 "access": [
 "read", "write", "dolphin"
],
 "flags": ["bearer"]
 },
 "client": "7C7C4AZ9KHRS6X63AJAO",
 "interact": {
 "start": ["redirect"],
 "finish": {
 "method": "redirect",
 "uri": "https://client.example.net/return?state=123455",
 "nonce": "LKLTI25DK82FX4T4QFZC"
 }
 }
 }

 The client_id can be used to identify the client instance’s keys that
 it uses for authentication, the scopes represent resources that the
 client instance is requesting, and the redirect_uri and state value
 are pre-combined into a finish URI that can be unique per request.
 The client instance additionally creates a nonce to protect the
 callback, separate from the state parameter that it has added to its
 return URI.

 From here, the protocol continues as above.

Appendix D. Interoperability Profiles

 The GNAP specification has many different modes, options, and
 mechanisms, allowing it to solve a wide variety of problems in a wide
 variety of deployments. The wide applicability of GNAP makes it
 difficult, if not impossible, to define a set of mandatory-to-
 implement features, since one environment’s required feature would be
 impossible to do in another environment. While this is a large
 problem in many systems, GNAP’s back-and-forth negotiation process
 allows parties to declare at runtime everything that they support and
 then have the other party select from that the subset of items that
 they also support, leading to functional compatibility in many parts
 of the protocol even in an open world scenario.

Richer & Imbault Expires 21 September 2024 [Page 230]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 In addition, GNAP defines a set of interoperability profiles which
 gather together core requirements to fix options into common
 configurations that are likely to be useful to large populations of
 similar applications.

 Conformant AS implementations of these profiles MUST implement at
 least the features as specified in the profile and MAY implement
 additional features or profiles. Conformant client implementations
 of these profiles MUST implement at least the features as specified,
 except where a subset of the features allows the protocol to function
 (such as using polling instead of a push finish method for the
 Secondary Device profile).

D.1. Web-based Redirection

 Implementations conformant to the Web-based Redirection profile of
 GNAP MUST implement all of the following features:

 * _Interaction Start Methods_: redirect

 * _Interaction Finish Methods_: redirect

 * _Interaction Hash Algorithms_: sha-256

 * _Key Proofing Methods_: httpsig with no additional parameters

 * _Key Formats_: jwks with signature algorithm included in the key’s
 alg parameter

 * _JOSE Signature Algorithm_: PS256

 * _Subject Identifier Formats_: opaque

 * _Assertion Formats_: id_token

D.2. Secondary Device

 Implementations conformant to the Secondary Device profile of GNAP
 MUST implement all of the following features:

 * _Interaction Start Methods_: user_code and user_code_uri

 * _Interaction Finish Methods_: push

 * _Interaction Hash Algorithms_: sha-256

 * _Key Proofing Methods_: httpsig with no additional parameters

Richer & Imbault Expires 21 September 2024 [Page 231]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 * _Key Formats_: jwks with signature algorithm included in the key’s
 alg parameter

 * _JOSE Signature Algorithm_: PS256

 * _Subject Identifier Formats_: opaque

 * _Assertion Formats_: id_token

Appendix E. Guidance for Extensions

 Extensions to this specification have a variety of places to alter
 the protocol, including many fields and objects that can have
 additional values in a registry registry (Section 11) established by
 this specification. For interoperability and to preserve the
 security of the protocol, extensions should register new values with
 IANA by following the specified mechanism. While it may technically
 be possible to extend the protocol by adding elements to JSON objects
 that are not governed by an IANA registry, a recipient may ignore
 such values but is also allowed to reject them.

 Most object fields in GNAP are specified with types, and those types
 can allow different but related behavior. For example, the access
 array can include either strings or objects, as discussed in
 Section 8. The use of JSON polymorphism (Appendix F) within GNAP
 allows extensions to define new fields by not only choosing a new
 name but also by using an existing name with a new type. However,
 the extension’s definition of a new type for a field needs to fit the
 same kind of item being extended. For example, a hypothetical
 extension could define a string value for the access_token request
 field, with a URL to download a hosted access token request. Such an
 extension would be appropriate as the access_token field still
 defines the access tokens being requested. However, if an extension
 were to define a string value for the access_token request field,
 with the value instead being something unrelated to the access token
 request such as a value or key format, this would not be an
 appropriate means of extension. (Note that this specific extension
 example would create another form of SSRF attack surface as discussed
 in Section 13.34.)

 For another example, both interaction interaction start modes
 (Section 2.5.1) and key proofing methods (Section 7.3) can be defined
 as either strings or objects. An extension could take a method
 defined as a string, such as app, and define an object-based version
 with additional parameters. This extension should still define a
 method to launch an application on the end user’s device, just like
 app does when specified as a string.

Richer & Imbault Expires 21 September 2024 [Page 232]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 Additionally, the ability to deal with different types for a field is
 not expected to be equal between an AS and client software, with the
 client software being assumed to be both more varied and more
 simplified than the AS. Furthermore, the nature of the negotiation
 process in GNAP allows the AS more chance of recovery from unknown
 situations and parameters. As such, any extensions that change the
 type of any field returned to a client instance should only do so
 when the client instance has indicated specific support for that
 extension through some kind of request parameter.

Appendix F. JSON Structures and Polymorphism

 GNAP makes use of polymorphism within the JSON [RFC8259] structures
 used for the protocol. Each portion of this protocol is defined in
 terms of the JSON data type that its values can take, whether it’s a
 string, object, array, boolean, or number. For some fields,
 different data types offer different descriptive capabilities and are
 used in different situations for the same field. Each data type
 provides a different syntax to express the same underlying semantic
 protocol element, which allows for optimization and simplification in
 many common cases.

 Even though JSON is often used to describe strongly typed structures,
 JSON on its own is naturally polymorphic. In JSON, the named members
 of an object have no type associated with them, and any data type can
 be used as the value for any member. In practice, each member has a
 semantic type that needs to make sense to the parties creating and
 consuming the object. Within this protocol, each object member is
 defined in terms of its semantic content, and this semantic content
 might have expressions in different concrete data types for different
 specific purposes. Since each object member has exactly one value in
 JSON, each data type for an object member field is naturally mutually
 exclusive with other data types within a single JSON object.

 For example, a resource request for a single access token is composed
 of an object of resource request descriptions while a request for
 multiple access tokens is composed of an array whose member values
 are all objects. Both of these represent requests for access, but
 the difference in syntax allows the client instance and AS to
 differentiate between the two request types in the same request.

 Another form of polymorphism in JSON comes from the fact that the
 values within JSON arrays need not all be of the same JSON data type.
 However, within this protocol, each element within the array needs to
 be of the same kind of semantic element for the collection to make
 sense, even when the data types are different from each other.

Richer & Imbault Expires 21 September 2024 [Page 233]

Internet-Draft Grant Negotiation and Authorization Prot March 2024

 For example, each aspect of a resource request can be described using
 an object with multiple dimensional components, or the aspect can be
 requested using a string. In both cases, the resource request is
 being described in a way that the AS needs to interpret, but with
 different levels of specificity and complexity for the client
 instance to deal with. An API designer can provide a set of common
 access scopes as simple strings but still allow client software
 developers to specify custom access when needed for more complex
 APIs.

 Extensions to this specification can use different data types for
 defined fields, but each extension needs to not only declare what the
 data type means, but also provide justification for the data type
 representing the same basic kind of thing it extends. For example,
 an extension declaring an "array" representation for a field would
 need to explain how the array represents something akin to the non-
 array element that it is replacing. See additional discussion in
 Appendix E.

Authors’ Addresses

 Justin Richer (editor)
 Bespoke Engineering
 Email: ietf@justin.richer.org
 URI: https://bspk.io/

 Fabien Imbault
 acert.io
 Email: fabien.imbault@acert.io
 URI: https://acert.io/

Richer & Imbault Expires 21 September 2024 [Page 234]

GNAP J. Richer, Ed.
Internet-Draft Bespoke Engineering
Intended status: Standards Track F. Imbault
Expires: 22 August 2024 acert.io
 19 February 2024

Grant Negotiation and Authorization Protocol Resource Server Connections
 draft-ietf-gnap-resource-servers-05

Abstract

 GNAP defines a mechanism for delegating authorization to a piece of
 software, and conveying that delegation to the software. This
 extension defines methods for resource servers (RS) to connect with
 authorization servers (AS) in an interoperable fashion.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 22 August 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Richer & Imbault Expires 22 August 2024 [Page 1]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 4
 2. Access Tokens . 4
 2.1. General-purpose Access Token Model 4
 2.1.1. Value . 5
 2.1.2. Issuer . 5
 2.1.3. Audience . 5
 2.1.4. Key Binding . 6
 2.1.5. Flags . 7
 2.1.6. Access Rights . 7
 2.1.7. Time Validity Window 8
 2.1.8. Token Identifier 8
 2.1.9. Authorizing Resource Owner 9
 2.1.10. End User . 9
 2.1.11. Client Instance 10
 2.1.12. Label . 10
 2.1.13. Parent Grant Request 10
 2.1.14. AS-Specific Access Tokens 11
 2.2. Access Token Formats 12
 3. Resource-Server-Facing API 13
 3.1. RS-facing AS Discovery 13
 3.2. Protecting RS requests to the AS 14
 3.3. Token Introspection 16
 3.4. Registering a Resource Set 20
 3.5. Error Responses . 23
 4. Deriving a downstream token 24
 5. Acknowledgements . 26
 6. IANA Considerations . 26
 6.1. Well-Known URI . 26
 6.2. GNAP Grant Request Parameters 26
 6.3. GNAP Token Formats Registry 27
 6.3.1. Registry Template 27
 6.3.2. Initial Registry Contents 27
 6.4. GNAP Token Introspection Request Registry 28
 6.4.1. Registry Template 28
 6.4.2. Initial Registry Contents 28
 6.5. GNAP Token Introspection Response Registry 29
 6.5.1. Registry Template 29
 6.5.2. Initial Registry Contents 29
 6.6. GNAP Resource Set Registration Request Parameters 30
 6.6.1. Registry Template 31
 6.6.2. Initial Registry Contents 31
 6.7. GNAP Resource Set Registration Response Parameters . . . 31
 6.7.1. Registry Template 32
 6.7.2. Initial Registry Contents 32
 6.8. GNAP RS-Facing Discovery Document Fields 32

Richer & Imbault Expires 22 August 2024 [Page 2]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

 6.8.1. Registry Template 32
 6.8.2. Initial Registry Contents 33
 6.9. GNAP RS-Facing Error Codes 33
 6.9.1. Registration Template 33
 6.9.2. Initial Contents 34
 7. Security Considerations 34
 7.1. TLS Protection in Transit 34
 7.2. Token Validation . 34
 7.3. Cacheing Token Validation Result 35
 7.4. Key Proof Validation 35
 7.5. Token Exfiltration 36
 7.6. Token Re-Use by an RS 36
 7.7. Token Format Considerations 36
 7.8. Over-sharing Token Contents 37
 7.9. Resource References 37
 7.10. Token Re-Issuance From an Untrusted AS 37
 7.11. Introspection of Token Keys 38
 7.12. RS Registration and Management 38
 8. Privacy Considerations 39
 8.1. Token Contents . 39
 8.2. Token Use Disclosure through Introspection 39
 8.3. Mapping a User to an AS 40
 9. References . 40
 9.1. Normative References 40
 9.2. Informative References 41
 Appendix A. Document History 41
 Authors’ Addresses . 42

1. Introduction

 The core GNAP specification ([GNAP]) defines distinct roles for the
 authorization server (AS) and the resource server (RS). However, the
 core specification does not define how the RS answers important
 questions, such as whether a given access token is still valid or
 what set of access rights the access token is approved for.

 While it’s possible for the AS and RS to be tightly coupled, such as
 a single deployed server with a shared storage system, GNAP does not
 presume or require such a tight coupling. It is increasingly common
 for the AS and RS to be run and managed separately, particularly in
 cases where a single AS protects multiple RS’s simultaneously.

 This specification defines a set of RS-facing APIs that an AS can
 make available for advanced loosely-coupled deployments.
 Additionally, this document defines a general-purpose model for
 access tokens, which can be used in structured, formatted access
 tokens or in the API. This specification also defines a method for
 an RS to derive a downstream token for calling another chained RS.

Richer & Imbault Expires 22 August 2024 [Page 3]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

 The means of the authorization server issuing the access token to the
 client instance and the means of the client instance presenting the
 access token to the resource server are the subject of the core GNAP
 specification [GNAP].

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document contains non-normative examples of partial and complete
 HTTP messages, JSON structures, URLs, query components, keys, and
 other elements. Some examples use a single trailing backslash \ to
 indicate line wrapping for long values, as per [RFC8792]. The \
 character and leading spaces on wrapped lines are not part of the
 value.

 Terminology specific to GNAP is defined in the terminology section of
 the core specification [GNAP], and provides definitions for the
 protocol roles: authorization server (AS), client, resource server
 (RS), resource owner (RO), end user; as well as the protocol
 elements: attribute, access token, grant, privilege, protected
 resource, right, subject, subject information. The same definitions
 are used in this document.

2. Access Tokens

 Access tokens are a mechanism for an AS to provide a client instance
 limited access to an RS. These access tokens are artifacts
 representing a particular set of access rights granted to the client
 instance to act on behalf of the RO. While the format of access
 tokens varies in different systems (see discussion in Section 2.2),
 the concept of an access token is consistent across all GNAP systems.

2.1. General-purpose Access Token Model

 Access tokens represent a common set of aspects across different GNAP
 deployments. This is not intended to be a universal or comprehensive
 list, but instead to provide guidance to implementors when developing
 data structures and associated systems across a GNAP deployment.
 These data structures are communicated between the AS and RS either
 by using a structured token or an API-like mechanism like token
 introspection. This general-purpose data model does not assume
 either approach, and in fact both can be used together to convey
 different pieces of information. Where possible, mappings to

Richer & Imbault Expires 22 August 2024 [Page 4]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

 concrete data fields in common standards understood by the RS are
 provided for each item in the model.

2.1.1. Value

 All access tokens have a unique value. This is the string that is
 passed on the wire between parties. The AS chooses the value, which
 can be structured as in Section 2.2 or unstructured. When the token
 is structured, the token value also has a _format_ known to the AS
 and RS, and the other items in this token model are contained within
 the token’s value in some fashion. When the token is unstructured,
 the values are usually retrieved by the RS using a service like token
 introspection described in Section 3.3.

 The access token value is conveyed the value field of an access_token
 response from Section 3.2 of [GNAP].

 The format and content of the access token value is opaque to the
 client software. While the client software needs to be able to carry
 and present the access token value, the client software is never
 expected nor intended to be able to understand the token value
 itself.

2.1.2. Issuer

 The access token is issued by the AS in a standard GNAP transaction.
 The AS will often need to identify itself in order to recognize
 tokens that it has issued, particularly in cases where tokens from
 multiple different AS’s could be presented.

 This information is not usually conveyed directly to the client
 instance, since the client instance should know this information
 based on where it receives the token from.

 In a [JWT] formatted token or a token introspection response, this
 corresponds to the iss claim.

2.1.3. Audience

 The access token is intended for use at one or more RS’s. The AS can
 identify those RS’s to allow each RS to ensure that the token is not
 receiving a token intended for someone else. The AS and RS have to
 agree on the nature of any audience identifiers represented by the
 token, but the URIs of the RS are a common pattern.

 In a [JWT] formatted token or token introspection response, this
 corresponds to the aud claim.

Richer & Imbault Expires 22 August 2024 [Page 5]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

 In cases where more complex access is required, the location field of
 objects in the access array can also convey audience information. In
 such cases, the client instance might need to know the audience
 information in order to differentiate between possible RS’s to
 present the token to.

2.1.4. Key Binding

 Access tokens in GNAP are bound to the client instance’s registered
 or presented key, except in cases where the access token is a bearer
 token. For all tokens bound to a key, the AS and RS need to be able
 to identify which key the token is bound to, otherwise an attacker
 could substitute their own key during presentation of the token. In
 the case of an asymmetric algorithm, the model for the AS and RS need
 only contain the public key, while the client instance will also need
 to know the private key in order to present the token appropriately.
 In the case of a symmetric algorithm, all parties will need to either
 know or be able to derive the shared key.

 The source of this key information can vary depending on circumstance
 and deployment. For example, an AS could decide that all tokens
 issued to a client instance are always bound to that client
 instance’s current key. When the key needs to be dereferenced, the
 AS looks up the client instance to which the token was issued and
 finds the key information there. The AS could alternatively bind
 each token to a specific key that is managed separately from client
 instance information. In such a case, the AS determines the key
 information directly. This approach allows the client instance to
 use a different key for each request, or allows the AS to issue a key
 for the client instance to use with the particular token.

 In all cases, the key binding also includes a proofing mechanism,
 along with any parameters needed for that mechanism such as a signing
 or digest algorithm. If such information is not stored, an attacker
 could present a token with a seemingly-valid key using an insecure
 and incorrect proofing mechanism.

 This value is conveyed to the client instance in the key field of the
 access_token response in Section 3.2 of [GNAP]. Since the common
 case is that the token is bound to the client instance’s registered
 key, this field can be omitted in this case since the client will be
 aware of its own key.

 In a [JWT] formatted token, this corresponds to the cnf
 (confirmation) claim. In a token introspection response, this
 corresponds to the key claim.

Richer & Imbault Expires 22 August 2024 [Page 6]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

 In the case of a bearer token, all parties need to know that a token
 has no key bound to it, and will therefore reject any attempts to use
 the bearer token with a key in an undefined way.

2.1.5. Flags

 GNAP access tokens can have multiple data flags associated with them
 that indicate special processing or considerations for the token.
 For example, whether the token is a bearer token, or should be
 expected to be durable across grant updates.

 The client can request a set of flags in the access_token request in
 [GNAP].

 These flags are conveyed from the AS to the client in the flags field
 of the access_token response in Section 3.2 of [GNAP].

 For token introspection, flags are returned in the flags field of the
 response.

2.1.6. Access Rights

 Access tokens are tied to a limited set of access rights. These
 rights specify in some detail what the token can be used for, how,
 and where. The internal structure of access rights are detailed in
 Section 8 of [GNAP].

 The access rights associated with an access token are calculated from
 the rights available to the client instance making the request, the
 rights available to be approved by the RO, the rights actually
 approved by the RO, and the rights corresponding to the RS in
 question. The rights for a specific access token are a subset of the
 overall rights in a grant request.

 These rights are requested by the client instance in the access field
 of the access_token request in Section 2.1 of [GNAP].

 The rights associated with an issued access token are conveyed to the
 client instance in the access field of the access_token response in
 Section 3.2 of [GNAP].

 In token introspection responses, this corresponds to the access
 claim.

Richer & Imbault Expires 22 August 2024 [Page 7]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

2.1.7. Time Validity Window

 The access token can be limited to a certain time window outside of
 which it is no longer valid for use at an RS. This window can be
 explicitly bounded by an expiration time and a not-before time, or it
 could be calculated based on the issuance time of the token. For
 example, an RS could decide that it will accept tokens for most calls
 within an hour of a token’s issuance, but only within five minutes of
 the token’s issuance for certain high-value calls.

 Since access tokens could be revoked at any time for any reason
 outside of a client instance’s control, the client instance often
 does not know or concern itself with the validity time window of an
 access token. However, this information can be made available to it
 using the expires_in field of an access token response in Section 3.2
 of [GNAP].

 The issuance time of the token is conveyed in the iat claim of a
 [JWT] formatted token or a token introspection response.

 The expiration time of a token, after which it is to be rejected, is
 conveyed in the exp claim of a [JWT] formatted token or a token
 introspection response.

 The starting time of a token’s validity window, before which it is to
 be rejected, is conveyed in the nbf claim of a [JWT] formatted token
 or a token introspection response.

2.1.8. Token Identifier

 Individual access tokens often need a unique internal identifier to
 allow the AS to differentiate between multiple separate tokens. This
 value of the token can often be used as the identifier, but in some
 cases a separate identifier is used.

 This separate identifier can be conveyed in the jti claim of a [JWT]
 formatted token or a token introspection response.

 This identifier is not usually exposed to the client instance using
 the token, since the client instance only needs to use the token by
 value.

Richer & Imbault Expires 22 August 2024 [Page 8]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

2.1.9. Authorizing Resource Owner

 Access tokens are approved on behalf of a resource owner (RO). The
 identity of this RO can be used by the RS to determine exactly which
 resource to access, or which kinds of access to allow. For example,
 an access token used to access identity information can hold a user
 identifier to allow the RS to determine which profile information to
 return. The nature of this information is subject to agreement by
 the AS and RS.

 This corresponds to the sub claim of a [JWT] formatted token or a
 token introspection response.

 Detailed RO information is not returned to the client instance when
 an access token is requested alone, and in many cases returning this
 information to the client instance would be a privacy violation on
 the part of the AS. Since the access token represents a specific
 delegated access, the client instance needs only to use the token at
 its target RS. Following the profile example, the client instance
 does not need to know the account identifier to get specific
 attributes about the account represented by the token.

 GNAP does allow for the return of subject information separately from
 the access token, in the form of identifiers and assertions. These
 values are returned directly to the client separately from any access
 tokens that are requested, though it’s common that they represent the
 same party.

2.1.10. End User

 The end user is the party operating the client software. The client
 instance can facilitate the end user interacting with the AS in order
 to determine the end user’s identity, gather authorization, and
 provide the results of that information back to the client instance.

 In many instances, the end user is the same party as the resource
 owner. However, in some cases, the two roles can be fulfilled by
 different people, where the RO is consulted asynchronously. The
 token model should be able to reflect these kinds of situations by
 representing the end user and RO separately. For example, an end
 user can request a financial payment, but the RO is the holder of the
 account that the payment would be withdrawn from. The RO would be
 consulted for approval by the AS outside of the flow of the GNAP
 request. A token in such circumstances would need to show both the
 RO and end user as separate entities.

Richer & Imbault Expires 22 August 2024 [Page 9]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

2.1.11. Client Instance

 Access tokens are issued to a specific client instance by the AS.
 The identity of this instance can be used by the RS to allow specific
 kinds of access, or other attributes about the access token. For
 example, an AS that binds all access tokens issued to a particular
 client instance to that client instance’s most recent key rotation
 would need to be able to look up the client instance in order to find
 the key binding detail.

 This corresponds to the client_id claim of a [JWT] formatted token or
 the instance_id field of a token introspection response.

 The client is not normally informed of this information separately,
 since a client instance can usually correctly assume that it is the
 client instance to which a token that it receives was issued.

2.1.12. Label

 When multiple access tokens are requested or a client instance uses
 token labels, the parties will need to keep track of which labels
 were applied to each individual token. Since labels can be re-used
 across different grant requests, the token label alone is not
 sufficient to uniquely identify a given access token in a system.
 However, within the context of a grant request, these labels are
 required to be unique.

 A client instance can request a specific label using the label field
 of an access_token request in Section 2.1 of [GNAP].

 The AS can inform the client instance of a token’s label using the
 label field of an access_token response in Section 3.2 of [GNAP].

 This corresponds to the label field of a token introspection
 response.

2.1.13. Parent Grant Request

 All access tokens are issued in the context of a specific grant
 request from a client instance. The grant request itself represents
 a unique tuple of:

 * The AS processing the grant request

 * The client instance making the grant request

 * The RO (or set of RO’s) approving the grant request (or needing to
 approve it)

Richer & Imbault Expires 22 August 2024 [Page 10]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

 * The access rights granted by the RO

 * The current state of the grant request, as defined in Section 1.5
 of [GNAP]

 The AS can use this information to tie common information to a
 specific token. For instance, instead of specifying a client
 instance for every issued access token for a grant, the AS can store
 the client information in the grant itself and look it up by
 reference from the access token.

 The AS can also use this information when a grant request is updated.
 For example, if the client instance asks for a new access token from
 an existing grant, the AS can use this link to revoke older non-
 durable access tokens that had been previously issued under the
 grant.

 A client instance will have its own model of an ongoing grant
 request, especially if that grant request can be continued using the
 API defined in Section 5 of [GNAP] where several pieces of
 statefulness need to be kept in hand. The client instance might need
 to keep an association with the grant request that issued the token
 in case the access token expires or does not have sufficient access
 rights, so that the client instance can get a new access token
 without having to restart the grant request process from scratch.

 Since the grant itself does not need to be identified in any of the
 protocol messages, GNAP does not define a specific grant identifier
 to be conveyed between any parties in the protocol. Only the AS
 needs to keep an explicit connection between an issued access token
 and the parent grant that issued it.

2.1.14. AS-Specific Access Tokens

 When an access token is used for the grant continuation API defined
 in Section 5 of [GNAP] (the continuation access token) the token
 management API defined in Section 6 of [GNAP] (the token management
 access token), or the RS-facing API defined in Section 3 (the
 resource server management access token), the AS MUST separate these
 access tokens from others usable at RS’s. The AS can do this through
 the use of a flag on the access token data structure, by using a
 special internal access right, or any other means at its disposal.
 Just like other access tokens in GNAP, the contents of these AS-
 specific access tokens are opaque to the software presenting the
 token. Unlike other access tokens, the contents of these AS-specific
 access tokens are also opaque to the RS.

Richer & Imbault Expires 22 August 2024 [Page 11]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

 The client instance is given continuation access tokens only as part
 of the continue field of the grant response in Section 3.1 of [GNAP].
 The client instance is given token management access tokens only as
 part of the manage field of the grant response in Section 3.1.2 of
 [GNAP]. The means by which the RS is given resource server
 management access tokens is out of scope of this specification, but
 methods could include pre-configuration of the token value with the
 RS software or granting the access token through a standard GNAP
 process.

 For continuation access tokens and token management access tokens, a
 client instance MUST take steps to differentiate these special-
 purpose access tokens from access tokens used at RS’s. To facilitate
 this, a client instance can store AS-specific access tokens
 separately from other access tokens in order to keep them from being
 confused with each other and used at the wrong endpoints.

 An RS should never see an AS-specific access token presented, so any
 attempts to process one MUST fail. When introspection is used, the
 AS MUST NOT return an active value of true for AS-specific access
 tokens to the RS. If an AS implements its protected endpoints in
 such a way as it uses token introspection internally, the AS MUST
 differentiate these AS-specific access tokens from those issued for
 use at an external RS.

2.2. Access Token Formats

 When the AS issues an access token for use at an RS, the RS needs to
 have some means of understanding what the access token is for in
 order to determine how to respond to the request. The core GNAP
 protocol makes neither assumptions nor demands on the format or
 contents of the access token, and in fact, the token format and
 contents are opaque to the client instance. However, such token
 formats can be the topic of agreements between the AS and RS.

 Self-contained structured token formats allow for the conveyance of
 information between the AS and RS without requiring the RS to call
 the AS at runtime as described in Section 3.3. Structured tokens can
 also be used in combination with introspection, allowing the token
 itself to carry one class of information and the introspection
 response to carry another.

 Some token formats, such as Macaroons [MACAROON] and Biscuits
 [BISCUIT], allow for the RS to derive sub-tokens without having to
 call the AS as described in Section 4.

 The supported token formats can be communicated dynamically at
 runtime between the AS and RS in several places.

Richer & Imbault Expires 22 August 2024 [Page 12]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

 * The AS can declare its supported token formats as part of RS-
 facing discovery Section 3.1

 * The RS can require a specific token format be used to access a
 registered resource set Section 3.4

 * The AS can return the token’s format in an introspection response
 Section 3.3

 In all places where the token format is listed explicitly, it MUST be
 one of the registered values in the GNAP Token Formats Registry
 Section 6.3.

3. Resource-Server-Facing API

 To facilitate runtime and dynamic connections, the AS can offer an
 RS-Facing API consisting of one or more of the following optional
 pieces.

 * Discovery

 * Introspection

 * Token chaining

 * Resource reference registration

3.1. RS-facing AS Discovery

 A GNAP AS offering RS-facing services can publish its features on a
 well-known discovery document using the URL .well-known/gnap-as-rs
 appended to the grant request endpoint URL.

 The discovery response is a JSON document [RFC8259] consisting of a
 single JSON object with the following fields:

 grant_request_endpoint (string): The location of the AS’s grant
 request endpoint defined by Section 9 of [GNAP]. This URL MUST be
 the same URL used by client instances in support of GNAP requests.
 The RS can use this to derive downstream access tokens, if
 supported by the AS. The location MUST be a URL [RFC3986] with a
 scheme component that MUST be https, a host component, and
 optionally, port, path and query components and no fragment
 components. REQUIRED. See Section 4.

 introspection_endpoint (string): The URL of the endpoint offering

Richer & Imbault Expires 22 August 2024 [Page 13]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

 introspection. The location MUST be a URL [RFC3986] with a scheme
 component that MUST be https, a host component, and optionally,
 port, path and query components and no fragment components.
 REQUIRED if the AS supports introspection. An absent value
 indicates that the AS does not support introspection. See
 Section 3.3.

 token_formats_supported (array of strings): A list of token formats
 supported by this AS. The values in this list MUST be registered
 in the GNAP Token Format Registry in Section 6.3. OPTIONAL.

 resource_registration_endpoint (string): The URL of the endpoint
 offering resource registration. The location MUST be a URL
 [RFC3986] with a scheme component that MUST be https, a host
 component, and optionally, port, path and query components and no
 fragment components. REQUIRED if the AS supports dynamic resource
 registration. An absent value indicates that the AS does not
 support this feature. See Section 3.4.

 key_proofs_supported (array of strings) A list of the AS’s supported
 key proofing mechanisms. The values of this list correspond to
 possible values of the proof field of the key section of the
 request. Values MUST be in the GNAP Key Proofing Methods
 registry. OPTIONAL.

 Additional fields are defined in the GNAP RS-Facing Discovery
 Document Fields registry Section 6.8.

3.2. Protecting RS requests to the AS

 Unless otherwise specified, the RS MUST protect its calls to the AS
 using any of the signature methods defined by GNAP. This signing
 method MUST cover all of the appropriate portions of the HTTP request
 message, including any body elements, tokens, or headers required for
 functionality.

 The RS MAY present its keys by reference or by value in a similar
 fashion to a client instance calling the AS in the core protocol of
 GNAP, described in [GNAP]. In the protocols defined here, this takes
 the form of the resource server identifying itself using a key field
 or by passing an instance identifier directly.

Richer & Imbault Expires 22 August 2024 [Page 14]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

 POST /continue HTTP/1.1
 Host: server.example.com
 Authorization: GNAP 80UPRY5NM33OMUKMKSKU
 Signature-Input: sig1=...
 Signature: sig1=...
 Content-Type: application/json

 "resource_server": {
 "key": {
 "proof": "httpsig",
 "jwk": {
 "kty": "EC",
 "crv": "secp256k1",
 "kid": "2021-07-06T20:22:03Z",
 "x": "-J9OJIZj4nmopZbQN7T8xv3sbeS5-f_vBNSy_EHnBZc",
 "y": "sjrS51pLtu3P4LUTVvyAIxRfDV_be2RYpI5_f-Yjivw"
 }
 }
 }

 or by reference:

 POST /continue HTTP/1.1
 Host: server.example.com
 Signature-Input: sig1=...
 Signature: sig1=...
 Content-Type: application/json

 {
 "resource_server": "7C7C4AZ9KHRS6X63AJAO"
 }

 The means by which an RS’s keys are made known to the AS are out of
 scope of this specification. The AS MAY require an RS to pre-
 register its keys or could allow calls from arbitrary keys in a
 trust-on-first-use model.

 The AS MAY issue access tokens to the RS for protecting the RS-facing
 API endpoints, called a resource server management access token. If
 such tokens are issued, the RS MUST present them to the RS-facing API
 endpoints along with the RS authentication.

Richer & Imbault Expires 22 August 2024 [Page 15]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

 POST /continue HTTP/1.1
 Host: server.example.com
 Authorization: GNAP 80UPRY5NM33OMUKMKSKU
 Signature-Input: sig1=...
 Signature: sig1=...
 Content-Type: application/json

 {
 "resource_server": "7C7C4AZ9KHRS6X63AJAO"
 }

3.3. Token Introspection

 The AS issues access tokens representing a set of delegated access
 rights to be used at one or more RSs. The AS can offer an
 introspection service to allow an RS to validate that a given access
 token:

 * has been issued by the AS

 * has not expired

 * has not been revoked

 * is appropriate for the RS identified in the call

 When the RS receives an access token, it can call the introspection
 endpoint at the AS to get token information.

 +--------+ +------+ +------+
Client +--(1)->	RS		AS	
Instance		+--(2)->		
			<-(3)--+	
			+------+	
	<-(4)--+			
 +--------+ +------+

 1. The client instance calls the RS with its access token.

 2. The RS introspects the access token value at the AS. The RS
 signs the request with its own key (not the client instance’s key
 or the token’s key).

 3. The AS validates the access token value and the Resource Server’s
 request and returns the introspection response for the token.

 4. The RS fulfills the request from the client instance.

Richer & Imbault Expires 22 August 2024 [Page 16]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

 The RS signs the request with its own key and sends the value of the
 access token as the body of the request as a JSON object with the
 following members:

 access_token (string): REQUIRED. The access token value presented
 to the RS by the client instance.

 proof (string): RECOMMENDED. The proofing method used by the client
 instance to bind the token to the RS request. The value MUST be
 in the GNAP Key Proofing Methods registry.

 resource_server (string or object): REQUIRED. The identification
 used to authenticate the resource server making this call, either
 by value or by reference as described in Section 3.2.

 access (array of strings/objects): OPTIONAL. The minimum access
 rights required to fulfill the request. This MUST be in the
 format described in Section 8 of [GNAP].

 Additional fields are defined in the GNAP Token Introspection Request
 registry Section 6.4.

 POST /introspect HTTP/1.1
 Host: server.example.com
 Content-Type: application/json
 Signature-Input: sig1=...
 Signature: sig1=...
 Digest: sha256=...

 {
 "access_token": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0",
 "proof": "httpsig",
 "resource_server": "7C7C4AZ9KHRS6X63AJAO"
 }

 The AS MUST validate the access token value and determine if the
 token is active. The parameters of the request provide a context for
 the AS to evaluate the access token, and the AS MUST take all
 provided parameters into account when evaluating if the token is
 active. If the AS is unable to process part of the request, such as
 not understanding part of the access field presented, the AS MUST NOT
 indicate the token as active.

 An active access token is defined as a token that

 * was issued by the processing AS,

 * has not been revoked,

Richer & Imbault Expires 22 August 2024 [Page 17]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

 * has not expired,

 * is bound using the proof method indicated,

 * is appropriate for presentation at the identified RS, and

 * is appropriate for the access indicated (if present),

 The AS responds with a data structure describing the token’s current
 state and any information the RS would need to validate the token’s
 presentation, such as its intended proofing mechanism and key
 material.

 active (boolean): REQUIRED. If true, the access token presented is
 active, as defined above. If any of the criteria for an active
 token are not true, or if the AS is unable to make a determination
 (such as the token is not found), the value is set to false and
 other fields are omitted.

 If the access token is active, additional fields from the single
 access token response structure defined in Section 3.2.1 of [GNAP]
 are included. In particular, these include the following:

 access (array of strings/objects): REQUIRED. The access rights
 associated with this access token. This MUST be in the format
 described in the Section 8 of [GNAP]. This array MAY be filtered
 or otherwise limited for consumption by the identified RS,
 including being an empty array, indicating that the token has no
 explicit access rights that can be disclosed to the RS.

 key (object/string): REQUIRED if the token is bound. The key bound
 to the access token, to allow the RS to validate the signature of
 the request from the client instance. If the access token is a
 bearer token, this MUST NOT be included.

 flags (array of strings): OPTIONAL. The set of flags associated
 with the access token.

 exp (integer): OPTIONAL. The timestamp after which this token is no
 longer valid. Expressed as a integer seconds from UNIX Epoch.

 iat (integer): OPTIONAL. The timestamp at which this token was
 issued by the AS. Expressed as a integer seconds from UNIX Epoch.

 nbf (integer): OPTIONAL. The timestamp before which this token is
 not valid. Expressed as a integer seconds from UNIX Epoch.

 aud (string or array of strings): OPTIONAL. Identifiers for the

Richer & Imbault Expires 22 August 2024 [Page 18]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

 resource servers this token can be accepted at.

 sub (string): OPTIONAL. Identifier of the resource owner who
 authorized this token.

 iss (string): REQUIRED. Grant endpoint URL of the AS that issued
 this token.

 instance_id (string): OPTIONAL. The instance identifier of the
 client instance that the token was issued to.

 Additional fields are defined in the GNAP Token Introspection
 Response registry Section 6.5.

 The response MAY include any additional fields defined in an access
 token response and MUST NOT include the access token value itself.

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "active": true,
 "access": [
 "dolphin-metadata", "some other thing"
],
 "key": {
 "proof": "httpsig",
 "jwk": {
 "kty": "RSA",
 "e": "AQAB",
 "kid": "xyz-1",
 "alg": "RS256",
 "n": "kOB5rR4Jv0GMeL...."
 }
 }
 }

 When processing the results of the introspection response, the RS
 MUST determine the appropriate course of action. For instance, if
 the RS determines that the access token’s access rights are not
 sufficient for the request to which the token was attached, the RS
 can return an error or a public resource, as appropriate for the RS.
 In all cases, the final determination of the response is at the
 discretion of the RS.

Richer & Imbault Expires 22 August 2024 [Page 19]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

3.4. Registering a Resource Set

 If the RS needs to, it can post a set of resources as described in
 the Resource Access Rights section of [GNAP] to the AS’s resource
 registration endpoint along with information about what the RS will
 need to validate the request.

 access (array of objects/strings): REQUIRED. The list of access
 rights associated with the request in the format described in the
 "Resource Access Rights" section of [GNAP].

 resource_server (string or object): REQUIRED. The identification
 used to authenticate the resource server making this call, either
 by value or by reference as described in Section 3.2.

 token_formats_supported (array of strings): OPTIONAL. The token
 formats the RS is able to process for accessing the resource. The
 values in this array MUST be registered in the GNAP Token Formats
 Registry in Section 6.3. If the field is omitted, the token
 format is at the discretion of the AS. If the AS does not support
 any of the requested token formats, the AS MUST return an error to
 the RS.

 token_introspection_required (boolean): OPTIONAL. If present and
 set to true, the RS expects to make a token introspection request
 as described in Section 3.3. If absent or set to false, the RS
 does not anticipate needing to make an introspection request for
 tokens relating to this resource set. If the AS does not support
 token introspection for this RS, the AS MUST return an error to
 the RS.

 Additional fields are defined in the GNAP Resource Set Registration
 Request registry Section 6.6.

 The RS MUST identify itself with its own key and sign the request.

Richer & Imbault Expires 22 August 2024 [Page 20]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

 POST /resource HTTP/1.1
 Host: server.example.com
 Content-Type: application/json
 Signature-Input: sig1=...
 Signature: sig1=...
 Digest: ...

 {
 "access": [
 {
 "actions": [
 "read",
 "write",
 "dolphin"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 },
 "dolphin-metadata"
],
 "resource_server": "7C7C4AZ9KHRS6X63AJAO"

 }

 The AS responds with a reference appropriate to represent the
 resources list that the RS presented in its request as well as any
 additional information the RS might need in future requests.

 resource_reference (string): REQUIRED. A single string representing
 the list of resources registered in the request. The RS MAY make
 this handle available to a client instance as part of a discovery
 response as described in Section 9.1 of [GNAP] or as documentation
 to client software developers.

 instance_id (string): OPTIONAL. An instance identifier that the RS
 can use to refer to itself in future calls to the AS, in lieu of
 sending its key by value. See Section 3.2.

 introspection_endpoint (string): OPTIONAL. The introspection
 endpoint of this AS, used to allow the RS to perform token
 introspection. See Section 3.3.

Richer & Imbault Expires 22 August 2024 [Page 21]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

 Additional fields are defined in the GNAP Resource Set Registration
 Response Registry Section 6.7.

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "resource_reference": "FWWIKYBQ6U56NL1"
 }

 If a resource was previously registered, the AS MAY return the same
 resource reference value as in previous responses.

 If the registration fails, the AS returns an HTTP 400 Bad Request
 error to the RS indicating that the registration was not successful.

 The client instance can then use the resource_reference value as a
 string-type access reference as defined in Section 8.1 of [GNAP].
 This value MAY be combined with any other additional access rights
 requested by the client instance.

 {
 "access_token": {
 "access": [
 "FWWIKYBQ6U56NL1",
 {
 "type": "photo-api",
 "actions": [
 "read",
 "write",
 "dolphin"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 },
 "dolphin-metadata"
]
 },
 "client": "client-12351.bdxqf"
 }

Richer & Imbault Expires 22 August 2024 [Page 22]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

3.5. Error Responses

 In the case of an error from the RS-facing API, the AS responds to
 the RS with an HTTP 400 (Bad Request) status code and a JSON object
 consisting of a single error field, which is either an object or a
 string.

 When returned as a string, the error value is the error code:

 {
 error: "invalid_access"
 }

 When returned as an object, the error object contains the following
 fields:

 code (string): A single ASCII error code defining the error.
 REQUIRED.

 description (string): A human-readable string description of the
 error intended for the developer of the client. OPTIONAL.

 {
 "error": {
 "code": "invalid_access",
 "description": "Access to ’foo’ is not permitted for this RS."
 }
 }

 This specification defines the following error code values:

 "invalid_request": The request is missing a required parameter,
 includes an invalid parameter value or is otherwise malformed.

 "invalid_resource_server": The request was made from an RS that was
 not recognized or allowed by the AS, or the RS’s signature
 validation failed.

 "invalid_access" The RS is not permitted to register or introspect
 for the requested "access" value.

 Additional error codes can be defined in the GNAP RS-Facing Error
 Codes Registry (Section 6.9).

Richer & Imbault Expires 22 August 2024 [Page 23]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

4. Deriving a downstream token

 Some architectures require an RS to act as a client instance and use
 a derived access token for a secondary RS. Since the RS is not the
 same entity that made the initial grant request, the RS is not
 capable of referencing or modifying the existing grant. As such, the
 RS needs to request or generate a new token access token for its use
 at the secondary RS. This internal secondary token is issued in the
 context of the incoming access token.

 While it is possible to use a token format (Section 2) that allows
 for the RS to generate its own secondary token, the AS can allow the
 RS to request this secondary access token using the same process used
 by the original client instance to request the primary access token.
 Since the RS is acting as its own client instance from the
 perspective of GNAP, this process uses the same grant endpoint,
 request structure, and response structure as a client instance’s
 request.

 +--------+ +-------+ +------+ +-------+
Client +--(1)->	RS1		AS		RS2
Instance		+--(2)->			
			<-(3)--+		
			+------+		
		+-----------(4)------->			
			<----------(5)--------+		
	<-(6)--+				
 +--------+ +-------+ +-------+

 1. The client instance calls RS1 with an access token.

 2. RS1 presents that token to the AS to get a derived token for use
 at RS2. RS1 indicates that it has no ability to interact with
 the RO. Note that RS1 signs its request with its own key, not
 the token’s key or the client instance’s key.

 3. The AS returns a derived token to RS1 for use at RS2.

 4. RS1 calls RS2 with the token from (3).

 5. RS2 fulfills the call from RS1.

 6. RS1 fulfills the call from the original client instance.

Richer & Imbault Expires 22 August 2024 [Page 24]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

 If the RS needs to derive a token from one presented to it, it can
 request one from the AS by making a token request as described in
 [GNAP] and presenting the existing access token’s value in the
 "existing_access_token" field.

 Since the RS is acting as a client instance, the RS MUST identify
 itself with its own key in the client field and sign the request just
 as any client instance would, as described in Section 3.2. The AS
 MUST determine that the token being presented is appropriate for use
 at the RS making the token chaining request.

 POST /tx HTTP/1.1
 Host: server.example.com
 Content-Type: application/json
 Detached-JWS: ejy0...

 {
 "access_token": {
 "access": [
 {
 "actions": [
 "read",
 "write",
 "dolphin"
],
 "locations": [
 "https://server.example.net/",
 "https://resource.local/other"
],
 "datatypes": [
 "metadata",
 "images"
]
 },
 "dolphin-metadata"
]
 },
 "client": "7C7C4AZ9KHRS6X63AJAO",
 "existing_access_token": "OS9M2PMHKUR64TB8N6BW7OZB8CDFONP219RP1LT0"
 }

 The AS responds with a token for the downstream RS2 as described in
 [GNAP]. The downstream RS2 could repeat this process as necessary
 for calling further RS’s.

Richer & Imbault Expires 22 August 2024 [Page 25]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

5. Acknowledgements

 The editors would like to thank the feedback of the following
 individuals for their reviews, implementations, and contributions:
 Aaron Parecki, Adrian Gropper, Andrii Deinega, Annabelle Backman,
 Dmitry Barinov, Fabien Imbault, Florian Helmschmidt, George Fletcher,
 Justin Richer, Kathleen Moriarty, Leif Johansson, Mike Varley, Nat
 Sakimura, Takahiko Kawasaki, Yaron Sheffer.

 Finally, the editors want to acknowledge the immense contributions of
 Aaron Parecki to the content of this document. We thank him for his
 insight, input, and hard work, without which GNAP would not have
 grown to what it is.

6. IANA Considerations

 IANA is requested to add values to existing registries and to create
 5 registries in the Grant Negotiation and Authorization Protocol
 registry.

6.1. Well-Known URI

 The "gnap-as-rs" URI suffix is registered into the Well-Known URIs
 Registry to support RS-facing discovery of the AS.

 URI Suffix: gnap-as-rs

 Change Controller: IETF

 Specification Document: Section 3.1 of RFC xxxx

 Status: Permanent

6.2. GNAP Grant Request Parameters

 The following parameter is registered into the GNAP Grant Request
 Parameters registry:

 Name: existing_access_token

 Type: string

 Specification document(s): Section 4 of RFC xxxx

Richer & Imbault Expires 22 August 2024 [Page 26]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

6.3. GNAP Token Formats Registry

 This document defines a GNAP token format, for which IANA is asked to
 create and maintain a new registry titled "GNAP Token Formats".
 Initial values for this registry are given in Section 6.3.2. Future
 assignments and modifications to existing assignment are to be made
 through the Specification Required registration policy [RFC8126].

 The Designated Expert (DE) is expected to ensure that all
 registrations follow the template presented in Section 6.3.1. The DE
 is expected to ensure that the format’s definition is sufficiently
 unique from other formats provided by existing parameters. The DE is
 expected to ensure that the format’s definition specifies the format
 of the access token in sufficient detail to allow for the AS and RS
 to be able to communicate the token information.

6.3.1. Registry Template

 Name The name of the format.

 Status Whether or not the format is in active use. Possible values
 are Active and Deprecated.

 Description Human-readable description of the access token format.

 Reference The specification that defines the token format.

6.3.2. Initial Registry Contents

 +===============+========+====================+============+
 | Name | Status | Description | Reference |
 +===============+========+====================+============+
 | jwt-signed | Active | JSON Web Token, | [JWT] |
 | | | signed with JWS | |
 +---------------+--------+--------------------+------------+
 | jwt-encrypted | Active | JSON Web Token, | [JWT] |
 | | | encrypted with JWE | |
 +---------------+--------+--------------------+------------+
 | macaroon | Active | Macaroon | [MACAROON] |
 +---------------+--------+--------------------+------------+
 | biscuit | Active | Biscuit | [BISCUIT] |
 +---------------+--------+--------------------+------------+
 | zcap | Active | ZCAP | [ZCAPLD] |
 +---------------+--------+--------------------+------------+

 Table 1

Richer & Imbault Expires 22 August 2024 [Page 27]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

6.4. GNAP Token Introspection Request Registry

 This document defines GNAP token introspection, for which IANA is
 asked to create and maintain a new registry titled "GNAP Token
 Introspection Request". Initial values for this registry are given
 in Section 6.4.2. Future assignments and modifications to existing
 assignment are to be made through the Specification Required
 registration policy [RFC8126].

 The Designated Expert (DE) is expected to ensure that all
 registrations follow the template presented in Section 6.4.1. The DE
 is expected to ensure that the claim’s definition is sufficiently
 orthogonal to other claims defined in the registry so as avoid
 overlapping functionality. The DE is expected to ensure that the
 claim’s definition specifies the syntax and semantics of the claim in
 sufficient detail to allow for the AS and RS to be able to
 communicate the token values.

6.4.1. Registry Template

 Name The name of the claim.

 Type The JSON data type of the claim value.

 Reference The specification that defines the token.

6.4.2. Initial Registry Contents

 The table below contains the initial contents of the GNAP Token
 Introspection Registry.

 +=================+=================+=========================+
 | Name | Type | Reference |
 +=================+=================+=========================+
 | access_token | string | Section 3.3 of RFC xxxx |
 +-----------------+-----------------+-------------------------+
 | proof | string | Section 3.3 of RFC xxxx |
 +-----------------+-----------------+-------------------------+
 | resource_server | object/string | Section 3.3 of RFC xxxx |
 +-----------------+-----------------+-------------------------+
 | access | array of | Section 3.3 of RFC xxxx |
 | | strings/objects | |
 +-----------------+-----------------+-------------------------+

 Table 2

Richer & Imbault Expires 22 August 2024 [Page 28]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

6.5. GNAP Token Introspection Response Registry

 This document defines GNAP token introspection, for which IANA is
 asked to create and maintain a new registry titled "GNAP Token
 Introspection Response". Initial values for this registry are given
 in Section 6.5.2. Future assignments and modifications to existing
 assignment are to be made through the Specification Required
 registration policy [RFC8126].

 The Designated Expert (DE) is expected to ensure that all
 registrations follow the template presented in Section 6.5.1. The DE
 is expected to ensure that the claim’s definition is sufficiently
 orthogonal to other claims defined in the registry so as avoid
 overlapping functionality. The DE is expected to ensure that the
 claim’s definition specifies the syntax and semantics of the claim in
 sufficient detail to allow for the AS and RS to be able to
 communicate the token values.

6.5.1. Registry Template

 Name The name of the claim.

 Type The JSON data type of the claim value.

 Reference The specification that defines the token.

6.5.2. Initial Registry Contents

 The table below contains the initial contents of the GNAP Token
 Introspection Registry.

Richer & Imbault Expires 22 August 2024 [Page 29]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

 +=============+==========================+=========================+
 | Name | Type | Reference |
 +=============+==========================+=========================+
 | active | boolean | Section 3.3 of RFC xxxx |
 +-------------+--------------------------+-------------------------+
 | access | array of strings/objects | Section 3.3 of RFC xxxx |
 +-------------+--------------------------+-------------------------+
 | key | object/string | Section 3.3 of RFC xxxx |
 +-------------+--------------------------+-------------------------+
 | flags | array of strings | Section 3.3 of RFC xxxx |
 +-------------+--------------------------+-------------------------+
 | exp | integer | Section 3.3 of RFC xxxx |
 +-------------+--------------------------+-------------------------+
 | iat | integer | Section 3.3 of RFC xxxx |
 +-------------+--------------------------+-------------------------+
 | nbf | integer | Section 3.3 of RFC xxxx |
 +-------------+--------------------------+-------------------------+
 | aud | string or array of | Section 3.3 of RFC xxxx |
 | | strings | |
 +-------------+--------------------------+-------------------------+
 | sub | string | Section 3.3 of RFC xxxx |
 +-------------+--------------------------+-------------------------+
 | iss | string | Section 3.3 of RFC xxxx |
 +-------------+--------------------------+-------------------------+
 | instance_id | string | Section 3.3 of RFC xxxx |
 +-------------+--------------------------+-------------------------+

 Table 3

6.6. GNAP Resource Set Registration Request Parameters

 This document defines a means to register a resource set for a GNAP
 AS, for which IANA is asked to create and maintain a new registry
 titled "GNAP Resource Set Registration Request Parameters". Initial
 values for this registry are given in Section 6.6.2. Future
 assignments and modifications to existing assignment are to be made
 through the Expert Review registration policy [RFC8126].

 The Designated Expert (DE) is expected to ensure that all
 registrations follow the template presented in Section 6.6.1. The DE
 is expected to ensure that the parameter’s definition is sufficiently
 orthogonal to other claims defined in the registry so as avoid
 overlapping functionality. The DE is expected to ensure that the
 parameter’s definition specifies the syntax and semantics of the
 claim in sufficient detail to allow for the AS and RS to be able to
 communicate the resource set.

Richer & Imbault Expires 22 August 2024 [Page 30]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

6.6.1. Registry Template

 Name The name of the parameter.

 Type The JSON data type of the parameter value.

 Reference The specification that defines the token.

6.6.2. Initial Registry Contents

 The table below contains the initial contents of the GNAP Resource
 Set Registration Request Parameters Registry.

 +==============================+=================+=============+
 | Name | Type | Reference |
 +==============================+=================+=============+
 | access | array of | Section 3.4 |
 | | strings/objects | of RFC xxxx |
 +------------------------------+-----------------+-------------+
 | resource_server | string or | Section 3.4 |
 | | object | of RFC xxxx |
 +------------------------------+-----------------+-------------+
 | token_formats_supported | string | Section 3.4 |
 | | | of RFC xxxx |
 +------------------------------+-----------------+-------------+
 | token_introspection_required | boolean | Section 3.4 |
 | | | of RFC xxxx |
 +------------------------------+-----------------+-------------+

 Table 4

6.7. GNAP Resource Set Registration Response Parameters

 This document defines a means to register a resource set for a GNAP
 AS, for which IANA is asked to create and maintain a new registry
 titled "GNAP Resource Set Registration Response Parameters". Initial
 values for this registry are given in Section 6.7.2. Future
 assignments and modifications to existing assignment are to be made
 through the Expert Review registration policy [RFC8126].

 The Designated Expert (DE) is expected to ensure that all
 registrations follow the template presented in Section 6.7.1. The DE
 is expected to ensure that the parameter’s definition is sufficiently
 orthogonal to other claims defined in the registry so as avoid
 overlapping functionality. The DE is expected to ensure that the
 parameter’s definition specifies the syntax and semantics of the
 claim in sufficient detail to allow for the AS and RS to be able to
 communicate the resource set.

Richer & Imbault Expires 22 August 2024 [Page 31]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

6.7.1. Registry Template

 Name The name of the parameter.

 Type The JSON data type of the parameter value.

 Reference The specification that defines the token.

6.7.2. Initial Registry Contents

 The table below contains the initial contents of the GNAP Resource
 Set Registration Response Parameters Registry.

 +========================+========+=========================+
 | Name | Type | Reference |
 +========================+========+=========================+
 | resource_reference | string | Section 3.4 of RFC xxxx |
 +------------------------+--------+-------------------------+
 | instance_id | string | Section 3.4 of RFC xxxx |
 +------------------------+--------+-------------------------+
 | introspection_endpoint | string | Section 3.4 of RFC xxxx |
 +------------------------+--------+-------------------------+

 Table 5

6.8. GNAP RS-Facing Discovery Document Fields

 This document defines a means to for a GNAP AS to be discovered by a
 GNAP RS, for which IANA is asked to create and maintain a new
 registry titled "GNAP RS-Facing Discovery Document Fields". Initial
 values for this registry are given in Section 6.8.2. Future
 assignments and modifications to existing assignment are to be made
 through the Expert Review registration policy [RFC8126].

 The Designated Expert (DE) is expected to ensure that all
 registrations follow the template presented in Section 6.8.1. The DE
 is expected to ensure that the claim’s definition is sufficiently
 orthogonal to other claims defined in the registry so as avoid
 overlapping functionality. The DE is expected to ensure that the
 claim’s definition specifies the syntax and semantics of the claim in
 sufficient detail to allow for RS to be able to communicate with the
 AS.

6.8.1. Registry Template

 Name The name of the parameter.

 Type The JSON data type of the parameter value.

Richer & Imbault Expires 22 August 2024 [Page 32]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

 Reference The specification that defines the token.

6.8.2. Initial Registry Contents

 The table below contains the initial contents of the GNAP RS-Facing
 Discovery Registry.

 +================================+==========+=============+
 | Name | Type | Reference |
 +================================+==========+=============+
 | introspection_endpoint | string | Section 3.1 |
 | | | of RFC xxxx |
 +--------------------------------+----------+-------------+
 | token_formats_supported | array of | Section 3.1 |
 | | strings | of RFC xxxx |
 +--------------------------------+----------+-------------+
 | resource_registration_endpoint | string | Section 3.1 |
 | | | of RFC xxxx |
 +--------------------------------+----------+-------------+
 | grant_request_endpoint | string | Section 3.1 |
 | | | of RFC xxxx |
 +--------------------------------+----------+-------------+
 | key_proofs_supported | array of | Section 3.1 |
 | | strings | of RFC xxxx |
 +--------------------------------+----------+-------------+

 Table 6

6.9. GNAP RS-Facing Error Codes

 This document defines a set of errors that the AS can return to the
 RS, for which IANA is asked to create and maintain a new registry
 titled "GNAP RS-Facing Error Codes". Initial values for this
 registry are given in Section 6.9.2. Future assignments and
 modifications to existing assignment are to be made through the
 Specification Required registration policy [RFC8126].

 The DE is expected to ensure that all registrations follow the
 template presented in Section 6.9.1. The DE is expected to ensure
 that the error response is sufficiently unique from other errors to
 provide actionable information to the client instance. The DE is
 expected to ensure that the definition of the error response
 specifies all conditions in which the error response is returned, and
 what the client instance’s expected action is.

6.9.1. Registration Template

 Error:

Richer & Imbault Expires 22 August 2024 [Page 33]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

 A unique string code for the error.

 Specification document(s):
 Reference to the document(s) that specify the value, preferably
 including a URI that can be used to retrieve a copy of the
 document(s). An indication of the relevant sections may also be
 included but is not required.

6.9.2. Initial Contents

 +=========================+===========================+
 | Error | Specification document(s) |
 +=========================+===========================+
 | invalid_request | Section 3.5 of RFC xxxx |
 +-------------------------+---------------------------+
 | invalid_resource_server | Section 3.5 of RFC xxxx |
 +-------------------------+---------------------------+
 | invalid_access | Section 3.5 of RFC xxxx |
 +-------------------------+---------------------------+

 Table 7

7. Security Considerations

 In addition to the normative requirements in this document and in
 [GNAP], implementors are strongly encouraged to consider these
 additional security considerations in implementations and deployments
 of GNAP.

7.1. TLS Protection in Transit

 All requests in GNAP made over untrusted network connections have to
 be made over TLS as outlined in [BCP195] to protect the contents of
 the request and response from manipulation and interception by an
 attacker. This includes all requests from a client instance to the
 RS and all requests from the RS to an AS.

7.2. Token Validation

 The RS has a responsibility to validate the incoming access token in
 a manner consistent with its deployment. For self-contained
 stateless tokens such as those described in Section 2.2, this
 consists of actions such as validating the token’s signature and
 ensuring the relevant fields and results are appropriate for the
 request being made. For reference-style tokens or tokens that are
 otherwise opaque to the RS, the token introspection RS-facing API can
 be used to provide updated information about the state of the token,
 as described in Section 3.3.

Richer & Imbault Expires 22 August 2024 [Page 34]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

 The RS needs to validate that a token:

 * Is intended for this RS (audience restriction)

 * Is presented using the appropriate key for the token (see also
 Section 7.4) Subject identification (the RS knows who authorized
 the token) Issuer restriction (the RS knows who created the token,
 including signing a structure or providing introspection to prove
 this)

 Even though key proofing mechanisms have to cover the value of the
 token, validating the key proofing alone is not sufficient to protect
 a request to an RS. If an RS validates only the presentation method
 as described in Section 7.4 without validating the token itself, an
 attacker could use a compromised key or a confused deputy to make
 arbitrary calls to the RS beyond what has been authorized by the RO.

7.3. Cacheing Token Validation Result

 Since token validation can be an expensive process, requiring either
 cryptographic operations or network calls to an introspection service
 as described in Section 3.3, an RS could cache the results of token
 validation for a particular token. The trade offs of using a cached
 validation for a token present an important decision space for
 implementors: relying on a cached validation result increases
 performance and lowers processing overhead, but it comes at the
 expense of the liveness and accuracy of the information in the cache.
 While a cached value is in use at the RS, an attacker could present a
 revoked token and have it accepted by the RS.

 As with any cache, the consistency of this cache can be managed in a
 variety of ways. One of the most simple methods is managing the
 lifetime of the cache in order to balance the performance and
 security properties. Too long of a cache, and an attacker has a
 larger window in which to use a revoked token. Too short of a window
 and the benefits of using the cache are diminished. It is also
 possible that an AS could send a proactive signal to the RS to
 invalidate revoked access tokens, though such a mechanism is outside
 the scope of this specification.

7.4. Key Proof Validation

 For key-bound access tokens, the proofing method needs to be
 validated alongside the value of the token itself as described in
 Section 7.2. The process of validation is defined by the key
 proofing method, as described in Section 7.3 of [GNAP].

Richer & Imbault Expires 22 August 2024 [Page 35]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

 If the proofing method is not validated, an attacker could use a
 compromised token without access to the token’s bound key.

 The RS also needs to ensure that the proofing method is appropriate
 for the key associated with the token, including any choice of
 algorithm or identifiers.

 The proofing should be validated independently on each request to the
 RS, particularly as aspects of the call could vary. As such, the RS
 should never cache the results of a proof validation from one message
 and apply it to a subsequent message.

7.5. Token Exfiltration

 Since the RS sees the token value, it is possible for a compromised
 RS to leak that value to an attacker. As such, the RS needs to
 protect token values as sensitive information and protect them from
 exfiltration.

 This is especially problematic with bearer tokens and tokens bound to
 a shared key, since an RS has access to all information necessary to
 create a new, valid request using the token in question.

7.6. Token Re-Use by an RS

 If the access token is a bearer token, or the RS has access to the
 key material needed to present the token, the RS could be tricked
 into re-using an access token presented to it by a client. While it
 is possible to build a system that makes use of this artifact as a
 feature, it is safer to exchange the incoming access token for
 another contextual token for use by the RS, as described in
 Section 4. This access token can be bound to the RS’s own keys and
 limited to access needed by the RS, instead of the full set of rights
 associated with the token issued to the client instance.

7.7. Token Format Considerations

 With formatted tokens, the format of the token is likely to have its
 own considerations, and the RS needs to follow any such
 considerations during the token validation process. The application
 and scope of these considerations is specific to the format and
 outside the scope of this specification.

Richer & Imbault Expires 22 August 2024 [Page 36]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

7.8. Over-sharing Token Contents

 The contents of the access token model divulge to the RS information
 about the access token’s context and rights. This is true whether
 the contents are parsed from the token itself or sent in an
 introspection response.

 It’s likely that every RS does not need to know all details of the
 token model, especially in systems where a single access token is
 usable across multiple RS’s. An attacker could use this to gain
 information about the larger system by compromising only one RS. By
 limiting the information available to only that which is relevant to
 a specific RS, such as using a limited introspection reply as defined
 in Section 3.3, a system can follow a principle of least disclosure
 to each RS.

7.9. Resource References

 Resource references, as returned by the protocol in Section 3.4, are
 intended to be opaque to both the RS and the client. However, since
 they are under the control of the AS, the AS can put whatever content
 it wants into the reference value. This value could unintentionally
 disclose system structure or other internal details if it processed
 by an unintended party. Furthermore, such patterns could lead to the
 client software and RS depending on certain structures being present
 in the reference value, which diminishes the separation of concerns
 of the different roles in a GNAP system.

 To mitigate this, the AS should only use fully random or encrypted
 values for resource references.

7.10. Token Re-Issuance From an Untrusted AS

 It is possible for an attacker’s client instance to issue its own
 tokens to another client instance, acting as an AS that the second
 client instance has chosen to trust. If the token is a bearer token
 or the re-issuance is bound using an AS-provided key, the target
 client instance will not be able to tell that the token was
 originally issued by the valid AS. This process allows an attacker
 to insert their own session and rights into an unsuspecting client
 instance, in the guise of a token valid for the attacker that appears
 to have been issued to the target client instance on behalf of its
 own RO.

 This attack is predicated on a misconfiguration with the targeted
 client, as it has been configured to get tokens from the attacker’s
 AS and use those tokens with the target RS, which has no association
 with the attacker’s AS. However, since the token is ultimately

Richer & Imbault Expires 22 August 2024 [Page 37]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

 coming from the trusted AS, and is being presented with a valid key,
 the RS has no way of telling that the token was passed through an
 intermediary.

 To mitigate this, the RS can publish its association with the trusted
 AS through either discovery or documentation. Therefore, a client
 properly following this association would only go directly to the
 trusted RS directly for access tokens for the RS.

 Furthermore, limiting the use of bearer tokens and AS-provided keys
 to only highly trusted AS’s and limited circumstances prevents the
 attacker from being able to willingly exfiltrate their token to an
 unsuspecting client instance.

7.11. Introspection of Token Keys

 The introspection response defined in Section 3.3 provides a means
 for the AS to tell the RS the key material needed to validate the key
 proof of the request. Capture of the introspection response can
 expose these security keys to an attacker. In the case of asymmetric
 cryptography, only the public key is exposed, and the token cannot be
 re-used by the attacker based on this result alone. This could
 potentially divulge information about the client instance that was
 unknown otherwise.

 If an access token is bound to a symmetric key, the RS will need
 access to the full key value in order to validate the key proof of
 the request, as described in Section 7.4. However, divulging the key
 material to the RS also gives the RS the ability to create a new
 request with the token. In this circumstance, the RS is under
 similar risk of token exfiltration and re-use as a bearer token, as
 described in Section 7.6. Consequently, symmetric keys should only
 be used in systems where the RS can be fully trusted to not create a
 new request with tokens presented to it.

7.12. RS Registration and Management

 Most functions of the RS-facing API in Section 3 are protected by
 requiring the RS to present proof of a signing key along with the
 request, in order to identify the RS making the call, potentially
 coupled with an AS-specific access token. This practice allows the
 AS to differentially respond to API calls to different RS’s, such as
 answering introspection calls with only the access rights relevant to
 a given RS instead of all access rights an access token could be good
 for.

Richer & Imbault Expires 22 August 2024 [Page 38]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

 While the means by which an RS and its keys become known to the AS is
 out of scope for this specification, it is anticipated that common
 practice will be to statically register an RS, allowing it to protect
 specific resources or certain classes of resources. Fundamentally,
 the RS can only offer the resources that it serves. However, a rogue
 AS could attempt to register a set of resources that mimics a
 different RS in order to solicit an access token usable at the target
 RS. If the access token is a bearer token or is bound to a symmetric
 key that is known to the RS, then the attacker’s RS gains the ability
 and knowledge needed to use that token elsewhere.

 In some ecosystems, dynamic registration of an RS and its associated
 resources is feasible. In such systems, the identity of the RS could
 be conveyed by a URI passed in the location field of an access rights
 request, thereby allowing the AS to limit the view the RS has into
 the larger system.

8. Privacy Considerations

8.1. Token Contents

 The contents of the access token could potentially contain personal
 information about the end-user, RO, or other parties. This is true
 whether the contents are parsed from the token itself or sent in an
 introspection response.

 While an RS will sometimes need this information for processing, it’s
 often the case that an RS is exposed to these details only in
 passing, and not intentionally. For example, disclosure of a medical
 record number in the contents of an access token usable for both
 medial and non-medical APIs.

 To mitigate this, the a limited token introspection response can be
 used, as defined in Section 3.3.

8.2. Token Use Disclosure through Introspection

 When introspection is used by an RS, the AS is made aware of a
 particular token being used at a particular RS. When the RS is a
 separate system, the AS would not otherwise have insight into this
 action. This can potentially lead to the AS learning about patterns
 and actions of particular end users by watching which RS’s are
 accessed and when.

Richer & Imbault Expires 22 August 2024 [Page 39]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

8.3. Mapping a User to an AS

 When the client instance receives information about the protecting AS
 from an RS, this can be used to derive information about the
 resources being protected without releasing the resources themselves.
 For example, if a medical record is protected by a personal AS, an
 untrusted client could call an RS to discover the location of the AS
 protecting the record. Since the AS is tied strongly to a single RO,
 the untrusted and unauthorized client software can gain information
 about the resource being protected without accessing the record
 itself.

9. References

9.1. Normative References

 [BCP195] Sheffer, Y., Holz, R., and P. Saint-Andre,
 "Recommendations for Secure Use of Transport Layer
 Security (TLS) and Datagram Transport Layer Security
 (DTLS)", May 2015,
 <https://www.rfc-editor.org/info/bcp195>.

 [GNAP] Richer, J. and F. Imbault, "Grant Negotiation and
 Authorization Protocol", Work in Progress, Internet-Draft,
 draft-ietf-gnap-core-protocol-18, 10 February 2024,
 <https://datatracker.ietf.org/doc/html/draft-ietf-gnap-
 core-protocol-18>.

 [JWT] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/rfc/rfc7519>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/rfc/rfc3986>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Richer & Imbault Expires 22 August 2024 [Page 40]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/rfc/rfc8259>.

 [RFC8792] Watsen, K., Auerswald, E., Farrel, A., and Q. Wu,
 "Handling Long Lines in Content of Internet-Drafts and
 RFCs", RFC 8792, DOI 10.17487/RFC8792, June 2020,
 <https://www.rfc-editor.org/rfc/rfc8792>.

9.2. Informative References

 [BISCUIT] "Biscuit Authorization", n.d.,
 <https://www.biscuitsec.org/>.

 [MACAROON] "Macaroons: Cookies with Contextual Caveats for
 Decentralized Authorization in the Cloud", 2014,
 <https://research.google/pubs/pub41892/>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/rfc/rfc8126>.

 [ZCAPLD] "Authorization Capabilities for Linked Data", 2023,
 <https://w3c-ccg.github.io/zcap-spec/>.

Appendix A. Document History

 * -05

 - Added discussion of access tokens used to call the RS-facing AS
 APIs.

 - Updated IANA sections to align with core (and each other).

 - Added IANA section on introspection requests.

 - Added error responses.

 - Added extended discussion on resource server registration
 practices.

 * -04

 - Editorial cleanup.

Richer & Imbault Expires 22 August 2024 [Page 41]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

 - Updated IANA requirements, including "specification required"
 registration.

 - Added privacy and security considerations.

 - Clarified and expanded token introspection request and
 response.

 - Clarified and expanded resource set registration request and
 response, include example of use of resource reference.

 - Updated discovery.

 - Allow optional tokens on RS-facing API requests.

 - Tighter controls over derived tokens.

 * -03

 - Added token model.

 - Added IANA sections.

 * -02

 - Editorial and formatting fixes.

 * -01

 - Better described RS authentication.

 - Added access token format registry.

 - Filled out introspection protocol.

 - Filled out resource registration protocol.

 - Expanded RS-facing discovery mechanisms.

 - Moved client-facing RS response back to GNAP core document.

 * -00

 - Extracted resource server section.

Authors’ Addresses

Richer & Imbault Expires 22 August 2024 [Page 42]

Internet-Draft Grant Negotiation and Authorization Prot February 2024

 Justin Richer (editor)
 Bespoke Engineering
 Email: ietf@justin.richer.org
 URI: https://bspk.io/

 Fabien Imbault
 acert.io
 Email: fabien.imbault@acert.io
 URI: https://acert.io/

Richer & Imbault Expires 22 August 2024 [Page 43]

Human Rights Protocol Considerations Research Group N. ten Oever

Internet-Draft University of Amsterdam

Intended status: Informational S. Couture

Expires: 13 October 2023 Université de Montréal

 M. Knodel

 Center for Democracy & Technology

 11 April 2023

 Internet Protocols and the Human Rights to Freedom of Association and

 Assembly

 draft-irtf-hrpc-association-13

Abstract

 This document explores whether the relationship between the Internet

 architecture and the ability of people to exercise their rights to

 peaceful assembly and association online. It does so by asking the

 question: what are the protocol development considerations for

 freedom of assembly and association? The Internet increasingly

 mediates our lives, our relationships, and our ability to exercise

 our human rights. As a global assemblage, the Internet provides a

 public space, yet it is predominantly built on private

 infrastructure. Since Internet protocols and architecture play a

 central role in the management, development, and use of the Internet,

 we analyze the relation between protocols, architecture, and the

 rights to assemble and associate to mitigate infringements on those

 rights. This document concludes that the way in which infrastructure

 is designed and implemented impacts peoples ability to exercise

 their freedom of assembly and association. It is therefore

 recommended that the potential impacts of Internet technologies

 should be assessed, reflecting recommendations of various UN bodies

 and international norms. Finally, the document considers both the

 limitations on changing association and impact of "forced

 association" in the context of online platforms.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

ten Oever, et al. Expires 13 October 2023 [Page 1]

Internet-Draft FoA April 2023

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 13 October 2023.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3

 2. Vocabulary used . 4

 3. Research question . 5

 4. Methodology . 5

 5. Literature Review . 6

 5.1. FAA definition and core treaties 6

 5.2. FAA in the digital era 9

 5.3. Specific questions raised from the literature review . . 13

 6. Analysis . 14

 6.1. Got No Peace: Spam and DDoS 14

 6.1.1. Spam . 15

 6.1.2. DDoS . 16

 6.2. Holistic Agency: Mailing Lists and Spam 17

 6.2.1. Mailing lists . 17

 6.3. Civics in Cyberspace: Messaging, Conferencing, and

 Networking . 17

 6.3.1. Email . 18

 6.3.2. Mailing lists . 18

 6.3.3. IRC . 19

 6.3.4. WebRTC . 19

 6.3.5. Peer-to-peer networking 20

 6.4. Universal Access: The Web 22

 6.4.1. Accessibility . 22

 6.4.2. Internationalization 22

 6.5. Block Together Now: IRC and Refusals 23

ten Oever, et al. Expires 13 October 2023 [Page 2]

Internet-Draft FoA April 2023

 7. Conclusions: What can we learn from these case studies? . . . 23

 8. Acknowledgements . 24

 9. Work Space . 25

 10. Security Considerations 25

 11. IANA Considerations . 25

 12. Research Group Information 25

 13. Informative References 26

 Authors’ Addresses . 33

1. Introduction

 We shape our tools and, thereafter, our tools shape us.

 - John Culkin (1967)

 Article 21 of the Covenant protects peaceful assemblies wherever

 they take place: outdoors, indoors and online; in public and

 private spaces; or a combination thereof.

 - General Comment 37 of the Human Rights Committee (2020)

 In the digital age, the exercise of the rights of peaceful

 assembly and association has become largely dependent on business

 enterprises, whose legal obligations, policies, technical

 standards, financial models and algorithms can affect these

 freedoms.

 - Annual Report to the UN Human Rights Council by the Special

 Rapporteur on the rights to freedom of peaceful assembly and

 of association (2019).

 The current draft continues the work started in Research into Human

 Rights Protocol Considerations [RFC8280] by investigating the impact

 of Internet protocols on a specific set of human rights, namely the

 right to peaceful assembly and the right to association. Taking into

 consideration the international human rights framework, the present

 document seeks to deepen the relationship between these human rights

 and Internet architecture, protocols, and standards. In that way, we

 continue the work of the Human Rights Protocol Consideration Research

 Group, as laid out in its charter, to expose the relation between

 protocols and human rights, with a focus on the rights to freedom of

 expression and freedom of assembly [HRPC-charter].

 This document has seen extensive discussion and review in the IRTF

 Human Rights Protocol Considerations (HRPC) research group and

 represents the consensus of that group. It is not an IETF product

 and is not a standard.

ten Oever, et al. Expires 13 October 2023 [Page 3]

Internet-Draft FoA April 2023

2. Vocabulary used

 Architecture The design of a structure

 Autonomous System (AS) Autonomous Systems are the unit of routing

 policy in the modern world of exterior routing [RFC1930].

 Within the Internet, an autonomous system (AS) is a collection of

 connected Internet Protocol (IP) routing prefixes under the

 control of one or more network operators on behalf of a single

 administrative entity or domain that presents a common, clearly

 defined routing policy to the Internet [RFC1930].

 The classic definition of an Autonomous System is a set of routers

 under a single technical administration, using an interior gateway

 protocol and common metrics to route packets within the AS and

 using an exterior gateway protocol to route packets to other ASs

 [RFC1771].

 Border Gateway Protocol (BGP) An inter-Autonomous System routing

 protocol [RFC4271].

 Connectivity The extent to which a device or network is able to

 reach other devices or networks to exchange data. The Internet is

 the tool for providing global connectivity [RFC1958]. Different

 types of connectivity are further specified in [RFC4084]. The

 combination of the end-to-end principle, interoperability,

 distributed architecture, resilience, reliability and robustness

 are the enabling factors that result in connectivity to and on the

 Internet.

 Decentralization Implementation or deployment of standards,

 protocols or systems without one single point of control.

 Distributed system A system with multiple components that have their

 behavior co-ordinated via message passing. These components are

 usually spatially separated and communicate using a network, and

 may be managed by a single root of trust or authority

 [Troncosoetal].

 Infrastructure Underlying basis or structure for a functioning

 society, organization or community. Because infrastructure is a

 precondition for other activities it has a procedural, rather than

 static, nature due to its social and cultural embeddedness

 [PipekWulf] [Bloketal]. This means that infrastructure is always

 relational: infrastructure always develops in relation to

 something or someone [Bowker].

ten Oever, et al. Expires 13 October 2023 [Page 4]

Internet-Draft FoA April 2023

 Internet The Network of networks, that consists of Autonomous

 Systems that are connected through the Internet Protocol (IP).

 A persistent socio-technical system over which services are

 delivered [Mainwaringetal],

 A techno-social assemblage of devices, users, sensors, networks,

 routers, governance, administrators, operators and protocols

 An emergent-process-driven thing that is born from the collections

 of the ASes that happen to be gathered together at any given time.

 The fact that they tend to interact at any given time means it is

 an emergent property that happens because they use the protocols

 defined at IETF.

 Right to peaceful assembly "The right of peaceful assembly protects

 the non-violent gathering by persons for specific purposes,

 principally expressive ones. It constitutes an individual right

 that is exercised collectively. Inherent to the right is thus an

 associative element." [UNGC37]

 Right to association ’The right and freedom of association

 encompasses both an individual’s right to join or leave groups

 voluntarily, the right of the group to take collective action to

 pursue the interests of its members, and the right of an

 association to accept or decline membership based on certain

 criteria.’ [FoAdef]

3. Research question

 The research question of this document is: what are the protocol

 development considerations for freedom of assembly and association?

4. Methodology

 In this document, we deepen our exploration of human rights and

 protocols by assessing one specific set of human rights: freedom of

 association and assembly, abbreviated here as FAA. Our methodology

 for doing so is the following: first, we provide a brief twofold

 literature review addressing the philosophical and legal definitions

 of FAA and how this right has already been interpreted or analyzed in

 the digital context. This literature review is not exhaustive but

 aims at providing some lines of questioning that could later be used

 for protocol development. Second, we look at some cases of Internet

 protocols that are relevant to the sub-questions highlighted in the

 literature review and analyze how these protocols facilitate or

 inhibit the right to peaceful assembly and association.

ten Oever, et al. Expires 13 October 2023 [Page 5]

Internet-Draft FoA April 2023

5. Literature Review

5.1. FAA definition and core treaties

 The rights to peaceful assembly and the freedom of association are

 defined and guaranteed in national law and international treaties;

 however, in this document we limit ourselves to international

 treaties. Article 20 of the Universal Declaration of Human Rights

 [UDHR] states that Everyone has the right to freedom of peaceful

 assembly and association and that No one may be compelled to belong

 to an association. Article 23 further guarantees that Everyone has

 the right to form and to join trade unions for the protection of his

 interests. In the International Covenant on Civil and Political

 Rights [ICCPR], article 21 stipulates that The right of peaceful

 assembly shall be recognized and that No restrictions may be placed

 on the exercise of this right other than those imposed in conformity

 with the law and which are necessary in a democratic society in the

 interests of national security or public safety, public order (ordre

 public), the protection of public health or morals or the protection

 of the rights and freedoms of others while article 22 states that

 Everyone shall have the right to freedom of association with others,

 including the right to form and join trade unions.

 General Comment No. 37 on the right of peaceful assembly by the

 United Nations Human Rights Committee affirms that the right of

 peaceful assembly protects non-violent online gatherings: associated

 activities that happen online or otherwise rely upon digital services

 [...] are also protected [UNGC37]. Interference with emerging

 communications technologies that offer the opportunity to assemble

 either wholly or partly online or play an integral role in

 organizing, participating in and monitoring physical gatherings are

 assumed to impede assemblies which are protected by this right.

 Moreover, any restriction on the "operation of information

 dissemination systems" must conform with the tests for restrictions

 on freedom of expression (see below).

 Other treaties are sometimes cited as the source and framework for

 the rights to freedom of association and assembly. An example of

 this is Article 5 of the International Convention on the Elimination

 of All Forms of Racial Discrimination [CERD] which stipulates freedom

 of peaceful assembly and association should be guaranteed without

 discrimination as to race, colour, national or ethnic origin;

 Article 15 of the Convention on the Rights of the Child [CRC] which

 recognises these rights for children with the restrictions cited

 above; and Article 21 of the Convention on the Rights of Persons with

 Disabilities [CRPD] which insists on usable and accessible formats

 and technologies appropriate for persons with different kinds of

 disabilities. The freedoms of peaceful assembly and association are

ten Oever, et al. Expires 13 October 2023 [Page 6]

Internet-Draft FoA April 2023

 also protected under regional human rights treaties: article 11 of

 the European Convention on Human Rights, articles 15 and 16 of the

 American Convention on Human Rights, and articles 10 and 11 of the

 African Charter on Human and Peoples Rights.

 From a more philosophical perspective, Brownlee and Jenkins

 [Stanford] distinguish between the concepts of association, assembly

 and interaction, deviating somewhat from what is established in

 interpretations of international human rights law. "Interaction"

 refers to any kind of interpersonal and often incidental engagements

 in daily life, like encountering strangers on a bus. Interaction is

 seen as a prerequisite for association. According to Brownlee and

 Jenkins, "assembly" has a more political connotation and is often

 used to refer to activists, protesters, or members of a group in a

 deliberating event. The authors refer to association as more

 "persistent connections" and distinguish between intimate

 associations, like friendship, love, or family, and collective

 association like trade unions or commercial businesses, or

 expressive associations like civil rights organizations or LGBTQIA

 associations. For Brownlee and Jenkins [Stanford], the right to

 association is linked to different relative freedoms: permission (to

 associate or dissociate), claim-right (to oppose others interfering

 with our conduct), power (to alter the status of our association),

 and immunity (from other people interfering in our right). Freedom

 of association thus refers both to the individual right to join or

 leave a group and to the collective right to form or dissolve a

 group.

 Freedoms of association and peaceful assembly, however, are relative

 and not absolute. Excluding someone from an association based on

 their sex, race or other individual characteristic is also often

 contentious if not illegal. As mentioned above, international human

 rights law provides the framework for legitimate restrictions on

 these rights, as well as the right to privacy and the right to

 freedom of expression and opinion. Restrictions can be imposed by

 states, but only if this is lawful and proportionate. States must

 document how these limitations are necessary in the interests of

 national security or public safety, public order, the protection of

 public health or morals, or the protection of the rights and freedoms

 of others. Finally, states must also protect participants against

 possible abuses by non-state actors.

 The Human Rights Committee considers restrictions of activities of

 free association online or activities of free association reliant

 upon digital services, that are also protected under article 21, and

 stipulates that States parties must not, for example, block or

 hinder Internet connectivity in relation to peaceful assemblies. The

 same applies to geotargeted or technology-specific interference with

ten Oever, et al. Expires 13 October 2023 [Page 7]

Internet-Draft FoA April 2023

 connectivity or access to content. Additionally, States should

 ensure that the activities of Internet service providers and

 intermediaries do not unduly restrict assemblies or the privacy of

 assembly participants. [UNGC37].

 Interpreting international law, the right to freedom of peaceful

 assembly and the right to freedom of association protects any

 collective, gathered either permanently or temporarily for peaceful

 purposes, online and offline. It is important to underline the

 property of freedom because the right to freedom of association and

 assembly is voluntary and uncoerced: anyone can join or leave a group

 of choice, which in turn means one should not be forced to either

 join, stay or leave. In other words, free association means that

 only the association of people itself determines who can be a member.

 An assembly is an "intentional and temporary gathering of a

 collective in a private or public space for a specific purpose:

 demonstrations, indoor meetings, strikes, processions, rallies, or

 even sits-in" [UNGA]. Association has a more formal and established

 nature and refer to a group of individuals or legal entities brought

 together in order to collectively act, express, promote, pursue, or

 defend a field of common interests [UNSRFOAA2012]. Think about civil

 society organizations, clubs, cooperatives, non-governmental

 organizations, religious associations, political parties, trade

 unions, or foundations.

ten Oever, et al. Expires 13 October 2023 [Page 8]

Internet-Draft FoA April 2023

 When talking about the human right of freedom of association and

 assembly, one should always take into account that "all human rights

 are indivisible, interrelated, unalienable, universal, and mutually

 reinforcing" [ViennaDeclaration]. This means that in the analysis of

 the impact of a certain variable on freedom of association and

 assembly one should take other human rights into account too. When

 devising an approach to mitigate a possible negative influence on

 this right, one should also always take into account the possible

 impact this might have on other rights. For example, the following

 rights are often impacted in conjunction with freedom of association

 and assembly: the right to political participation, the right to

 privacy, the right to freedom of expression, and the right to access

 to information. For instance, when the right to political

 participation is hampered, this often happens in conjunction with a

 limitation of the freedom of association and assembly because

 political participation is often done collectively. When the right

 to privacy is hampered, the privacy of particular groups is also

 impacted (so-called group privacy [Loi]), which potentially has

 consequences for the right to association and assembly. Where the

 freedom of expression of a group is hampered, such as in protests or

 through Internet shutdowns, this both hampers other peoples ability

 to receive the information of the group and impacts the right to

 assembly of the people who seek to express themselves as a group

 [Nyokabi].

 Finally, if the right to association and assembly is limited by

 national law, this does not mean it is consistent with international

 human rights law. In such a case, the national law would therefore

 not be legitimate [Glasius].

5.2. FAA in the digital era

 The United Nations Human Rights Council adopted resolutions on the

 promotion, protection and enjoyment of human rights on the Internet

 in 2012, 2014, 2016 and 2018, affirming and reaffirming "that the

 same rights that people have offline must also be protected online"

 [UNHRC2018]. Therefore the digital environment is no exception to

 application of the right of freedom of association. Various other

 resolutions and reports have established the online applicability of

 the freedoms of association and assembly, most recently and

 authoritatively the Human Rights Committee in General Comment 37

 (2020)[UNGC37]. The questions that remain are how these rights

 should be conceptualized and implemented in different parts and

 levels of digital environments.

 The right to freedom of assembly and association online is the

 subject of increasing discussions and analysis. Especially since

 social media played an important role in several revolutions in 2011,

ten Oever, et al. Expires 13 October 2023 [Page 9]

Internet-Draft FoA April 2023

 there have been increasing and ever more sophisticated attacks by

 autocratic governments on online communities and other associational

 activities occurring on the Internet [RutzenZenn]. In 2016, the

 Council of Europe published the Report by the Committee of experts

 on cross-border flow of Internet traffic and Internet freedom on

 Freedom of assembly and association on the Internet [CoE] which

 noted that while the Internet and communication technologies are not

 explicitly mentioned in international treaties, these treaties

 nevertheless apply to the online environment. The report argues

 that the Internet is the public sphere of the 21st century,

 demonstrated by the fact that informal associations can be gathered

 at scale in a matter of hours on the Internet, and that digital

 communication tools often serve to facilitate, publicize or otherwise

 enable associations or assemblies in person, like a protest or

 demonstration. The report notes, on the other hand, the negative

 ways in which the Internet can also be used to promote or facilitate

 terrorism, violence and hate speech, thus insisting on the extremely

 important and urgent need to fight online terrorist activities such

 as recruitment or mobilization, while at the same time respecting the

 right to peaceful assembly and association of other users. The

 report mentions the following examples that could further our

 reflection:

 * network shutdowns during the Arab Spring, to prevent people from

 organising themselves or assembling

 * California’s Bay Area Rapid Transit (BART) shutdown of mobile

 phone service, to prevent potential property destruction by

 protesters and disruption of service

 * the wholesale blocking of Google in China as a violation of

 freedom of expression

 * the telecom company Telus’s blocking of customers’ access to

 websites critical of Telus during a Telecommunications Workers

 Union strike against it

 * the targeting of social media users who call for or organise

 protests though the Internet in Turkey’s Gezi Park protests

 * mass surveillance or other interferences with privacy in the

 context of law enforcement and national security

 * use of VPNs (Virtual Private Networks) and the Tor network to

 ensure anonymity

 * Distributed Denial of Service attacks (DDoS) as civil

 disobedience.

ten Oever, et al. Expires 13 October 2023 [Page 10]

Internet-Draft FoA April 2023

 In 2019 a UN Special Rapporteur noted the opportunities and

 challenges posed by digital networks to the rights to freedom of

 peaceful assembly and of association [UNSRFAA2019]. The report

 recommends that international human rights norms and principles

 should be used as a framework that guides digital technology

 companies design, control and governance of digital technologies.

 The report states that technical standards in particular can affect

 the freedom of association and assembly, and makes some relevant

 recommendations, including:

 * "[Undertake] human rights impact assessments which incorporate the

 rights to freedom of peaceful assembly and of association when

 developing or modifying their products and services,"

 * "increase the quality of participation in and implementation of

 existing multi-stakeholder initiatives,"

 * "collaborate with governments and civil society to develop

 technology that promotes and strengthens human rights,"

 * "support the research and development of appropriate technological

 solutions to online harassment, disinformation and propaganda,

 including tools to detect and identify State-linked accounts and

 bots," and

 * "adopt monitoring indicators that include specific concerns

 related to freedom of peaceful assembly and association."

 In one of their training kits [APCtraining], the Association of

 Progressive Communications addressed different impacts of the

 Internet on association and assembly and raised three particular

 issues worthy to note here:

 1. Organization of protests. The Internet and social media are

 enablers of protests, as was seen in the Arab Spring. Some of

 these protests - like online petitions or campaigns - are similar

 to offline association and assembly, but other protest forms are

 inherent to the Internet. Hacking and DDoS are subject to

 controversy within the Internet community: some finding them

 legitimate acts of protest, and others not.

 2. Surveillance. While the Internet facilitates association, that

 association in turn leaves many traces that can be used for law

 enforcement or for repression of political dissent. Even the

 threat of surveillance can deter association.

ten Oever, et al. Expires 13 October 2023 [Page 11]

Internet-Draft FoA April 2023

 3. Anonymity and pseudonymity. Anonymity and pseudonymity can be

 useful protection mechanisms for those who’d like to attend

 online assemblies without facing retribution. On the other hand,

 anonymity can be used to harm society, such as in online fraud or

 sexual predation.

 Online association and assembly are the starting point of civic mass

 mobilization in modern democracies, and even more so where physical

 gatherings have been impossible or dangerous [APC]. Throughout the

 world - from the Arab Spring to Latin American student movements and

 the #WomensMarch - the Internet has played a crucial role by

 providing means for the fast dissemination of information otherwise

 mediated by the press, or even forbidden by the government [Pensado].

 According to Hussain and Howard the Internet helped build solidarity

 networks and identification of collective identities and goals,

 extend the range of local coverage to international broadcast

 networks and served as a platform for contestation of the future of

 civil society and information infrastructure [HussainHoward]. The

 IETF itself, defined as an "open global community" of network

 designers, operators, vendors, and researchers [RFC3233] is also

 protected by freedom of assembly and association. Discussions,

 comments and consensus around RFCs are possible because of the

 collective expression that freedom of association and assembly allow.

 The very word protocol found its way into the language of computer

 networking based on the need for collective agreement among a group

 of assembled network users [HafnerandLyon].

 [RFC8280] discusses issues of FAA, specifically:

 * The expansion of DNS as an enabler of association for minorities.

 The document argues that the expansion of the DNS to allow for new

 generic Top Level Domains (gTLDs) can have negative impacts on

 freedom of association because of restrictive policies by some

 registries and registrars. On the other hand, gTLDs could also

 enable communities to build clearly identifiable spaces for

 association (such as .gay).

 * The impact of Distributed Denial of Service attacks on freedom of

 association. Whereas DDoS has been used as a tool for protest, in

 many cases it infringes on the freedom of expression of other

 parties. Furthermore, often devices (such as IoT devices and

 routers) are enlisted in such DDoS attacks without the owner’s or

 user’s consent. Thus they do not have the possibility to exit

 this assembly. Therefore the document concluded that the IETF

 "should try to ensure that their protocols cannot be used for DDoS

 attacks".

ten Oever, et al. Expires 13 October 2023 [Page 12]

Internet-Draft FoA April 2023

 * The impact of middleboxes on the ability of users to connect to

 the Internet. Lack of connectivity can significantly impact

 freedom of assembly and association. In particular, if the user

 cannot retrieve the reason for their inability to connect, there

 may not be access to due process to dispute the lack of (secure or

 private) connectivity, either in general or to a specific service.

 In June 2020, the United Nations High Commissioner for Human Rights

 concluded that technologies can be enablers of the exercise of FAA,

 but technology is also significantly used to interfere with those

 rights. Specifically, the report mentions network shutdowns and the

 use of technology to surveil or crack down on protesters, leading to

 human rights violations. This includes facial recognition

 technology, among other ways to violate the privacy of people engaged

 in an assembly or association. The report makes it explicit that

 companies play a significant role, by developing, providing or

 selling the technology, but also by directly causing these violations

 [UNHRC2020].

5.3. Specific questions raised from the literature review

 Here are some questions raised from the literature review that can

 have implications for protocol design:

 1. Should protocols be designed to enable legitimate limitations on

 association in the interests of "national security or public

 safety, public order (ordre public), the protection of public

 health or morals or the protection of the rights and freedoms of

 others", as stated in the ICCPR article 21 [ICCPR]? Where in the

 stack do we care for FAA?

 2. Can protocols facilitate agency of membership in associations,

 assemblies and interactions?

 3. What are the features of protocols that enable freedom of

 association and assembly?

 4. Does protocol development sufficiently consider usable and

 accessible formats and technologies appropriate for all persons,

 including those with different kinds of abilities?

 5. Can a protocol be designed to legitimately exclude someone from

 an association?

 In the following sections we attempt to answer these questions with

 specific examples of standardized protocols in the IETF.

ten Oever, et al. Expires 13 October 2023 [Page 13]

Internet-Draft FoA April 2023

6. Analysis

 As the Internet mediates collective action and collaboration, it

 impacts on freedom of association and assembly. To answer our

 research question regarding how Internet architecture enables and/or

 inhibits such human rights, we researched several independent and

 typical cases related to protocols that have been either adopted by

 the IETF, or are widely used on the Internet. Our goal is to

 determine how they facilitate freedom of assembly and association, or

 how they inhibit it through their design or implementation.

 We are aware that some of the following examples go beyond the use of

 Internet protocols and flow over into the application layer or

 examples in the offline world whereas the purpose of the current

 document is to break down the relationship between Internet protocols

 and the right to freedom of assembly and association. In some cases

 the line between protocols and applications, implementations,

 policies and offline realities are blurred and hard - if not

 impossible - to differentiate.

 We use the literature review to guide our process of inquiry for each

 case, and to dive deeper in what can be found interesting about each

 case as it relates to freedom of association. In each section, we

 consider one of the questions identified in the review, and apply the

 protocol or application (with some overlaps) to that question.

6.1. Got No Peace: Spam and DDoS

 Should protocols be designed to enable legitimate limitations on

 association in the interests of national security or public safety,

 public order (ordre public), the protection of public health or morals

 or the protection of the rights and freedoms of others, as stated in

 the ICCPR article 21 {{ICCPR}}? Where in the stack do we care for FAA?

 The 2020 report by the United Nations Special Rapporteur on Human

 Rights [UNHRC2020] described how technology is often used to limit

 freedom of assembly and association, such as through network

 shutdowns and the surveillance of groups. Because access to the

 Internet is crucial not only for freedom of association and assembly,

 but also for the right to development, and the right to freedom of

 expression and information [Nyokabi], the United Nation Special

 Rapporteur advises to:

 (b) Avoid resorting to disruptions and shutdowns of Internet or

 telecommunications networks at all times and particularly during

 assemblies, including those taking place in electoral contexts

 and during times of unrest;

ten Oever, et al. Expires 13 October 2023 [Page 14]

Internet-Draft FoA April 2023

 Whereas states have an obligation to protect human rights, there has

 been an increasing call for non-state actors, such as companies, also

 to respect human rights [UNGPBHR]. The UN adopted guiding principles

 on business and human rights [UNGPBHR] and talks within the HRC are

 ongoing about an international legally binding instrument to regulate

 the activities of transnational corporations and other business

 enterprises. This includes a chain-responsibility of actors: not

 only that the companys own processes should not negatively impact

 human rights, but also that the company should also engage in due

 diligence processes, such as human rights impact assessments. This

 includes an assessment of whether the products that are sold, or the

 services that are provided, can be used to engage in human rights

 violations, or whether human rights violations occur in any stage of

 the supply chain of the company. If this is the case, measures

 should be taken to mitigate this.

 In the case of dual-use technologies, where technology could be used

 for legitimate purposes, but could also be used to limit freedom of

 association or assembly, this obligation might mean that producers or

 sellers should limit the parties they sell to, or even better, ensure

 that the illegitimate use of the technology is not technically

 possible anymore, or made more difficult.

6.1.1. Spam

 In the 1990s as the Internet became more widely adopted, spam came to

 be defined as irrelevant or unsolicited messages that were posted

 many times to multiple news groups or mailing lists [Marcus]. Here

 questions of consent, but also harm, are crucial. In the 2000s a

 significant part of the technical and policy debate on spam revolved

 around the fact that certain corporations considered spam to be a

 form of "commercial speech", thus encompassed by free expression

 rights [Marcus]. Yet spam can be not only a nuisance, but a threat

 to systems and users.

 This leaves us with an interesting case around spam mitigation: spam

 is currently handled mostly by mail providers on behalf of the user.

 Many countries are adopting regulatory opt-in regimes for mailing

 lists and commercial e-mail, with a possibility of serious fines in

 case of violation. Yet many ask: is spam not the equivalent of the

 fliers and handbills ever present in our offline world? The big

 difference between the proliferation of such messages offline and

 online is the scale. It is not hard for a single person to message a

 lot of people online, whereas if that person needed to go house by

 house the impact of their efforts would be much smaller. Conversely,

 if it were a common practice to expose people to unlimited unwanted

 messages online, users would be drowned in such messages. This puts

 a large burden on filtering, and in sifting through many messages,

ten Oever, et al. Expires 13 October 2023 [Page 15]

Internet-Draft FoA April 2023

 other expressions would be drowned out and would be severely

 hampered. Allowing unlimited sending of unsolicited messages would

 be a blow against freedom of speech: when everyone talks, nobody can

 hear.

 Whereas one could perhaps consider singular instances in which spam

 could be proportional, legitimate uses of online campaigning, or

 online protesting, would be drowned out by other spam. Furthermore,

 the individual receiving the spam never consented to receiving it.

 Finally, the widespread usage of spam constitutes an attack on the

 internet infrastructure in terms of mailservers, bandwidth, and

 inboxes. This in turn thus hamper the freedom of association and

 assembly that is happening in and is facilitated through the internet

 infrastructure. Finally, spam leads to spam filtering by users and

 mail providers on behalf of the user, this in turn might lead to the

 blocking of messages that a user would consent to, but that get

 caught in the filter.

6.1.2. DDoS

 Distributed Denial of Service attacks are leveled against a server or

 service by a controller of multiple hosts by overloading the server

 or services bandwidth or resources (volume-based floods) or

 exploiting protocol behaviours (protocol attacks). DDoS attacks can

 thus stifle the right to assemble online for organisations whose

 websites are targeted. At the same time there are comparisons made

 between DDoS attacks and sit-in protests [Sauter]. However the main

 distinction is significant: only a small fragment of participants

 (from controllers to compromised device owners) in DDoS attacks are

 aware or willing [RFC8280]. Notably, DDoS attacks are increasingly

 used to commit crimes such as extortion, which infringe on others

 human rights.

 Because of the interrelation of technologies, it cannot be said that

 there is one point in the technical stack where one can locate the

 characteristics of peaceful or non-peaceful association visible

 to protocol developers. In the cases of spam blocking and DDoS

 mitigation, peaceful or non-peaceful is not a meaningful heuristic,

 or even characteristic, of problematic content. Their commonalities

 are their volume, and the unrequested nature of participation in DDoS

 and the receiving of spam. One could say that the ’receivers’ of

 demonstrations did not ask for it either, but in the case of spam the

 receivers are generally a larger group than one particular target,

 else the spam could be described as a DDoS attack against one target.

 This allows us to draw the conclusion that DDoS and spam are not

 examples of freedom of association or assembly.

ten Oever, et al. Expires 13 October 2023 [Page 16]

Internet-Draft FoA April 2023

6.2. Holistic Agency: Mailing Lists and Spam

 Can protocols facilitate agency of membership in associations,

 assemblies and interactions?

6.2.1. Mailing lists

 Since the beginning of the Internet mailing lists have been a key

 site of assembly and association [RFC0155] [RFC1211]. In fact,

 mailing lists were one of the Internets first functionalities

 [HafnerandLyon].

 In 1971 four years after the invention of email, the first mailing

 list was created to talk about the idea of using Arpanet for

 discussion. What had initially propelled the Arpanet project forward

 as a resource sharing platform was gradually replaced by the idea of

 a network as a means of bringing people together [Abbate]. More than

 45 years later, mailing lists are pervasive and help communities to

 engage, have discussions, share information, ask questions, and build

 ties. Even as social media and discussion forums grow, mailing lists

 continue to be widely used [AckermannKargerZhang] and are still a

 crucial tool to organise groups and individuals around themes and

 causes [APC3].

 Mailing lists pervasive use are partly explained because they allow

 for free and low-cost association: people subscribe (join) and

 unsubscribe (leave) as they please. Another contributor to their

 widespread use is that email functions on low bandwith connections

 and across platforms. Mailing lists also allow for association of

 specific groups on closed lists. This enables agency of membership,

 a key component of freedom of association and assembly.

 As we mentioned before, there are interesting implications for

 freedom of association and assembly when looking at spam mitigation.

 Here we want to specifically note that if we consider that the rights

 to assembly and association also mean that "no one may be compelled

 to belong to an association" [UDHR], spam infringes both rights if an

 opt-out mechanism is not provided and people are obliged to receive

 unwanted information, or be reached by people they do not wish to be

 in contact with.

6.3. Civics in Cyberspace: Messaging, Conferencing, and Networking

 What are the features of protocols that enable freedom of

 association and assembly?

ten Oever, et al. Expires 13 October 2023 [Page 17]

Internet-Draft FoA April 2023

 Civic participation is often expressed as the freedom to associate

 and assemble, along with other enabling rights such as freedom of

 expression and the right to privacy. Former UN Special Rapporteur

 David Kaye established a strong relationship between technology that

 allows anonymity and uses encryption with positive effects on freedom

 of expression [Kaye]. Here we look at messaging, including email,

 mailing lists and internet relay chat; video conferencing; and peer-

 to-peer networking protocols to investigate the common features that

 enable freedom of association and assembly online.

6.3.1. Email

 Email was one of the first applications of the early Internet that

 showed what the architecture was really capable of, allowing people

 to exchange messages much faster and more cheaply than communication

 networks could do before. This enabled many collaborations among

 academics and other users of the early network, showcasing the

 importance of email in the forming of assemblies and associations.

 Whereas many messaging solutions have been invented since email, it

 is still widely used because of its distributed architecture,

 reliability, and ability to function on a wide range of devices and

 platforms.

6.3.2. Mailing lists

 Not only are mailing lists a good example of how protocols can

 facilitate the necessary ingredient of agency in freedom of

 association, we can see how particular features of mailing lists

 enable or inhibit freedom of association and assembly.

 The archival function of mailing lists allows for posterior

 accountability and analysis.

 The ubiquity and interoperability of email, and by extension mailing

 lists, provides a low barrier to entry to an inclusive medium.

 Association and assembly online can be undermined when right to

 privacy is at risk. One downside of mailing lists are the privacy

 and security concerns generally associated with email. End-to-end

 encryption with OpenPGP [RFC4880] and S/MIME [RFC5751] can keep email

 communications authenticated and confidential if properly configured,

 deployed and used, but users often do not have those protections.

 And with mailing lists, this protection is not typically possible,

 because with many lists the final recipients are not known to the

 sender. There have been experimental solutions to address this issue

 [Schleuder], but this has not been standardized or widely deployed.

ten Oever, et al. Expires 13 October 2023 [Page 18]

Internet-Draft FoA April 2023

6.3.3. IRC

 Internet Relay Chat (IRC) is an application layer protocol that

 enables communication in the form of text through a client/server

 networking model [RFC2810]: a chat service. IRC clients are computer

 programs that a user can install on their system. These clients

 communicate with chat servers to transfer messages to other clients.

 Features of IRC include: federated design, transport encryption, one-

 to-many routing, creation of topic-based channels, and spam or

 abuse moderation.

 IRC servers may deploy different policies for the ability of users to

 create their own channels or rooms, and for the delegation of

 operator-rights in such spaces. Some IRC servers support SSL/TLS

 connections for security purposes [RFC7194] which helps stop the use

 of packet sniffer programs to obtain the passwords of IRC users and

 barring an ISP or government from knowing which user I am on IRC, but

 has little use beyond this scope due to the public nature of IRC

 channels. TLS connections require both client and server support

 (that may require the user to install TLS binaries and IRC client

 specific patches or modules on their computers). Some networks also

 use TLS for server to server connections, and provide a special

 channel flag (such as +S) to only allow TLS-connected users on the

 channel, while disallowing operator identification in clear text, to

 better utilize the advantages that TLS provides.

 For the purposes of civic participation and freedom of association

 and assembly in particular, it is critical that IRCs federated

 design allows many interoperable, yet customisable, instances and

 basic assurance of confidentiality through transport encryption. IRC

 differs from email in the sense that it allows for real-time

 interaction, stimulating the sense of conversation. This allows

 people to organize, develop ideas as well as joint identities. This

 is strengthened through the federated nature of IRC, which gives

 users the ability to use and connect through different servers,

 contributing to freedom of association. We investigate the

 particular aspect of agency in membership through moderation in the

 section ’Block Together Now: IRC and Refusals’ below.

6.3.4. WebRTC

 Multi-party video conferencing protocols like WebRTC [RFC6176]

 [RFC7118] allow for robust, bandwidth-adaptive, wideband and super-

 wideband video and audio discussions in groups. This facilitates

 exchanges over the Internet in a similar manner to IRC, but including

 the usage of audio and video. WebRTC can be configured as direct

 peer-to-peer videochat without sending data through a central server.

 This ability to function without a central server is a strong

ten Oever, et al. Expires 13 October 2023 [Page 19]

Internet-Draft FoA April 2023

 facilitator of freedom of association and assembly.

 However, WebRTC comes with many different configuration options,

 which can leave users open to unexpected privacy leakages:

 The WebRTC protocol was designed to enable responsive real-time

 communications over the Internet, and is instrumental in

 allowing streaming video and conferencing applications to run in

 the browser. In order to easily facilitate direct connections

 between computers (bypassing the need for a central server to act

 as a gatekeeper), WebRTC provides functionality to automatically

 collect the local and public IP addresses of Internet users (ICE

 or STUN). These functions do not require consent from the user,

 and can be instantiated by sites that a user visits without their

 awareness. The potential privacy implications of this aspect of

 WebRTC are well documented, and certain browsers have provided

 options to limit its behavior.

 [AndersonGuarnieri]

 Even though some multi-party video conferencing tools facilitate

 freedom of assembly and association, their own configuration might

 pose concrete risks for those who use them. On the one hand WebRTC

 is providing resilient channels of communications, but on the other

 hand it also exposes information about those who are using the tool

 which might lead to increased surveillance, identification and the

 consequences that might be derived from that. This is especially

 concerning because the usage of a VPN does not protect against the

 exposure of IP addresses [Crawford].

 The risk of surveillance also exists in offline spaces, but may

 generally be easier to analyze for the user. Security and privacy

 expectations of the user could be either improved or made explicit.

 This in turn would result in a more secure and private exercise of

 the right to freedom of assembly or association.

6.3.5. Peer-to-peer networking

 Since the ARPANET project, the original idea behind the Internet was

 conceived as what we would now call a peer-to-peer system [RFC0001].

 Over time it has increasingly shifted towards a client/server model

 with millions of consumer clients communicating with a relatively

 privileged set of servers [NelsonHedlun]. However, the foundational

 networking protocol of the modern Internet, the Border Gateway

 Protocol [RFC1163] [RFC1164] [RFC4271], still functions like original

 peer to peer network, with an extensive practice of peering and

 transit [MeierHahn2015]. For an example higher up the stack one

 could look at the peer-to-peer architecture of BitTorrent [RFC5694].

ten Oever, et al. Expires 13 October 2023 [Page 20]

Internet-Draft FoA April 2023

 At the organizational level, peer production is one of the most

 relevant innovations from Internet mediated social practices.

 According to [Benkler] these networks imply "open collaborative

 innovation and creation, performed by diverse, decentralized groups

 organized principally by neither price signals nor organizational

 hierarchy, harnessing heterogeneous motivations, and governed and

 managed based on principles other than the residual authority of

 ownership implemented through contract."

 In his book The Wealth of Networks, [Benkler2] significantly expands

 on his definition of commons-based peer production. In his view,

 what distinguishes commons-based production is that it doesnt rely

 upon or propagate proprietary knowledge: The inputs and outputs of

 the process are shared, freely or conditionally, in an institutional

 form that leaves them equally available for all to use as they choose

 at their individual discretion. To ensure that the knowledge

 generated is available for free use, commons-based projects are often

 shared under an open license

 Peer-to-peer (P2P) is essentially a model of how people interact in

 real life because we deal directly with one another whenever we wish

 to [Vu]. Usually if we need something we ask our peers, who in turn

 refer us to other peers. In this sense, the ideal definition of P2P

 is that nodes are able to directly exchange resources and services

 between themselves without the need for centralized servers where

 each participating node typically acts both as a server and as a

 client [Vu]. [RFC5694] has defined the architecture as peers or

 nodes that should be able to communicate directly between themselves

 without passing intermediaries, and that the system should be self-

 organizing and have decentralized control. With this in mind, the

 ultimate model of P2P is a completely decentralized system, which is

 more resistant to speech regulation, immune to single points of

 failure and has a higher performance and scalability. Nonetheless,

 in practice some P2P systems are supported by centralized servers and

 some others have hybrid models where nodes are organized into two

 layers: the upper tier servers and the lower tier common nodes [Vu].

 Whether for resource sharing or data sharing, P2P systems enable

 freedom of assembly and association. Not only do they allow for

 effective dissemination of information, but they also leverage

 computing resources and diminish the costs for the formation of open

 collectives at the network level. At the same time, in completely

 decentralized systems the nodes are autonomous and can join or leave

 the network as they want. This makes the system unpredictable: a

 resource might be only sometimes available, and some other resources

 might be missing or incomplete [Vu]. Lack of information might in

 turn make association or assembly more difficult.

ten Oever, et al. Expires 13 October 2023 [Page 21]

Internet-Draft FoA April 2023

6.4. Universal Access: The Web

 Does protocol development sufficiently consider usable and accessible

 formats and technologies appropriate for persons with different kinds

 of abilities?

6.4.1. Accessibility

 The W3C has done significant work to ensure that the Web is

 accessible to people with diverse physical abilities [W3C]. For

 example, the implementation of accessibility standards helps people

 who have issues with seeing or rendering images to understand what

 the image depicts. Making the Web more accessible for people with

 diverse physical abilities enables them to exercise their right to

 online assembly and association. While there are accessibility

 standards implemented for the Web, this is less the case for the

 Internet.

6.4.2. Internationalization

 The IETF uses English as its primary working language, both in its

 documentation and in its communication. This is also the case for

 reference implementations. It is estimated that roughly 20% of the

 Earths population speaks English, whereas only 360 million speak

 English as their first language. [RFC2277] states that

 "Internationalization is for humans. This means that protocols are

 not subject to internationalization; text strings are.", this implies

 that protocol developers, as well as people that work with protocols,

 are not people, or that protocol developers all speak English. As a

 result, it may be significantly easier for people who have a command

 of the English language to become a protocol developer. It could

 also lead to a divergence, with the development of separate protocols

 that are developed within large language communities that don’t use

 English language or Latin script. This makes it harder for people

 who seek to shape their own space of association and assembly on the

 Internet to do so. Communities may therefore be driven to rely on

 proprietary and non-interoperable services, such as Facebook and

 Weibo, where use of their own script and language is supported.

 When Ramsey Nasser developed the Arabic programming language

 (transliterated Qalb, Qlb and Alb) [Nasser] he called it "engineering

 performance art" instead of engineering, because he knew that his

 language would not work. In part this is because historically

 programming tools used the ASCII character set, which encodes Latin

 characters and was based on the English language. Though modern

 tools use Unicode, there persist cultural biases in computer science

 and engineering down to the level of code. Despite long significant

 efforts, it is still largely impossible to register an email address

ten Oever, et al. Expires 13 October 2023 [Page 22]

Internet-Draft FoA April 2023

 in a language such as Devanagari, Arabic, or Chinese. Even where

 possible, it is to be expected that there will be a significant

 failure rate in sending and receiving emails to and from other

 services. This makes it harder for people who do not speak English

 and/or dont use the Latin script to exercise their freedom of

 association and assembly.

6.5. Block Together Now: IRC and Refusals

 Can a protocol be designed to legitimately exclude someone

 from an association?

 Previously we spoke about the privacy protecting features of IRC that

 enable freedom of association and assembly, including transport

 security. But now we turn to the ability to block users and

 effectively moderate discussions on IRC as a key feature of the

 technology that enables agency in membership, a key aspect of freedom

 of association and assembly.

 For order to be kept within the IRC network, special classes of users

 become operators and are allowed to perform general maintenance

 functions on the network: basic network tasks such as disconnecting

 (temporary or permanently) and reconnecting servers as needed

 [RFC2812]. One of the most controversial powers of operators is the

 ability to remove a user from the connected network by force, i.e.,

 operators are able to close the connection between any client and

 server [RFC2812].

 Moderation and de-federation can be a tool to uphold freedom of

 association and assembly, because it allows groups to have control

 over their own make up. IRC servers may deploy different policies

 for the ability of users to create their own channels or rooms, and

 for the delegation of operator-rights in such spaces. However,

 these controls can also seriously hamper the ability of a group to

 get together. Some argue that the low cost of creating a new group

 is a protection against this, however, this could lead to a

 repetition of crises of moderation of membership and speech.

7. Conclusions: What can we learn from these case studies?

 Communities, collaboration and joint action lie at the heart of the

 Internet. Even at a linguistic level, the words "networks" and

 "associations" are closely related. Both are groups and assemblies

 of people who depend on "links" and "relationships" [Swire]. Taking

 legal definitions given in international human rights law and related

 normative documents, we can easily conclude that the rights to

 freedom of assembly and association protect collective activity

 online. These rights protect gatherings by persons for a specific

ten Oever, et al. Expires 13 October 2023 [Page 23]

Internet-Draft FoA April 2023

 purpose and groups with a defined aim over time for a variety of

 peaceful, expressive and non-expressive purposes, if and when

 participation is voluntary and uncoerced.

 Given that the Internet itself was originally designed as a medium of

 communication for machines that share resources with each other as

 equals [RFC0903], the Internet is now one of the most basic

 infrastructures for assembly and association. Since Internet

 protocols and the Internet architecture play a central role in the

 management, development and use of the Internet, we established the

 relation between protocols and the right to freedom of assembly and

 association.

 After reviewing several cases representative of FAA considerations

 inherent in protocols standardized at the IETF, we can conclude that

 the way in which infrastructure is designed and implemented impacts

 people’s ability to exercise their freedom of assembly and

 association. This is because different technical designs come with

 different properties and characteristics. These properties and

 characteristics on the one hand enable people to assemble and

 associate, but on the other hand also add limiting, or even

 potentially endangering, characteristics. More often than not, this

 depends on the context. A clearly identified group for open

 communications, where messages are sent in cleartext and where

 people’s persistent identities are visible, can help to facilitate an

 assembly and build trust, but in other contexts the same

 configuration could pose a significant danger. Endangering

 characteristics should be mitigated, or at least clearly communicated

 to the users of these technologies. It is therefore recommended that

 the potential impacts of Internet technologies should be assessed,

 reflecting recommendations of various UN bodies and international

 norms.

 Lastly, the increasing shift away from federated and interoperable

 messaging exchange towards closed platforms with non-interoperable

 chat and media-sharing functionality have a significant impact on the

 distributed and open nature of the use of the Internet. Often these

 platforms are built on open protocols but do not allow for

 interoperability or data portability. Future research could further

 investigate how the use of social media platforms has enabled

 individuals to associate in groups, but at the same time rendered

 those groups unable to change or transcend platforms, therefore

 leading to sorts of "bounded association" and "forced association"

 both of which inhibit people from fully exercising their freedom of

 assembly and association.

8. Acknowledgements

ten Oever, et al. Expires 13 October 2023 [Page 24]

Internet-Draft FoA April 2023

 * Gisela Perez de Acha for co-authoring the first versions of this

 document

 * Fred Baker and Jefsey for work on Internet definitions.

 * Stephane Bortzmeyer, ICNL, and Lisa Vermeer for several concrete

 text suggestions that found their way in this document.

 * Mark Perkins and Gurshabad for finding a lot of typos.

 * Nick Doty, Gurshabad Grover, an anonymous reviewer, ICNL, Lisa

 Vermeer, and Sandra Braman for full reviews.

 * The hrpc mailinglist at large for a very constructive discussion

 on a hard topic.

 * Efforts put in this document by Niels ten Oever were made possible

 through funding from the Ford Foundation, the Open Technology

 Fund, and the Dutch Research Council (NWO) through grant

 MVI.19.032 as part of the program ’Maatschappelijk Verantwoord

 Innoveren (MVI)’.

9. Work Space

 Current work on this draft is happening at: https://github.com/IRTF-

 HRPC/draft-association Pull requests and issues are welcome.

10. Security Considerations

 As this draft concerns a research document, there are no security

 considerations.

11. IANA Considerations

 This document has no actions for IANA.

12. Research Group Information

 The discussion list for the IRTF Human Rights Protocol Considerations

 Research Group is located at the e-mail address hrpc@ietf.org

 (mailto:hrpc@ietf.org). Information on the group and information on

 how to subscribe to the list is at

 https://www.irtf.org/mailman/listinfo/hrpc

 (https://www.irtf.org/mailman/listinfo/hrpc)

 Archives of the list can be found at: https://www.irtf.org/mail-

 archive/web/hrpc/current/index.html (https://www.irtf.org/mail-

 archive/web/hrpc/current/index.html)

ten Oever, et al. Expires 13 October 2023 [Page 25]

Internet-Draft FoA April 2023

13. Informative References

 [Abbate] Janet Abbate, "Inventing the Internet", Cambridge: MIT

 Press (2013): 11. , 2013,

 <https://mitpress.mit.edu/books/inventing-internet>.

 [AckermannKargerZhang]

 Ackerman, M. S., Karger, D. R., and A. X. Zhang, "Mailing

 Lists: Why Are They Still Here, Whats Wrong With Them,

 and How Can We Fix Them?", Mit. edu (2017): 1. , 2017,

 <https://people.csail.mit.edu/axz/papers/

 mailinglists.pdf>.

 [AndersonGuarnieri]

 Anderson, C. and C. Guarnieri, "Fictitious Profiles and

 WebRTC’s Privacy Leaks Used to Identify Iranian

 Activists", 2016,

 <https://iranthreats.github.io/resources/webrtc-

 deanonymization/>.

 [APC] Association for Progressive Communications and Gayathry

 Venkiteswaran, "Freedom of assembly and association online

 in India, Malaysia and Pakistan. Trends, challenges and

 recommendations.", 2016,

 <https://www.apc.org/es/system/files/

 FOAA_online_IndiaMalaysiaPakistan.pdf>.

 [APC3] Association for Progressive Communications, "Closer than

 ever", 2020, <https://www.apc.org/en/node/36145/#tools>.

 [APCtraining]

 Sauter, D. and Association for Progressive Communications,

 "Multimedia training kit", 2013,

 <http://itrainonline.org/itrainonline/mmtk/

 APC_IRHRCurriculum_FOA_Handout.pdf>.

 [Benkler] Benkler, Y., "Peer Production and Cooperation", 2009,

 <http://www.benkler.org/

 Peer%20production%20and%20cooperation%2009.pdf>.

 [Benkler2] Benkler, Y., "The wealth of Networks - How social

 production transforms markets and freedom", New Haven and

 London - Yale University Press , 2006,

 <http://is.gd/rxUpTQ>.

 [Bloketal] Blok, A., Nakazora, M., and B. R. Winthereik,

 "Infrastructuring Environments", Science as Culture 25:1,

 1-22. , 2016.

ten Oever, et al. Expires 13 October 2023 [Page 26]

Internet-Draft FoA April 2023

 [Bowker] Bowker, G., "Information mythology and infrastructure",

 In: L. Bud (Ed.), Information Acumen: The Understanding

 and use of Knowledge in Modern

 Business,Routledge,London,1994,pp.231-247 , 1994.

 [CERD] United Nations, "Convention on the Elimination of all

 forms of Racial Discrimination", 1966,

 <https://www.info.dfat.gov.au/Info/Treaties/treaties.nsf/

 AllDocIDs/2F70352A0B65EB67CA256B6E0075FE13>.

 [CoE] Council of Europe, "Freedom of assembly and association on

 the Internet", 2015,

 <https://mk0rofifiqa2w3u89nud.kinstacdn.com/wp-

 content/uploads/COE-report-on-FOAA-rights-on-the-

 internet-.pdf>.

 [Crawford] Crawford, D., "The WebRTC VPN Bug and How to Fix", 2015,

 <https://www.bestvpn.com/the-webrtc-vpn-bug-and-how-to-

 fix-it/>.

 [CRC] Wikipedia, "Lorum", 2000,

 <https://www.info.dfat.gov.au/Info/Treaties/treaties.nsf/

 AllDocIDs/E123F4F71DCAE3E7CA256B4F007F2905>.

 [CRPD] United Nations, "Convention on the Rights of Persons with

 Disabilities", 2007,

 <http://www.austlii.edu.au/au/other/dfat/

 treaties/2008/12.html>.

 [FoAdef] Wikipedia, "Freedom of association", 2021,

 <https://en.wikipedia.org/wiki/Freedom_of_association>.

 [Glasius] Glasius, M., Schalk, J., and M. De Lange, "Illiberal Norm

 Diffusion: How Do Governments Learn to Restrict

 Nongovernmental Organizations?", 2020,

 <https://academic.oup.com/isq/article/64/2/453/5823498>.

 [HafnerandLyon]

 Hafnerand, K. and M. Lyon, "Where Wizards Stay Up Late.

 The Origins of the Internet", First Touchstone Edition

 (1998): 93. , 1998, <https://doi.org/10.1111/misr.12020>.

 [HRPC-charter]

 Human Rights Protocol Consideration RG, "Charter for

 Research Group", 2015,

 <https://datatracker.ietf.org/doc/charter-irtf-hrpc/>.

ten Oever, et al. Expires 13 October 2023 [Page 27]

Internet-Draft FoA April 2023

 [HussainHoward]

 Hussain, M. M. and P. N. Howard, "What Best Explains

 Successful Protest Cascades? ICTs and the Fuzzy Causes of

 the Arab Spring", Int Stud Rev (2013) 15 (1): 48-66. ,

 2013, <https://doi.org/10.1111/misr.12020>.

 [ICCPR] United Nations General Assembly, "International Covenant

 on Civil and Political Rights", 1966,

 <http://www.ohchr.org/EN/ProfessionalInterest/Pages/

 CCPR.aspx>.

 [Kaye] Kaye, D., "The use of encryption and anonymity in digital

 communications", 2015,

 <https://www.ohchr.org/EN/HRbodies/HRC/RegularSessions/

 Session29/Documents/A.HRC.29.32_AEV.doc>.

 [Loi] Loi, M. and M. Christen, "Two Concepts of Group Privacy",

 2020, <https://link.springer.com/article/10.1007/

 s13347-019-00351-0>.

 [Mainwaringetal]

 Mainwaring, S. D., Chang, M. F., and K. Anderson,

 "Infrastructures and Their Discontents: Implications for

 Ubicomp", DBLP Conference: Conference: UbiComp 2004:

 Ubiquitous Computing: 6th International Conference,

 Nottingham, UK, September 7-10, 2004. Proceedings , 2004,

 <http://www.dourish.com/classes/readings/Mainwaring-

 Infrastructure.pdf>.

 [Marcus] Marcus, J., "Commercial Speech on the Internet: Spam and

 the first amendment", 1998, <http://www.cardozoaelj.com/

 wp-content/uploads/2013/02/Marcus.pdf>.

 [MeierHahn2015]

 Uta Meier-Hahn, "Creating connectivity: trust, distrust

 and social microstructures at the core of the internet",

 2015, <https://papers.ssrn.com/sol3/

 papers.cfm?abstract_id=2587843>.

 [Nasser] Nasser, R., "قلب", 2013,

 <https://nas.sr/%D9%82%D9%84%D8%A8/>.

ten Oever, et al. Expires 13 October 2023 [Page 28]

Internet-Draft FoA April 2023

 [NelsonHedlun]

 Minar, N. and M. Hedlun, "A Network of Peers: Models

 Through the History of the Internet", Peer to Peer:

 Harnessing the Power of Disruptive Technologies, ed: Andy

 Oram , 2001, <http://library.uniteddiversity.coop/

 REconomy_Resource_Pack/

 More_Inspirational_Videos_and_Useful_Info/Peer_to_Peer-

 Harnessing_the_Power_of_Disruptive_Technologies.pdf>.

 [Nyokabi] Nyokabi, D. M., Diallo, N., Ntesang, N. W., White, T. K.,

 and T. Ilori, "The right to development and internet

 shutdowns: Assessing the role of information and

 communications technology in democratic development in

 Africa", 2019,

 <https://repository.gchumanrights.org/bitstream/handle/20.

 500.11825/1582/3.Global%20article%20HRDA_2_2019.pdf?sequen

 ce=4&isAllowed=y>.

 [Pensado] Jaime Pensado, "Student Activism. Utopian Dreams.",

 ReVista. Harvard Review of Latin America (2012). , 2012,

 <http://revista.drclas.harvard.edu/book/student-activism>.

 [PipekWulf]

 Pipek, V. and W. Wolf, "Infrastructuring: Towards an

 Integrated Perspective on the Design and Use of

 Information Technology", Journal of the Association for

 Information Systems (10) 5, pp. 306-332 , 2009.

 [RFC0001] Crocker, S., "Host Software", RFC 1, DOI 10.17487/RFC0001,

 April 1969, <https://www.rfc-editor.org/rfc/rfc1>.

 [RFC0155] North, J., "ARPA Network mailing lists", RFC 155,

 DOI 10.17487/RFC0155, May 1971,

 <https://www.rfc-editor.org/rfc/rfc155>.

 [RFC0903] Finlayson, R., Mann, T., Mogul, J., and M. Theimer, "A

 Reverse Address Resolution Protocol", STD 38, RFC 903,

 DOI 10.17487/RFC0903, June 1984,

 <https://www.rfc-editor.org/rfc/rfc903>.

 [RFC1163] Lougheed, K. and Y. Rekhter, "Border Gateway Protocol

 (BGP)", RFC 1163, DOI 10.17487/RFC1163, June 1990,

 <https://www.rfc-editor.org/rfc/rfc1163>.

 [RFC1164] Honig, J., Katz, D., Mathis, M., Rekhter, Y., and J. Yu,

 "Application of the Border Gateway Protocol in the

 Internet", RFC 1164, DOI 10.17487/RFC1164, June 1990,

 <https://www.rfc-editor.org/rfc/rfc1164>.

ten Oever, et al. Expires 13 October 2023 [Page 29]

Internet-Draft FoA April 2023

 [RFC1211] Westine, A. and J. Postel, "Problems with the maintenance

 of large mailing lists", RFC 1211, DOI 10.17487/RFC1211,

 March 1991, <https://www.rfc-editor.org/rfc/rfc1211>.

 [RFC1771] Rekhter, Y. and T. Li, "A Border Gateway Protocol 4 (BGP-

 4)", RFC 1771, DOI 10.17487/RFC1771, March 1995,

 <https://www.rfc-editor.org/rfc/rfc1771>.

 [RFC1930] Hawkinson, J. and T. Bates, "Guidelines for creation,

 selection, and registration of an Autonomous System (AS)",

 BCP 6, RFC 1930, DOI 10.17487/RFC1930, March 1996,

 <https://www.rfc-editor.org/rfc/rfc1930>.

 [RFC1958] Carpenter, B., Ed., "Architectural Principles of the

 Internet", RFC 1958, DOI 10.17487/RFC1958, June 1996,

 <https://www.rfc-editor.org/rfc/rfc1958>.

 [RFC2277] Alvestrand, H., "IETF Policy on Character Sets and

 Languages", BCP 18, RFC 2277, DOI 10.17487/RFC2277,

 January 1998, <https://www.rfc-editor.org/rfc/rfc2277>.

 [RFC2810] Kalt, C., "Internet Relay Chat: Architecture", RFC 2810,

 DOI 10.17487/RFC2810, April 2000,

 <https://www.rfc-editor.org/rfc/rfc2810>.

 [RFC2812] Kalt, C., "Internet Relay Chat: Client Protocol",

 RFC 2812, DOI 10.17487/RFC2812, April 2000,

 <https://www.rfc-editor.org/rfc/rfc2812>.

 [RFC3233] Hoffman, P. and S. Bradner, "Defining the IETF", BCP 58,

 RFC 3233, DOI 10.17487/RFC3233, February 2002,

 <https://www.rfc-editor.org/rfc/rfc3233>.

 [RFC4084] Klensin, J., "Terminology for Describing Internet

 Connectivity", BCP 104, RFC 4084, DOI 10.17487/RFC4084,

 May 2005, <https://www.rfc-editor.org/rfc/rfc4084>.

 [RFC4271] Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A

 Border Gateway Protocol 4 (BGP-4)", RFC 4271,

 DOI 10.17487/RFC4271, January 2006,

 <https://www.rfc-editor.org/rfc/rfc4271>.

 [RFC4880] Callas, J., Donnerhacke, L., Finney, H., Shaw, D., and R.

 Thayer, "OpenPGP Message Format", RFC 4880,

 DOI 10.17487/RFC4880, November 2007,

 <https://www.rfc-editor.org/rfc/rfc4880>.

ten Oever, et al. Expires 13 October 2023 [Page 30]

Internet-Draft FoA April 2023

 [RFC5694] Camarillo, G., Ed. and IAB, "Peer-to-Peer (P2P)

 Architecture: Definition, Taxonomies, Examples, and

 Applicability", RFC 5694, DOI 10.17487/RFC5694, November

 2009, <https://www.rfc-editor.org/rfc/rfc5694>.

 [RFC5751] Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet

 Mail Extensions (S/MIME) Version 3.2 Message

 Specification", RFC 5751, DOI 10.17487/RFC5751, January

 2010, <https://www.rfc-editor.org/rfc/rfc5751>.

 [RFC6176] Turner, S. and T. Polk, "Prohibiting Secure Sockets Layer

 (SSL) Version 2.0", RFC 6176, DOI 10.17487/RFC6176, March

 2011, <https://www.rfc-editor.org/rfc/rfc6176>.

 [RFC7118] Baz Castillo, I., Millan Villegas, J., and V. Pascual,

 "The WebSocket Protocol as a Transport for the Session

 Initiation Protocol (SIP)", RFC 7118,

 DOI 10.17487/RFC7118, January 2014,

 <https://www.rfc-editor.org/rfc/rfc7118>.

 [RFC7194] Hartmann, R., "Default Port for Internet Relay Chat (IRC)

 via TLS/SSL", RFC 7194, DOI 10.17487/RFC7194, August 2014,

 <https://www.rfc-editor.org/rfc/rfc7194>.

 [RFC8280] ten Oever, N. and C. Cath, "Research into Human Rights

 Protocol Considerations", RFC 8280, DOI 10.17487/RFC8280,

 October 2017, <https://www.rfc-editor.org/rfc/rfc8280>.

 [RutzenZenn]

 Rutzen, D. and J. Zenn, "Association and Assembly in the

 Digital Age", The International Journal of Not-for-Profit

 Law, Volume 13, Issue 4 , December 2011.

 [Sauter] Sauter, M., "The Coming Swarm", Bloomsbury , 2014.

 [Schleuder]

 Nadir, "Schleuder - A gpg-enabled mailinglist with

 remailing-capabilities.", 2017,

 <https://schleuder.nadir.org/>.

 [Stanford] Brownlee, K. and D. Jenkins, "Freedom of Association",

 2019,

 <https://plato.stanford.edu/entries/freedom-association/>.

ten Oever, et al. Expires 13 October 2023 [Page 31]

Internet-Draft FoA April 2023

 [Swire] Peter Swire, "Social Networks, Privacy, and Freedom of

 Association: Data Empowerment vs. Data Protection", North

 Carolina Law Review (2012) 90 (1): 104. , 2012,

 <https://ssrn.com/abstract=1989516 or

 http://dx.doi.org/10.2139/ssrn.1989516>.

 [Troncosoetal]

 Troncoso, C., Isaakdis, M., Danezis, G., and H. Halpin,

 "Systematizing Decentralization and Privacy: Lessons from

 15 Years of Research and Deployments", Proceedings on

 Privacy Enhancing Technologies ; 2017 (4):307-329 , 2017,

 <https://www.petsymposium.org/2017/papers/issue4/

 paper87-2017-4-source.pdf>.

 [UDHR] United Nations General Assembly, "The Universal

 Declaration of Human Rights", 1948,

 <http://www.un.org/en/documents/udhr/>.

 [UNGA] Hina Jilani, "Human rights defenders", A/59/401 , 2004,

 <http://www.un.org/en/ga/search/

 view_doc.asp?symbol=A/59/401 para. 46>.

 [UNGC37] United Nations Human Rights Committee, "Human Rights

 Committee General comment No. 37 (2020) on the right of

 peaceful assembly (article 21), CCPR/C/GC/3", 2020,

 <https://tbinternet.ohchr.org/_layouts/15/

 treatybodyexternal/

 TBSearch.aspx?Lang=en&TreatyID=8&DocTypeID=11>.

 [UNGPBHR] United Nations, "Guiding Principles on Business and Human

 Rights", 2011,

 <https://www.ohchr.org/documents/publications/

 guidingprinciplesbusinesshr_en.pdf>.

 [UNHRC2018]

 United Nations Human Rights Council, "UN Human Rights

 Council Resolution ’The promotion, protection and

 enjoyment of human rights on the Internet’ (A/HRC/32/

 L.20)", 2016,

 <https://digitallibrary.un.org/record/1639840?ln=en>.

ten Oever, et al. Expires 13 October 2023 [Page 32]

Internet-Draft FoA April 2023

 [UNHRC2020]

 Michelle Bachelet and United Nations, "Impact of new

 technologies on the promotion and protection of human

 rights in the context of assemblies, including peaceful

 protests. Report of the United Nations High Commissioner

 for Human Rights A/HRC/44/24, 2020", 2000,

 <https://www.ohchr.org/EN/HRBodies/HRC/RegularSessions/

 Session44/Documents/A_HRC_44_24_AEV.docx>.

 [UNSRFAA2019]

 Clément Voule and United Nations, "Report of the Special

 Rapporteur on the rights to freedom of peaceful assembly

 and of association", 2019,

 <https://undocs.org/A/HRC/41/41>.

 [UNSRFOAA2012]

 Maina Kiai and United Nations, "Report of the Special

 Rapporteur on the rights to freedom of peaceful assembly

 and of association", A/HRC/20/27", 2012,

 <http://freeassembly.net/wp-content/uploads/2013/10/A-HRC-

 20-27_en-annual-report-May-2012.pdf>.

 [ViennaDeclaration]

 United Nations, "Vienna Declaration and Programme of

 Action", 1993,

 <https://www.ohchr.org/en/professionalinterest/pages/

 vienna.aspx>.

 [Vu] Vu, Quang Hieu, Lupu, Mihai, and Ooi, Beng Chin, "Peer-to-

 Peer Computing: Principles and Applications", 2010,

 <https://www.springer.com/cn/book/9783642035135>.

 [W3C] W3C, "Accessibility", 2015,

 <https://www.w3.org/standards/webdesign/accessibility>.

Authors’ Addresses

 Niels ten Oever

 University of Amsterdam

 Email: mail@nielstenoever.net

 Stéphane Couture

 Université de Montréal

 Email: stephane.couture@umontreal.ca

ten Oever, et al. Expires 13 October 2023 [Page 33]

Internet-Draft FoA April 2023

 Mallory Knodel

 Center for Democracy & Technology

 Email: mknodel@cdt.org

ten Oever, et al. Expires 13 October 2023 [Page 34]

Human Rights Protocol Considerations Research Group G. Grover

Internet-Draft

Updates: 8280 (if approved) N. ten Oever

Intended status: Informational University of Amsterdam

Expires: 15 August 2024 12 February 2024

 Guidelines for Human Rights Protocol and Architecture Considerations

 draft-irtf-hrpc-guidelines-21

Abstract

 This document sets guidelines for human rights considerations for

 developers working on network protocols and architectures, similar to

 the work done on the guidelines for privacy considerations [RFC6973].

 This is an updated version of the guidelines for human rights

 considerations in [RFC8280].

 This document is not an Internet Standards Track specification; it is

 published for informational purposes.

 This informational document has consensus for publication from the

 Internet Research Task Force (IRTF) Human Right Protocol

 Considerations Research (HRPC) Group. It has been reviewed, tried,

 and tested by both by the research group as well as by researchers

 and practitioners from outside the research group. The research

 group acknowledges that the understanding of the impact of Internet

 protocols and architecture on society is a developing practice and is

 a body of research that is still in development.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 15 August 2024.

Grover & ten Oever Expires 15 August 2024 [Page 1]

Internet-Draft Guidelines for HRPC February 2024

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3

 2. Human rights threats . 4

 3. Conducting human rights reviews 5

 3.1. Analyzing drafts based on guidelines for human rights

 considerations model 6

 3.2. Analyzing drafts based on their perceived or speculated

 impact . 6

 3.3. Expert interviews . 6

 3.4. Interviews with impacted persons and communities 7

 3.5. Tracing impacts of implementations 7

 4. Guidelines for human rights considerations 7

 4.1. Intermediaries . 8

 4.2. Connectivity . 9

 4.3. Reliability . 9

 4.4. Content signals . 10

 4.5. Internationalization 11

 4.6. Localization . 12

 4.7. Open Standards . 13

 4.8. Heterogeneity Support 15

 4.9. Adaptability . 16

 4.10. Integrity . 17

 4.11. Authenticity . 17

 4.12. Confidentiality . 18

 4.13. Security . 20

 4.14. Privacy . 20

 4.15. Anonymity and Pseudonymity 21

 4.15.1. Pseudonymity . 22

 4.15.2. Unlinkability 23

 4.16. Censorship resistance 23

 4.17. Outcome Transparency 24

 4.18. Accessibility . 25

 4.19. Decentralization . 26

Grover & ten Oever Expires 15 August 2024 [Page 2]

Internet-Draft Guidelines for HRPC February 2024

 4.20. Remedy . 26

 4.21. Misc. considerations 27

 5. Document Status . 28

 6. Acknowledgements . 28

 7. Security Considerations 28

 8. IANA Considerations . 28

 9. Research Group Information 29

 10. Informative References 29

 Authors’ Addresses . 36

1. Introduction

 This document outlines a set of human rights protocol considerations

 for protocol developers. It provides questions engineers should ask

 themselves when developing or improving protocols if they want to

 understand how their decisions can potentially influence the exercise

 of human rights on the Internet. It should be noted that the impact

 of a protocol cannot solely be deduced from its design, but its usage

 and implementation should also be studied to form a full protocol

 human rights impact assessment.

 The questions are based on the research performed by the Human Rights

 Protocol Considerations (HRPC) research group which has been

 documented before these considerations. The research establishes

 that human rights relate to standards and protocols, and offers a

 common vocabulary of technical concepts that influence human rights

 and how these technical concepts can be combined to ensure that the

 Internet remains an enabling environment for human rights. With

 this, the contours of a model for developing human rights protocol

 considerations has taken shape.

 This document is an iteration of the guidelines that can be found in

 [RFC8280]. The methods for conducting human rights reviews

 (Section 3.2), and guidelines for human rights considerations

 (Section 3.3) in this document are being tested for relevance,

 accuracy, and validity. [HR-RT] The understanding of what human

 rights are is based on the Universal Declaration of Human Rights

 [UDHR] and subsequent treaties that jointly form the body of

 international human rights law [UNHR].

 This document does not provide a detailed taxonomy of the nature of

 (potential) human rights violations, whether direct or indirect,

 long-term or short-term, certain protocol choices might present. In

 part because this is highly context-dependent, and in part, because

 this document aims to provide a practical set of guidelines.

 However, further research in this field would definitely benefit

 developers and implementers.

Grover & ten Oever Expires 15 August 2024 [Page 3]

Internet-Draft Guidelines for HRPC February 2024

 This document is not an Internet Standards Track specification; it is

 published for informational purposes.

 This informational document has consensus for publication from the

 Internet Research Task Force (IRTF) Human Right Protocol

 Considerations Research Group. It has been reviewed, tried, and

 tested by both by the research group as well as by researchers and

 practitioners from outside the research group. The HRPC research

 group acknowledges that the understanding of the impact of Internet

 protocols and architecture on society is a developing practice and is

 a body of research that is still in development.

2. Human rights threats

 Threats to the exercise of human rights on the Internet come in many

 forms. Protocols and standards may harm or enable the right to

 freedom of expression, right to freedom of information, right to non-

 discrimination, right to equal protection, right to participate in

 cultural life, arts and science, right to freedom of assembly and

 association, right to privacy, and the right to security. An end-

 user who is denied access to certain services or content may be

 unable to disclose vital information about the malpractices of a

 government or other authority. A person whose communications are

 monitored may be prevented or dissuaded from exercising their right

 to freedom of association or participate in political processes

 [Penney]. In a worst-case scenario, protocols that leak information

 can lead to physical danger. A realistic example to consider is when

 individuals perceived as threats to the state are subjected to

 torture, extra-judicial killing or detention on the basis of

 information gathered by state agencies through the monitoring of

 network traffic.

 This document presents several examples of how threats to human

 rights materialize on the Internet. This threat modeling is inspired

 by [RFC6973] Privacy Considerations for Internet Protocols, which is

 based on security threat analysis. This method is a work in progress

 and by no means a perfect solution for assessing human rights risks

 in Internet protocols and systems. Certain specific human rights

 threats are indirectly considered in Internet protocols as part of

 the security considerations [BCP72], but privacy considerations

 [RFC6973] or reviews, let alone human rights impact assessments of

 protocols, are neither standardized nor implemented.

 Many threats, enablers, and risks are linked to different rights.

 This is not surprising if one takes into account that human rights

 are interrelated, interdependent, and indivisible. Here, however,

 were not discussing all human rights because not all human rights

 are relevant to information and communication technologies (ICTs) in

Grover & ten Oever Expires 15 August 2024 [Page 4]

Internet-Draft Guidelines for HRPC February 2024

 general and protocols and standards in particular [Bless]: The main

 source of the values of human rights is the International Bill of

 Human Rights that is composed of the Universal Declaration of Human

 Rights [UDHR] along with the International Covenant on Civil and

 Political Rights [ICCPR] and the International Covenant on Economic,

 Social and Cultural Rights [ICESCR]. In the light of several cases

 of Internet censorship, the UN Human Rights Council Resolution 20/8

 was adopted in 2012, affirming that the same rights that people have

 offline must also be protected online. [UNHRC2016] In 2015, the

 Charter of Human Rights and Principles for the Internet [IRP] was

 developed and released. According to these documents, some examples

 of human rights relevant for ICT systems are human dignity (Art. 1

 UDHR), non-discrimination (Art. 2), rights to life, liberty and

 security (Art. 3), freedom of opinion and expression (Art. 19),

 freedom of assembly and association (Art. 20), rights to equal

 protection, legal remedy, fair trial, due process, presumed innocent

 (Art. 711), appropriate social and international order (Art. 28),

 participation in public affairs (Art. 21), participation in cultural

 life, protection of the moral and material interests resulting from

 any scientific, literary or artistic production of which [they are]

 the author (Art. 27), and privacy (Art. 12). A partial catalog of

 human rights related to Information and Communications Technologies,

 including economic rights, can be found in [Hill2014].

 This is by no means an attempt to exclude specific rights or

 prioritize some rights over others.

3. Conducting human rights reviews

 Ideally, protocol developers and collaborators should incorporate

 human rights considerations into the design process itself (see

 Guidelines for human rights considerations). This section provides

 guidance on how to conduct a human rights review, i.e., gauge the

 impact or potential impact of a protocol or standard on human rights.

 Human rights reviews can be done by any participant, and can take

 place at different stages of the development process of an Internet-

 Draft. Generally speaking, it is easier to influence the development

 of a technology at earlier stages than at later stages. This does

 not mean that reviews at last-call are not relevant, but they are

 less likely to result in significant changes in the reviewed

 document.

Grover & ten Oever Expires 15 August 2024 [Page 5]

Internet-Draft Guidelines for HRPC February 2024

 Human rights review can be done by document authors, document

 shepherds, members of review teams, advocates, or impacted

 communities to influence the standard development process. IETF

 documents can benefit from people with different knowledges,

 perspectives, and backgrounds, especially since their implementation

 can impact many different communities as well.

 Methods for analyzing technology for specific human rights impacts

 are still quite nascent. Currently, five methods have been explored

 by the human rights review team, often in conjunction with each

 other:

3.1. Analyzing drafts based on guidelines for human rights

 considerations model

 This analysis of Internet-Drafts uses the model as described in

 section 4. The outlined categories and questions can be used to

 review an Internet-Draft. The advantage of this is that it provides

 a known overview, and document authors can go back to this document

 as well as [RFC8280] to understand the background and the context.

3.2. Analyzing drafts based on their perceived or speculated impact

 When reviewing an Internet-Draft, specific human rights impacts can

 become apparent by doing a close reading of the draft and seeking to

 understand how it might affect networks or society. While less

 structured than the straight use of the human rights considerations

 model, this analysis may lead to new speculative understandings of

 links between human rights and protocols.

3.3. Expert interviews

 Interviews with document authors, active members of the Working

 Group, or experts in the field can help explore the characteristics

 of the protocol and its effects. There are two main advantages to

 this approach: one the one hand, it allows the reviewer to gain a

 deeper understanding of the (intended) workings of the protocol; on

 the other hand, it also allows for the reviewer to start a discussion

 with experts or even document authors, which can help the review gain

 traction when it is published.

Grover & ten Oever Expires 15 August 2024 [Page 6]

Internet-Draft Guidelines for HRPC February 2024

3.4. Interviews with impacted persons and communities

 Protocols impact users of the Internet. Interviews can help the

 reviewer understand how protocols affect the people that use the

 protocols. Since human rights are best understood from the

 perspective of the rights-holder, this approach will improve the

 understanding of the real world effects of the technology. At the

 same time, it can be hard to attribute specific changes to a

 particular protocol, this is of course even harder when a protocol

 has not been (widely) deployed.

3.5. Tracing impacts of implementations

 The reality of deployed protocols can be at odds with the

 expectations during the protocol design and development phase

 [RFC8980]. When a specification already has associated running code,

 the code can be analyzed either in an experimental setting or on the

 Internet where its impact can be observed. In contrast to reviewing

 the draft text, this approach can allow the reviewer to understand

 how the specifications works in practice, and potentially what

 unknown or unexpected effects the technology has.

4. Guidelines for human rights considerations

 This section provides guidance for document authors in the form of a

 questionnaire about protocols and how technical decisions can shape

 the exercise of human rights. The questionnaire may be useful at any

 point in the design process, particularly after the document authors

 have developed a high-level protocol model as described in [RFC4101].

 These guidelines do not seek to replace any existing referenced

 specifications, but rather contribute to them and look at the design

 process from a human rights perspective.

 Protocols and Internet Standards might benefit from a documented

 discussion of potential human rights risks arising from potential

 misapplications of the protocol or technology described in the

 Request For Comments (RFC). This might be coupled with an

 Applicability Statement for that RFC.

 Note that the guidance provided in this section does not recommend

 specific practices. The range of protocols developed in the IETF is

 too broad to make recommendations about particular uses of data or

 how human rights might be balanced against other design goals.

 However, by carefully considering the answers to the following

 questions, document authors should be able to produce a comprehensive

 analysis that can serve as the basis for discussion on whether the

 protocol adequately takes specific human rights threats into account.

 This guidance is meant to help the thought process of a human rights

Grover & ten Oever Expires 15 August 2024 [Page 7]

Internet-Draft Guidelines for HRPC February 2024

 analysis; it does not provide specific directions for how to write a

 human rights considerations section (following the example set in

 [RFC6973]).

 In considering these questions, authors will need to be aware of the

 potential of technical advances or the passage of time to undermine

 protections. In general, considerations of rights are likely to be

 more effective if they are considered given a purpose and specific

 use cases, rather than as abstract absolute goals.

 Also note that while the section uses the word, protocol, the

 principles identified in these questions may be applicable to other

 types of solutions (extensions to existing protocols, architecture

 for solutions to specific problems, etc.).

4.1. Intermediaries

 Question(s): Does your protocol depend on or allow for protocol-

 specific functions at intermediary nodes?

 Explanation: The end-to-end principle [Saltzer] holds that certain

 functions can and should be performed at ends of the network.

 [RFC1958] states that in very general terms, the community believes

 that the goal is connectivity [] and the intelligence is end to end

 rather than hidden in the network. When a protocol exchange includes

 both endpoints and an intermediary, there are new opportunities for

 failure, especially when the intermediary is not under control of

 either endpoint, or even largely invisible to it, as, for instance,

 in intercepting HTTPS proxies [https-interception]. This pattern

 also contributes to ossification, because the intermediaries may

 impose protocol restrictions sometimes in violation of the

 specification that prevent the endpoints from using more modern

 protocols, as described in Section 9.3 of [RFC8446].

 Note that intermediaries are distinct from services: in the former

 case the third party element is part of the protocol exchange,

 whereas in the latter the endpoints communicate explicitly with the

 service. The client/server pattern provides clearer separation of

 responsibilities between elements than having an intermediary.

 However, even in client/server systems, it is often good practice to

 provide for end-to-end encryption between endpoints for protocol

 elements which are outside of the scope of the service, as in the

 design of MLS [I-D.ietf-mls-protocol].

 Example: Encryption between the endpoints can be used to protect the

 protocol from interference by intermediaries. The encryption of

 transport layer information in QUIC [RFC9000] and of the TLS Server

 Name Indication field [I-D.ietf-tls-esni] are examples of this

Grover & ten Oever Expires 15 August 2024 [Page 8]

Internet-Draft Guidelines for HRPC February 2024

 practice. One consequence of this is to limit the extent to which

 network operators can inspect traffic, requiring them to have control

 of the endpoints in order to monitor their behavior.

 Impacts:

 * Right to freedom of expression

 * Right to freedom of assembly and association

4.2. Connectivity

 Questions(s): Is your protocol optimized for low bandwidth and high

 latency connections? Could your protocol also be developed in a

 stateless manner?

 Also considering the fact that network quality and conditions vary

 across geography and time, it is also important to design protocols

 such that they are reliable even on low bandwidth and high latency

 connections.

 Impacts:

 * Right to freedom of expression

 * Right to freedom of assembly and association

4.3. Reliability

 Question(s): Is your protocol fault tolerant? Does it downgrade

 gracefully, i.e., with mechanisms for fallback and/or notice? Can

 your protocol resist malicious degradation attempts? Do you have a

 documented way to announce degradation? Do you have measures in

 place for recovery or partial healing from failure? Can your

 protocol maintain dependability and performance in the face of

 unanticipated changes or circumstances?

 Explanation: Reliability and resiliency ensures that a protocol will

 execute its function consistently and error resistant as described,

 and function without unexpected result. Measures for reliability in

 protocols assure users that their intended communication was

 successfully executed.

 A system that is reliable degrades gracefully and will have a

 documented way to announce degradation. It will also have mechanisms

 to recover from failure gracefully, and if applicable, will allow for

 partial healing.

Grover & ten Oever Expires 15 August 2024 [Page 9]

Internet-Draft Guidelines for HRPC February 2024

 It is important here to draw a distinction between random degradation

 and malicious degradation. Some attacks against previous versions of

 TLS, for example, exploited TLS ability to gracefully downgrade to

 non-secure cipher suites [FREAK][Logjam] from a functional

 perspective, this is useful; from a security perspective, this can be

 disastrous.

 For reliability, it is necessary that services notify the users if a

 delivery fails. In the case of real-time systems, in addition to the

 reliable delivery, the protocol needs to safeguard timeliness.

 Example: In the modern IP stack structure, a reliable transport layer

 requires an indication that transport processing has successfully

 completed, such as given by TCPs ACK message [RFC0793]. Similarly,

 an application layer protocol may require an application-specific

 acknowledgment that contains, among other things, a status code

 indicating the disposition of the request (See [RFC3724]).

 Impacts:

 * Right to freedom of expression

 * Right to security

4.4. Content signals

 Question(s): Does your protocol include explicit or implicit

 plaintext elements, either in the payload or headers, that can be

 used for differential treatment? Is there a way minimise leaking of

 such data to network intermediaries? If not, is there a way for

 deployments of the protocol to make the differential treatment

 (including prioritisation of certain traffic), if any, auditable for

 negative impacts on net neutrality?

 Example: When network intermediaries are able to determine the type

 of content that a packet is carrying then they can use that

 information to discriminate in favor of one type of content and

 against another. This impacts users ability to send and receive the

 content of their choice.

 As recommended in [RFC8558] protocol designers should avoid the

 construction of implicit signals of their content. In general,

 protocol designers should avoid adding explicit signals for

 intermediaries. In certain cases, it may be necessary to add such

 explicit signals, but designers should only do so when they provide

 clear benefit to end users (see [RFC8890] for more on the priority of

 constituencies). In these cases, the implications of those signal

 for human rights should be documented.

Grover & ten Oever Expires 15 August 2024 [Page 10]

Internet-Draft Guidelines for HRPC February 2024

 Note that many protocols provide signals that are intended for

 endpoints that can be used as implicit signals by intermediaries for

 traffic discrimination, either based on content (e.g., TCP port

 numbers) or sender/receiver (IP addresses). Where possible, these

 should be protected from intermediaries by encryption. In many cases

 e.g., IP address these signals are difficult to remove, but in

 other cases, such as TLS Application Layer Protocol Negotiation

 [RFC7301], there are active efforts to protect this data

 [I-D.ietf-tls-esni].

 * Right to freedom of expression

 * Right to non-discrimination

 * Right to equal protection

4.5. Internationalization

 Question(s): Does your protocol or specification define text string

 elements, in the payload or headers, that have to be understood or

 entered by humans? Does your specification allow Unicode? If so, do

 you accept texts in one charset (which must be UTF-8), or several

 (which is dangerous for interoperability)? If character sets or

 encodings other than UTF-8 are allowed, does your specification

 mandate a proper tagging of the charset? Did you have a look at

 [RFC6365]?

 Explanation: Internationalization refers to the practice of making

 protocols, standards, and implementations usable in different

 languages and scripts (see Localization). In the IETF,

 internationalization means to add or improve the handling of non-

 ASCII text in a protocol. [RFC6365] A different perspective, more

 appropriate to protocols that are designed for global use from the

 beginning, is the definition used by the World Wide Web Consortium

 (W3C):

 "Internationalization is the design and development of a

 product, application or document content that enables easy

 localization for target audiences that vary in culture, region,

 or language." {{W3Ci18nDef}}

Grover & ten Oever Expires 15 August 2024 [Page 11]

Internet-Draft Guidelines for HRPC February 2024

 Many protocols that handle text only handle one charset (US-ASCII),

 or leave the question of what coded character set and encoding are

 used up to local guesswork (which leads, of course, to

 interoperability problems). If multiple charsets are permitted, they

 must be explicitly identified [RFC2277]. Adding non-ASCII text to a

 protocol allows the protocol to handle more scripts, hopefully

 representing users across the world. In todays world, that is

 normally best accomplished by allowing Unicode encoded in UTF-8 only.

 In current IETF practice [RFC2277], internationalization is aimed at

 user-facing strings, not protocol elements, such as the verbs used by

 some text-based protocols. (Do note that some strings are both

 content and protocol elements, such as identifiers.) Although this

 is reasonable practice for non-user visible elements, given the

 IETFs mission to make the Internet a global network of networks,

 [RFC3935] developers should provide full and equal support for all

 scripts and character sets in the user-facing features of protocols

 and for any content they carry.

 Example: See localization

 Impacts:

 * Right to freedom of expression

 * Right to political participation

 * Right to participate in cultural life, arts and science

4.6. Localization

 Question(s): Does your protocol uphold the standards of

 internationalization? Have you made any concrete steps towards

 localizing your protocol for relevant audiences?

 Explanation: Localization refers to the adaptation of a product,

 application or document content to meet the language, cultural and

 other requirements of a specific target market (a locale)

 [W3Ci18nDef]. For our purposes, it can be described as the practice

 of translating an implementation to make it functional in a specific

 language or for users in a specific locale (see

 Internationalization). Internationalization is related to

 localization, but they are not the same. Internationalization is a

 necessary precondition for localization.

 Example: The Internet is a global medium, but many of its protocols

 and products are developed with a certain audience in mind, that

 often share particular characteristics like knowing how to read and

Grover & ten Oever Expires 15 August 2024 [Page 12]

Internet-Draft Guidelines for HRPC February 2024

 write in American Standard Code for Information Interchange (ASCII)

 and knowing English. This limits the ability of a large part of the

 worlds online population from using the Internet in a way that is

 culturally and linguistically accessible. An example of a standard

 that has taken into account the view that individuals like to have

 access to data in their native language can be found in [RFC5646].

 The document describes a way to label information with an identifier

 for the language in which it is written. And this allows information

 to be presented and accessed in more than one language.

 Impacts:

 * Right to non-discrimination

 * Right to participate in cultural life, arts and science

 * Right to freedom of expression

4.7. Open Standards

 Question(s): Is your protocol fully documented in a way that it could

 be easily implemented, improved, built upon and/or further developed?

 Do you depend on proprietary code for the implementation, running or

 further development of your protocol? Does your protocol favor a

 particular proprietary specification over technically-equivalent

 competing specification(s), for instance by making any incorporated

 vendor specification required or recommended [RFC2026]? Do you

 normatively reference another standard that is not available without

 cost (and could you do without it)? Are you aware of any patents

 that would prevent your standard from being fully implemented

 [RFC8179] [RFC6701]?

Grover & ten Oever Expires 15 August 2024 [Page 13]

Internet-Draft Guidelines for HRPC February 2024

 Explanation: The Internet was able to be developed into the global

 network of networks because of the existence of open, non-proprietary

 standards [Zittrain]. They are crucial for enabling

 interoperability. Yet, open standards are not explicitly defined

 within the IETF. On the subject, [RFC2026] states: Various national

 and international standards bodies, such as ANSI, ISO, IEEE, and ITU-

 T, develop a variety of protocol and service specifications that are

 similar to Technical Specifications defined at the IETF. National

 and international groups also publish implementors agreements that

 are analogous to Applicability Statements, capturing a body of

 implementation-specific detail concerned with the practical

 application of their standards. All of these are considered to be

 open external standards for the purposes of the Internet Standards

 Process. Similarly, [RFC3935] does not define open standards but

 does emphasize the importance of an open process, i.e., any

 interested person can participate in the work, know what is being

 decided, and make [their] voice heard on the issue.

 Open standards (and open source software) allow users to glean

 information about how the tools they are using work, including the

 tools security and privacy properties. They additionally allow for

 permissionless innovation, which is important to maintain the freedom

 and ability to freely create and deploy new protocols on top of the

 communications constructs that currently exist. It is at the heart

 of the Internet as we know it, and to maintain its fundamentally open

 nature, we need to be mindful of the need for developing open

 standards.

 All standards that need to be normatively implemented should be

 freely available and with reasonable protection for patent

 infringement claims, so it can also be implemented in open source or

 free software. Patents have often held back open standardization or

 been used against those deploying open standards, particularly in the

 domain of cryptography [newegg]. An exemption of this is sometimes

 made when a protocol is standardized that normatively relies on

 specifications produced by others standards development organizations

 (SDOs) that are not freely available. Patents in open standards or

 in normative references to other standards should have a patent

 disclosure [notewell], royalty-free licensing [patentpolicy], or some

 other form of fair, reasonable and non-discriminatory terms.

 Example: [RFC6108] describes a system for providing critical end-user

 notifications to web browsers, which has been deployed by Comcast, an

 Internet Service Provider (ISP). Such a notification system is being

 used to provide near-immediate notifications to customers, such as to

 warn them that their traffic exhibits patterns that are indicative of

 malware or virus infection. There are other proprietary systems that

 can perform such notifications, but those systems utilize Deep Packet

Grover & ten Oever Expires 15 August 2024 [Page 14]

Internet-Draft Guidelines for HRPC February 2024

 Inspection (DPI) technology. In contrast, that document describes a

 system that does not rely upon DPI, and is instead based on open IETF

 standards and open source applications.

 Impacts:

 * Right to freedom of expression

 * Right to participate in cultural life, arts and science

4.8. Heterogeneity Support

 Question(s): Does your protocol support heterogeneity by design?

 Does your protocol allow for multiple types of hardware? Does your

 protocol allow for multiple types of application protocols? Is your

 protocol liberal in what it receives and handles? Will it remain

 usable and open if the context changes?

 Explanation: The Internet is characterized by heterogeneity on many

 levels: devices and nodes, router scheduling algorithms and queue

 management mechanisms, routing protocols, levels of multiplexing,

 protocol versions and implementations, underlying link layers (e.g.,

 point-to-point, multi-access links, wireless, FDDI, etc.), in the

 traffic mix and in the levels of congestion at different times and

 places. Moreover, as the Internet is composed of autonomous

 organizations and ISPs, each with their own separate policy concerns,

 there is a large heterogeneity of administrative domains and pricing

 structures. As a result, the heterogeneity principle proposed in

 [RFC1958] needs to be supported by design [FIArch].

 Heterogeneity support in protocols can thus enable a wide range of

 devices and (by extension) users to participate on the network.

 Example: Heterogeneity significantly contributed to the success of

 the internet architecture [Zittrain]. Niels Bohr famously said:

 Prediction is very difficult, especially if its about the future,

 this also holds true for future uses of the internet architecture and

 infrastructure. Therefore, as a rule of thumb it is important to -

 as far as possible - design your protocol for different devices and

 uses, especially at lower layers of the stack. However, if you

 choose not to do this, it could be relevant to document the reasoning

 for that.

 Impacts:

 * Right to freedom of expression

 * Right to political participation

Grover & ten Oever Expires 15 August 2024 [Page 15]

Internet-Draft Guidelines for HRPC February 2024

4.9. Adaptability

 Question(s): Question: Is your protocol written in a modular fashion

 and does it facilitate or hamper extensibility? In this sense, does

 your protocol impact permissionless innovation? (See Open Standards)

 Explanation: Adaptability is closely interrelated with permissionless

 innovation: both maintain the freedom and ability to freely create

 and deploy new protocols on top of the communications constructs that

 currently exist. It is at the heart of the Internet as we know it,

 and to maintain its fundamentally open nature, we need to be mindful

 of the impact of protocols on maintaining or reducing permissionless

 innovation to ensure the Internet can continue to develop.

 Adaptability and permissionless innovation can be used to shape

 information networks as preferenced by groups of users. Furthermore,

 a precondition of adaptability is the ability of the people who can

 adapt the network to be able to know and understand the network.

 This is why adaptability and permissionless innovation are inherently

 connected to the right to education and the right to science as well

 as the right to freedom of assembly and association as well as the

 right to freedom of expression. Since it allows the users of the

 network to determine how to assemble, collaborate, and express

 themselves.

 Example: WebRTC generates audio and/or video data. WebRTC can be

 used in different locations by different parties; WebRTCs standard

 application programming interfaces (APIs) are developed to support

 applications from different voice service providers. Multiple

 parties will have similar capabilities, in order to ensure that all

 parties can build upon existing standards these need to be adaptable,

 and allow for permissionless innovation.

 Impacts:

 * Right to education

 * Right to science

 * Right to freedom of expression

 * Right to freedom of assembly and association

Grover & ten Oever Expires 15 August 2024 [Page 16]

Internet-Draft Guidelines for HRPC February 2024

4.10. Integrity

 Question(s): Does your protocol maintain, assure and/or verify the

 accuracy of payload data? Does your protocol maintain and assure the

 consistency of data? Does your protocol in any way allow for the

 data to be (intentionally or unintentionally) altered?

 Explanation: Integrity refers to the maintenance and assurance of the

 accuracy and consistency of data to ensure it has not been

 (intentionally or unintentionally) altered.

 Example: Integrity verification of data is important to prevent

 vulnerabilities and attacks from on-path attackers. These attacks

 happen when a third party (often for malicious reasons) intercepts a

 communication between two parties, inserting themselves in the middle

 changing the content of the data. In practice this looks as follows:

 Alice wants to communicate with Bob. Alice sends a message to Bob,

 which Corinne intercepts and modifies. Bob cannot see that the data

 from Alice was altered by Corinne. Corinne intercepts and alters the

 communication as it is sent between Alice and Bob. Corinne is able

 to control the communication content.

 Impacts:

 * Right to freedom of expression

 * Right to security

4.11. Authenticity

 Question(s): Do you have sufficient measures to confirm the truth of

 an attribute of a single piece of data or entity? Can the attributes

 get garbled along the way (see security)? If relevant, have you

 implemented IPsec, DNS Security (DNSSEC), HTTPS and other Standard

 Security Best Practices?

 Explanation: Authenticity ensures that data does indeed come from the

 source it claims to come from. This is important to prevent certain

 attacks or unauthorized access and use of data.

 At the same time, authentication should not be used as a way to

 prevent heterogeneity support, as is often done for vendor lock-in or

 digital rights management.

Grover & ten Oever Expires 15 August 2024 [Page 17]

Internet-Draft Guidelines for HRPC February 2024

 Example: Authentication of data is important to prevent

 vulnerabilities, and attacks from on-path attackers. These attacks

 happen when a third party (often for malicious reasons) intercepts a

 communication between two parties, inserting themselves in the middle

 and posing as both parties. In practice this looks as follows:

 Alice wants to communicate with Bob. Alice sends data to Bob.

 Corinne intercepts the data sent to Bob. Corinne reads (and

 potentially alters) the message to Bob. Bob cannot see that the data

 did not come from Alice but from Corinne.

 With proper authentication, the scenario would be as follows:

 Alice wants to communicate with Bob. Alice sends data to Bob.

 Corinne intercepts the data sent to Bob. Corinne reads and alters

 the message to Bob. Bob is unable to verify whether that the data

 came from Alice.

 Impacts:

 * Right to privacy

 * Right to freedom of expression

 * Right to security

4.12. Confidentiality

 Question(s): Does the protocol expose the transmitted data over the

 wire? Does the protocol expose information related to identifiers or

 data? If so, what does it reveal to each protocol entity (i.e.,

 recipients, intermediaries, and enablers) [RFC6973]? What options

 exist for protocol implementers to choose to limit the information

 shared with each entity? What operational controls are available to

 limit the information shared with each entity?

 What controls or consent mechanisms does the protocol define or

 require before personal data or identifiers are shared or exposed via

 the protocol? If no such mechanisms or controls are specified, is it

 expected that control and consent will be handled outside of the

 protocol?

 Does the protocol provide ways for initiators to share different

 pieces of information with different recipients? If not, are there

 mechanisms that exist outside of the protocol to provide initiators

 with such control?

Grover & ten Oever Expires 15 August 2024 [Page 18]

Internet-Draft Guidelines for HRPC February 2024

 Does the protocol provide ways for initiators to limit the sharing or

 express individuals preferences to recipients or intermediaries with

 regard to the collection, use, or disclosure of their personal data?

 If not, are there mechanisms that exist outside of the protocol to

 provide users with such control? Is it expected that users will have

 relationships that govern the use of the information (contractual or

 otherwise) with those who operate these intermediaries? Does the

 protocol prefer encryption over clear text operation?

 Explanation: Confidentiality refers to keeping your data secret from

 unintended listeners [BCP72]. The growth of the Internet depends on

 users having confidence that the network protects their personal data

 [RFC1984]. The possibility of pervasive monitoring and surveillance

 undermines users trust, and can be mitigated by ensuring

 confidentiality, i.e., passive attackers should gain little or no

 information from observation or inference of protocol activity.

 [RFC7258][RFC7624].

 Example: Protocols that do not encrypt their payload make the entire

 content of the communication available to the idealized attacker

 along their path. Following the advice in [RFC3365], most such

 protocols have a secure variant that encrypts the payload for

 confidentiality, and these secure variants are seeing ever-wider

 deployment. A noteworthy exception is DNS [RFC1035], as DNSSEC

 [RFC4033] does not have confidentiality as a requirement. This

 implies that, in the absence of the use of more recent standards like

 DNS over TLS [RFC7858] or DNS over HTTPS [RFC8484], all DNS queries

 and answers generated by the activities of any protocol are available

 to the attacker. When store-and-forward protocols are used (e.g.,

 SMTP [RFC5321]), intermediaries leave this data subject to

 observation by an attacker that has compromised these intermediaries,

 unless the data is encrypted end-to-end by the application-layer

 protocol or the implementation uses an encrypted store for this data

 [RFC7624].

 Impacts:

 * Right to privacy

 * Right to security

Grover & ten Oever Expires 15 August 2024 [Page 19]

Internet-Draft Guidelines for HRPC February 2024

4.13. Security

 Question(s): Did you have a look at Guidelines for Writing RFC Text

 on Security Considerations [BCP72]? Have you found any attacks that

 are somewhat related to your protocol/specification, yet considered

 out of scope of your document? Would these attacks be pertinent to

 the human rights enabling features of the Internet (as described

 throughout this document)?

 Explanation: Security is not a single monolithic property of a

 protocol or system, but rather a series of related but somewhat

 independent properties. Not all of these properties are required for

 every application. Since communications are carried out by systems

 and access to systems is through communications channels, security

 goals obviously interlock, but they can also be independently

 provided. [BCP72].

 Typically, any protocol operating on the Internet can be the target

 of passive attacks (when the attacker can access and read packets on

 the network); active attacks (when an attacker is capable of writing

 information to the network packets). [BCP72]

 Example: See [BCP72].

 Impacts:

 * Right to freedom of expression

 * Right to freedom of assembly and association

 * Right to non-discrimination

 * Right to security

4.14. Privacy

 Question(s): Did you have a look at the Guidelines in the Privacy

 Considerations for Internet Protocols [RFC6973] section 7? Does your

 protocol maintain the confidentiality of metadata? Could your

 protocol counter traffic analysis? Does your protocol adhere to data

 minimization principles? Does your document identify potentially

 sensitive data logged by your protocol and/or for how long that needs

 to be retained for technical reasons?

 Explanation: Privacy refers to the right of an entity (normally a

 person), acting on its own behalf, to determine the degree to which

 it will interact with its environment, including the degree to which

 the entity is willing to share its personal information with others.

Grover & ten Oever Expires 15 August 2024 [Page 20]

Internet-Draft Guidelines for HRPC February 2024

 [RFC4949]. If a protocol provides insufficient privacy protection it

 may have a negative impact on freedom of expression as users self-

 censor for fear of surveillance, or find themselves unable to express

 themselves freely.

 Example: See [RFC6973]

 Impacts:

 * Right to freedom of expression

 * Right to privacy

 * Right to non-discrimination

4.15. Anonymity and Pseudonymity

 Question(s): Does your protocol make use of identifiers? Are these

 identifiers persistent? Are they used across multiple contexts? Is

 it possible for the user to reset or rotate them without negatively

 impacting the operation fo the protocol? Are they visible to others

 besides the protocol endpoints? Are they tied to real-world

 identities? Have you considered the Privacy Considerations for

 Internet Protocols [RFC6973], especially section 6.1.2?

 Explanation: Most protocols depend on the use of some kind of

 identifier in order to correlate activity over time and space. For

 instance:

 * IP addresses are used as an identity for the source and

 destination for IP datagrams.

 * QUIC connection identifiers are used to correlate packets

 belonging to the same connection.

 * HTTP uses cookies to correlate multiple HTTP requests from the

 same client.

 * Email uses email addresses of the form example@example.com

 (mailto:example@example.com) to identify senders and receivers.

 In general, these identifiers serve a necessary function for protocol

 operations, by allowing them to maintain continuity. However, they

 can also create privacy risks. There are two major ways in which

 those risks manifest:

Grover & ten Oever Expires 15 August 2024 [Page 21]

Internet-Draft Guidelines for HRPC February 2024

 * The identifier may itself reveal the users identity in some way

 or be tied to an identifier which does, as is the case when E.164

 (telephone) numbers are used as identifiers for instant messaging

 systems.

 * While the identifier may not reveal the users identity, it may

 make it possible to link enough of a users behavior to threaten

 their privacy, as is the case with HTTP cookies.

 Because identifiers are necessary for protocol operation, true

 anonymity is very difficult to achieve, but there are practices which

 promote user privacy even when identifiers are used.

 Impacts:

 * Right to non-discrimination

 * Right to freedom of expression

 * Right to political participation

 * Right to freedom of assembly and association

4.15.1. Pseudonymity

 In general, user privacy is better preserved when identifiers are

 pseudonymous (not tied to a users real-world identity).

 Example: In the development of the IPv6 protocol, it was discussed to

 embed a Media Access Control (MAC) address into unique IP addresses.

 This would make it possible for eavesdroppers and other information

 collectors to identify when different addresses used in different

 transactions actually correspond to the same node. This is why

 standardization efforts like Privacy Extensions for Stateless Address

 Autoconfiguration in IPv6 [RFC4941] and MAC address randomization

 [draft-zuniga-mac-address-randomization] have been pursued.

 Note that it is often attractive to try to create a pseudonym from a

 persistent identifier. This can be very difficult to do correctly in

 a way that does not allow for recovering the persistent identifiers.

 Example: A common practice in Web tracking is to encrypt email

 addresses by hashing them, thus allegedly making them non-personally

 identifying. However, because hash functions are public operations,

 it is possible to dictionary search candidate email addresses and

 recover the original address [email-hashing].

Grover & ten Oever Expires 15 August 2024 [Page 22]

Internet-Draft Guidelines for HRPC February 2024

4.15.2. Unlinkability

 Even true pseudonymous identifiers can present a privacy risk if they

 are used across a wide enough scope. User privacy is better

 preserved if identifiers have limited scope both in time and space.

 Example: An example is Dynamic Host Configuration Protocol (DHCP)

 where sending a persistent identifier as the client name was not

 mandatory but, in practice, done by many implementations, before

 [RFC7844].

 Example: Third party cookies in HTTP allow trackers to correlate HTTP

 traffic across sites. This is the foundation of a whole ecosystem of

 Web tracking. Increasingly, Web browsers are restricting the use of

 third party cookies in order to protect user privacy.

4.16. Censorship resistance

 Question(s): Does your protocol architecture facilitate censorship?

 Does it include choke points which are easy to use for censorship?

 Does it expose identifiers which can be used to selectively block

 certain kinds of trafic? Could it be designed to be more censorship

 resistant? Does your protocol make it apparent or transparent when

 access to a resource is restricted and the reasons why it is

 restricted?

 Explanation: Governments and service providers block or filter

 content or traffic, often without the knowledge of end-users.

 [RFC7754] See [draft-irtf-pearg-censorship] for a survey of

 censorship techniques employed across the world, which lays out

 protocol properties that have been exploited to censor access to

 information. Censorship resistance refers to the methods and

 measures to prevent Internet censorship.

 Example: The current design of the Web has a number of architectural

 choke points where it is possible for censors to intervene. These

 include obtaining the control of the domain name itself, DNS blocking

 at either the protocol layer or at the resolver, IP address blocking,

 and blocking at the Web server. There has been extensive work on

 content distribution systems which are intended to be more censorship

 resistant, and some, such as BitTorrent, are in wide use, but these

 systems may have inferior reliability and performance compared to the

 Web (e.g., they do not support active content on the server).

 Example: Identifiers of content exposed within a protocol might be

 used to facilitate censorship by allowing the censor to determine

 which traffic to block. DNS queries, the host request header in an

 HTTP request, the Server Name Indication (SNI) in a Transport Layer

Grover & ten Oever Expires 15 August 2024 [Page 23]

Internet-Draft Guidelines for HRPC February 2024

 Security (TLS) ClientHello are all examples of protocol elements that

 can travel in plaintext and be used by censors to identify what

 content a user is trying to access. [draft-irtf-pearg-censorship].

 Protocol mechanisms such as Encrypted Client Hello

 [I-D.ietf-tls-esni] or DNS over HTTPS [RFC8484] that encrypt metadata

 provide some level of resistance to this type of protocol inspection.

 Full traffic encryption systems such as Tor [https://torproject.org]

 can also be used by people access otherwise censored resources.

 Example: As noted above, one way to censor Web traffic is to require

 the server to block it or require internet service providers to block

 requests to the server. In HTTP, denial or restriction of access can

 be made apparent by the use of status code 451, which allows server

 operators and intermediaries to operate with greater transparency in

 circumstances where issues of law or public policy affect their

 operation [RFC7725]. If a protocol potentially enables censorship,

 protocol designers should strive towards creating error codes that

 capture different scenarios (blocked due to administrative policy,

 unavailable because of legal requirements, etc.) to minimize

 ambiguity for end-users.

 Impacts:

 * Right to freedom of expression

 * Right to political participation

 * Right to participate in cultural life, arts, and science

 * Right to freedom of assembly and association

4.17. Outcome Transparency

 Question(s): Are the intended and forseen effects of your protocol

 documented and easily comprehensible?

 Explanation: Certain technical choices may have unintended

 consequences. Have you described the central use case(s) for your

 protocol with a clear description of expected behavior and how it

 may, or may not, impact other protocols, implementations, user

 expectations, or behavior? Have you reviewed other protocols that

 solve similar problems, or make use of similar mechanisms, to see if

 there are lessons that can be learnt from their use and misuse?

 Example: Lack of authenticity may lead to lack of integrity and

 negative externalities, of which spam is an example. Lack of data

 that could be used for billing and accounting can lead to so-called

 free arrangements which obscure the actual costs and distribution

Grover & ten Oever Expires 15 August 2024 [Page 24]

Internet-Draft Guidelines for HRPC February 2024

 of the costs, for example the barter arrangements that are commonly

 used for Internet interconnection; and the commercial exploitation of

 personal data for targeted advertising which is the most common

 funding model for the so-called free services such as search

 engines and social networks. Unexpected outcomes might not be

 technical, but rather architectural, social or economic. Therefore

 it is of importance to document the intended outcomes and other

 possible outcomes that have been considered.

 Impacts:

 * Right to freedom of expression

 * Right to privacy

 * Right to freedom of assembly and association

 * Right to access to information

4.18. Accessibility

 Question(s): Is your protocol designed to provide an enabling

 environment for all? Have you looked at the W3C Web Accessibility

 Initiative for examples and guidance?

 Explanation: Sometimes in the design of protocols, websites, web

 technologies, or web tools, barriers are created that exclude people

 from using the Web. The Internet should be designed to work for all

 people, whatever their hardware, software, language, culture,

 location, or physical or mental ability. When the Internet

 technologies meet this goal, it will be accessible to people with a

 diverse range of hearing, movement, sight, and cognitive ability.

 [W3CAccessibility]

 Example: The HTML protocol as defined in [HTML5] specifically

 requires that every image must have an alt attribute (with a few

 exceptions) to ensure images are accessible for people that cannot

 themselves decipher non-text content in web pages.

 Another example is the work done in the AVT and AVTCORE working

 groups in the IETF that enables text conversation in multimedia, text

 telephony, wireless multimedia and video communications for sign

 language and lip-reading (i.e., [RFC9071]).

 Impacts:

 * Right to non-discrimination

Grover & ten Oever Expires 15 August 2024 [Page 25]

Internet-Draft Guidelines for HRPC February 2024

 * Right to freedom of assembly and association

 * Right to education

 * Right to political participation

4.19. Decentralization

 Question(s): Can your protocol be implemented without a single point

 of control? If applicable, can your protocol be deployed in a

 federated manner? Does your protocol create additional centralized

 points of control?

 Explanation: Decentralization is one of the central technical

 concepts of the architecture of the Internet, and is embraced as such

 by the IETF [RFC3935]. It refers to the absence or minimization of

 centralized points of control, a feature that is assumed to make it

 easy for new users to join and new uses to unfold [Brown]. It also

 reduces issues surrounding single points of failure, and distributes

 the network such that it continues to function even if one or several

 nodes are disabled. With the commercialization of the Internet in

 the early 1990s, there has been a slow move away from

 decentralization, to the detriment of the technical benefits of

 having a decentralized Internet. For a more detailed discussion of

 this topic, please see [arkkoetal].

 Example: The bits traveling the Internet are increasingly susceptible

 to monitoring and censorship, from both governments and ISPs, as well

 as third (malicious) parties. The ability to monitor and censor is

 further enabled by the increased centralization of the network that

 creates central infrastructure points that can be tapped into. The

 creation of peer-to-peer networks and the development of voice-over-

 IP protocols using peer-to-peer technology in combination with

 distributed hash table (DHT) for scalability are examples of how

 protocols can preserve decentralization [Pouwelse].

 Impacts:

 * Right to freedom of expression

 * Right to freedom of assembly and association

4.20. Remedy

 Question(s): Can your protocol facilitate a negatively impacted

 partys right to remedy without disproportionately impacting other

 parties human rights, especially their right to privacy?

Grover & ten Oever Expires 15 August 2024 [Page 26]

Internet-Draft Guidelines for HRPC February 2024

 Explanation: Providing access to remedy by states and corporations is

 a part of the UN Guiding Principles on Business and Human Rights

 [UNGP]. Access to remedy may help victims of human rights violations

 in seeking justice, or allow law enforcement agencies to identify a

 possible violator. However, current mechanisms in protocols that try

 to enable attribution to individuals impede the exercise of the

 right to privacy. The former UN Special Rapporteur for Freedom of

 Expression has also argued that anonymity is an inherent part of

 freedom of expression [Kaye]. Considering the potential adverse

 impact of attribution on the right to privacy and freedom of

 expression, enabling attribution on an individual level is most

 likely not consistent with human rights.

 Example: Adding personally identifiable information to data streams

 as a means to enable the human right to remedy might help in

 identifying a violator of human rights and provide access to remedy,

 but this would disproportionally affect all users right to privacy,

 anonymous expression, and association. Furthermore, there are some

 recent advances in enabling abuse detection in end-to-end encrypted

 messaging systems, which also carry some risk to users privacy

 [messenger-franking][hecate].

 Impacts:

 * Right to remedy

 * Right to security

 * Right to privacy

4.21. Misc. considerations

 Question(s): Have you considered potential negative consequences

 (individual or societal) that your protocol or document might have?

 Explanation: Publication of a particular RFC under a certain status

 has consequences. Publication as an Internet Standard as part of the

 Standards Track may signal to implementers that the specification has

 a certain level of maturity, operational experience, and consensus.

 Similarly, publication of a specification an experimental document as

 part of the non-standards track would signal to the community that

 the document may be intended for eventual standardization but [may]

 not yet [be] ready for wide deployment. The extent of the

 deployment, and consequently its overall impact on end-users, may

 depend on the document status presented in the RFC. See [BCP9] and

 updates to it for a fuller explanation.

Grover & ten Oever Expires 15 August 2024 [Page 27]

Internet-Draft Guidelines for HRPC February 2024

5. Document Status

 This RG document lays out best practices and guidelines for human

 rights reviews of network protocols, architectures and other

 Internet-Drafts and RFCs.

6. Acknowledgements

 Thanks to:

 * Corinne Cath-Speth for work on [RFC8280].

 * Reese Enghardt, Joe Hall, Avri Doria, Joey Salazar, Corinne Cath-

 Speth, Farzaneh Badii, Sandra Braman, Colin Perkins, John Curran,

 Eliot Lear, Mallory Knodel, Brian Trammell, Jane Coffin, Eric

 Rescorla, Sofía Celi and the hrpc list for reviews and

 suggestions.

 * Individuals who conducted human rights reviews for their work and

 feedback: Amelia Andersdotter, Shane Kerr, Beatrice Martini, Karan

 Saini, and Shivan Kaul Sahib.

7. Security Considerations

 Article three of the Universal Declaration of Human Rights reads:

 Everyone has the right to life, liberty and security of person..

 This article underlines the importance of security and its

 interrelation with human life and liberty, but since human rights are

 indivisible, interrelated and interdependent, security is also

 closely linked to other human rights and freedoms. This document

 seeks to strengthen human rights, freedoms, and security by relating

 and translating these concepts to concepts and practices as they are

 used in Internet protocol and architecture development. The aim of

 this is to secure human rights and thereby improve the

 sustainability, usability, and effectiveness of the network. The

 document seeks to achieve this by providing guidelines as done in

 section three of this document.

8. IANA Considerations

 This document has no actions for IANA.

Grover & ten Oever Expires 15 August 2024 [Page 28]

Internet-Draft Guidelines for HRPC February 2024

9. Research Group Information

 The discussion list for the IRTF Human Rights Protocol Considerations

 Research Group is located at the e-mail address hrpc@ietf.org

 (mailto:hrpc@ietf.org). Information on the group and information on

 how to subscribe to the list is at

 https://www.irtf.org/mailman/listinfo/hrpc

 (https://www.irtf.org/mailman/listinfo/hrpc)

 Archives of the list can be found at: https://www.irtf.org/mail-

 archive/web/hrpc/current/index.html (https://www.irtf.org/mail-

 archive/web/hrpc/current/index.html)

10. Informative References

 [arkkoetal]

 Arkko, J., Trammell, B., Notthingham, M., Huitema, C.,

 Thomson, M., Tantsure, J., and N. ten Oever,

 "Considerations on Internet Consolidation and the Internet

 Architecture", 2019,

 <https://datatracker.ietf.org/doc/html/draft-arkko-iab-

 internet-consolidation-02>.

 [BCP72] IETF, "Guidelines for Writing RFC Text on Security

 Considerations", 2003,

 <https://datatracker.ietf.org/doc/bcp72/>.

 [BCP9] Bradner, S. and IETF, "The Internet Standards Process --

 Revision 3", 1996,

 <https://datatracker.ietf.org/doc/rfc2026/>.

 [Bless] Bless, R. and C. Orwat, "Values and Networks", 2015.

 [Brown] Brown, I. and M. Ziewitz, "A Prehistory of Internet

 Governance", Research Handbook on Governance of the

 Internet. Cheltenham, Edward Elgar , 2013.

 [draft-ietf-ohai-ohttp]

 Thomson, M. and C.A. Wood, "Oblivious DNS Over HTTPS",

 2023, <https://datatracker.ietf.org/doc/html/draft-ietf-

 ohai-ohttp>.

 [draft-irtf-pearg-censorship]

 Hall, J., Aaron, M., Adams, S., Jones, B., and N.

 Feamster, "A Survey of Worldwide Censorship Techniques",

 2020,

 <https://tools.ietf.org/html/draft-irtf-pearg-censorship>.

Grover & ten Oever Expires 15 August 2024 [Page 29]

Internet-Draft Guidelines for HRPC February 2024

 [draft-zuniga-mac-address-randomization]

 Zuniga, J.C., Bernardos, C.J., and A. Andersdotter, "MAC

 address randomization", 2020,

 <https://tools.ietf.org/html/draft-ietf-madinas-mac-

 address-randomization>.

 [email-hashing]

 Acar, G., Englehardt, S., and A. Narayanan, "Four cents to

 deanonymize: Companies reverse hashed email addresses",

 n.d., <https://freedom-to-tinker.com/2018/04/09/four-

 cents-to-deanonymize-companies-reverse-hashed-email-

 addresses/>.

 [FIArch] "Future Internet Design Principles", January 2012,

 <http://www.future-internet.eu/uploads/media/

 FIArch_Design_Principles_V1.0.pdf>.

 [FREAK] "Tracking the FREAK Attack", 2015,

 <https://web.archive.org/web/20150304002021/

 https://freakattack.com/>.

 [geekfeminism]

 Geek Feminism Wiki, "Pseudonymity", 2015,

 <http://geekfeminism.wikia.com/wiki/Pseudonymity>.

 [hecate] Issa, R., Alhaddad, N., and M. Varia, "Hecate, Abuse

 Reporting in Secure Messengers with Sealed Sender", 2022,

 <https://eprint.iacr.org/2021/1686>.

 [Hill2014] Hill, R., "Partial Catalog of Human Rights Related to ICT

 Activities", 2014,

 <http://www.apig.ch/UNIGE%20Catalog.pdf>.

 [HR-RT] "Human Rights Reviews", 2022,

 <https://github.com/IRTF-HRPC/reviews>.

 [HTML5] W3C, "HTML5", 2014, <https://www.w3.org/TR/html5/>.

 [https-interception]

 Durumeric, Z., Ma, Z., Springall, D., Barnes, R.,

 Sullivan, N., Bursztein, E., Bailey, M., Halderman, J.,

 and V. Paxson, "The Security Impact of HTTPS

 Interception", 2017.

Grover & ten Oever Expires 15 August 2024 [Page 30]

Internet-Draft Guidelines for HRPC February 2024

 [I-D.ietf-mls-protocol]

 Barnes, R., Beurdouche, B., Robert, R., Millican, J.,

 Omara, E., and K. Cohn-Gordon, "The Messaging Layer

 Security (MLS) Protocol", 2023,

 <https://datatracker.ietf.org/doc/draft-ietf-mls-

 protocol/>.

 [I-D.ietf-tls-esni]

 Rescorla, E., Oku, K., Sullivan, N., and C. A. Wood, "TLS

 Encrypted Client Hello", Work in Progress, Internet-Draft,

 draft-ietf-tls-esni-17, 9 October 2023,

 <https://datatracker.ietf.org/doc/html/draft-ietf-tls-

 esni-17>.

 [ICCPR] United Nations General Assembly, "International Covenant

 on Civil and Political Rights", 1976,

 <http://www.ohchr.org/EN/ProfessionalInterest/Pages/

 CCPR.aspx>.

 [ICESCR] United Nations General Assembly, "International Covenant

 on Economic, Social and Cultural Rights", 1966,

 <http://www.ohchr.org/EN/ProfessionalInterest/Pages/

 CESCR.aspx>.

 [IRP] Internet Rights and Principles Dynamic Coalition, "10

 Internet Rights & Principles", 2014,

 <http://internetrightsandprinciples.org/site/wp-

 content/uploads/2014/06/

 IRPC_10RightsandPrinciples_28May2014-11.pdf>.

 [Kaye] Kaye, D., "The use of encryption and anonymity in digital

 communications", 2015,

 <https://www.ohchr.org/EN/HRbodies/HRC/RegularSessions/

 Session29/Documents/A.HRC.29.32_AEV.doc>.

 [Logjam] Adrian, D., Bhargavan, K., and . et al, "Imperfect Forward

 Secrecy, How Diffie-Hellman Fails in Practice", 2015,

 <https://weakdh.org/imperfect-forward-secrecy-ccs15.pdf>.

 [messenger-franking]

 Grubbs, P., Lu, J., and T. Ristenpart, "Message Franking

 via Committing Authenticated Encryption", 2017,

 <https://eprint.iacr.org/2017/664>.

 [newegg] Mullin, J., "Newegg on trial: Mystery company TQP rewrites

 the history of encryption", 2013, <http://arstechnica.com/

 tech-policy/2013/11/newegg-on-trial-mystery-company-tqp-

 re-writes-the-history-of-encryption/>.

Grover & ten Oever Expires 15 August 2024 [Page 31]

Internet-Draft Guidelines for HRPC February 2024

 [notewell] IETF, "Note Well", 2015,

 <https://www.ietf.org/about/note-well.html>.

 [patentpolicy]

 W3C, "W3C Patent Policy", 2004,

 <https://www.w3.org/Consortium/Patent-Policy-20040205/>.

 [Penney] Penney, J., "Chilling Effects: Online Surveillance and

 Wikipedia Use", 2016, <http://papers.ssrn.com/sol3/

 papers.cfm?abstract_id=2769645>.

 [Pouwelse] Pouwelse, Ed, J., "Media without censorship", 2012,

 <https://tools.ietf.org/html/draft-pouwelse-censorfree-

 scenarios>.

 [RFC0793] Postel, J., "Transmission Control Protocol", RFC 793,

 DOI 10.17487/RFC0793, September 1981,

 <https://www.rfc-editor.org/info/rfc793>.

 [RFC1035] Mockapetris, P., "Domain names - implementation and

 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,

 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC1958] Carpenter, B., Ed., "Architectural Principles of the

 Internet", RFC 1958, DOI 10.17487/RFC1958, June 1996,

 <https://www.rfc-editor.org/info/rfc1958>.

 [RFC1984] IAB and IESG, "IAB and IESG Statement on Cryptographic

 Technology and the Internet", BCP 200, RFC 1984,

 DOI 10.17487/RFC1984, August 1996,

 <https://www.rfc-editor.org/info/rfc1984>.

 [RFC2026] Bradner, S., "The Internet Standards Process -- Revision

 3", BCP 9, RFC 2026, DOI 10.17487/RFC2026, October 1996,

 <https://www.rfc-editor.org/info/rfc2026>.

 [RFC2277] Alvestrand, H., "IETF Policy on Character Sets and

 Languages", BCP 18, RFC 2277, DOI 10.17487/RFC2277,

 January 1998, <https://www.rfc-editor.org/info/rfc2277>.

 [RFC3365] Schiller, J., "Strong Security Requirements for Internet

 Engineering Task Force Standard Protocols", BCP 61,

 RFC 3365, DOI 10.17487/RFC3365, August 2002,

 <https://www.rfc-editor.org/info/rfc3365>.

Grover & ten Oever Expires 15 August 2024 [Page 32]

Internet-Draft Guidelines for HRPC February 2024

 [RFC3724] Kempf, J., Ed., Austein, R., Ed., and IAB, "The Rise of

 the Middle and the Future of End-to-End: Reflections on

 the Evolution of the Internet Architecture", RFC 3724,

 DOI 10.17487/RFC3724, March 2004,

 <https://www.rfc-editor.org/info/rfc3724>.

 [RFC3935] Alvestrand, H., "A Mission Statement for the IETF",

 BCP 95, RFC 3935, DOI 10.17487/RFC3935, October 2004,

 <https://www.rfc-editor.org/info/rfc3935>.

 [RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S.

 Rose, "DNS Security Introduction and Requirements",

 RFC 4033, DOI 10.17487/RFC4033, March 2005,

 <https://www.rfc-editor.org/info/rfc4033>.

 [RFC4101] Rescorla, E. and IAB, "Writing Protocol Models", RFC 4101,

 DOI 10.17487/RFC4101, June 2005,

 <https://www.rfc-editor.org/info/rfc4101>.

 [RFC4941] Narten, T., Draves, R., and S. Krishnan, "Privacy

 Extensions for Stateless Address Autoconfiguration in

 IPv6", RFC 4941, DOI 10.17487/RFC4941, September 2007,

 <https://www.rfc-editor.org/info/rfc4941>.

 [RFC4949] Shirey, R., "Internet Security Glossary, Version 2",

 FYI 36, RFC 4949, DOI 10.17487/RFC4949, August 2007,

 <https://www.rfc-editor.org/info/rfc4949>.

 [RFC5321] Klensin, J., "Simple Mail Transfer Protocol", RFC 5321,

 DOI 10.17487/RFC5321, October 2008,

 <https://www.rfc-editor.org/info/rfc5321>.

 [RFC5646] Phillips, A., Ed. and M. Davis, Ed., "Tags for Identifying

 Languages", BCP 47, RFC 5646, DOI 10.17487/RFC5646,

 September 2009, <https://www.rfc-editor.org/info/rfc5646>.

 [RFC6108] Chung, C., Kasyanov, A., Livingood, J., Mody, N., and B.

 Van Lieu, "Comcast’s Web Notification System Design",

 RFC 6108, DOI 10.17487/RFC6108, February 2011,

 <https://www.rfc-editor.org/info/rfc6108>.

 [RFC6235] Boschi, E. and B. Trammell, "IP Flow Anonymization

 Support", RFC 6235, DOI 10.17487/RFC6235, May 2011,

 <https://www.rfc-editor.org/info/rfc6235>.

Grover & ten Oever Expires 15 August 2024 [Page 33]

Internet-Draft Guidelines for HRPC February 2024

 [RFC6365] Hoffman, P. and J. Klensin, "Terminology Used in

 Internationalization in the IETF", BCP 166, RFC 6365,

 DOI 10.17487/RFC6365, September 2011,

 <https://www.rfc-editor.org/info/rfc6365>.

 [RFC6701] Farrel, A. and P. Resnick, "Sanctions Available for

 Application to Violators of IETF IPR Policy", RFC 6701,

 DOI 10.17487/RFC6701, August 2012,

 <https://www.rfc-editor.org/info/rfc6701>.

 [RFC6973] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,

 Morris, J., Hansen, M., and R. Smith, "Privacy

 Considerations for Internet Protocols", RFC 6973,

 DOI 10.17487/RFC6973, July 2013,

 <https://www.rfc-editor.org/info/rfc6973>.

 [RFC7258] Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an

 Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May

 2014, <https://www.rfc-editor.org/info/rfc7258>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,

 "Transport Layer Security (TLS) Application-Layer Protocol

 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,

 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

 [RFC7624] Barnes, R., Schneier, B., Jennings, C., Hardie, T.,

 Trammell, B., Huitema, C., and D. Borkmann,

 "Confidentiality in the Face of Pervasive Surveillance: A

 Threat Model and Problem Statement", RFC 7624,

 DOI 10.17487/RFC7624, August 2015,

 <https://www.rfc-editor.org/info/rfc7624>.

 [RFC7725] Bray, T., "An HTTP Status Code to Report Legal Obstacles",

 RFC 7725, DOI 10.17487/RFC7725, February 2016,

 <https://www.rfc-editor.org/info/rfc7725>.

 [RFC7754] Barnes, R., Cooper, A., Kolkman, O., Thaler, D., and E.

 Nordmark, "Technical Considerations for Internet Service

 Blocking and Filtering", RFC 7754, DOI 10.17487/RFC7754,

 March 2016, <https://www.rfc-editor.org/info/rfc7754>.

 [RFC7844] Huitema, C., Mrugalski, T., and S. Krishnan, "Anonymity

 Profiles for DHCP Clients", RFC 7844,

 DOI 10.17487/RFC7844, May 2016,

 <https://www.rfc-editor.org/info/rfc7844>.

Grover & ten Oever Expires 15 August 2024 [Page 34]

Internet-Draft Guidelines for HRPC February 2024

 [RFC7858] Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,

 and P. Hoffman, "Specification for DNS over Transport

 Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858, May

 2016, <https://www.rfc-editor.org/info/rfc7858>.

 [RFC8179] Bradner, S. and J. Contreras, "Intellectual Property

 Rights in IETF Technology", BCP 79, RFC 8179,

 DOI 10.17487/RFC8179, May 2017,

 <https://www.rfc-editor.org/info/rfc8179>.

 [RFC8280] ten Oever, N. and C. Cath, "Research into Human Rights

 Protocol Considerations", RFC 8280, DOI 10.17487/RFC8280,

 October 2017, <https://www.rfc-editor.org/info/rfc8280>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol

 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,

 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8484] Hoffman, P. and P. McManus, "DNS Queries over HTTPS

 (DoH)", RFC 8484, DOI 10.17487/RFC8484, October 2018,

 <https://www.rfc-editor.org/info/rfc8484>.

 [RFC8558] Hardie, T., Ed., "Transport Protocol Path Signals",

 RFC 8558, DOI 10.17487/RFC8558, April 2019,

 <https://www.rfc-editor.org/info/rfc8558>.

 [RFC8890] Nottingham, M., "The Internet is for End Users", RFC 8890,

 DOI 10.17487/RFC8890, August 2020,

 <https://www.rfc-editor.org/info/rfc8890>.

 [RFC8980] Arkko, J. and T. Hardie, "Report from the IAB Workshop on

 Design Expectations vs. Deployment Reality in Protocol

 Development", RFC 8980, DOI 10.17487/RFC8980, February

 2021, <https://www.rfc-editor.org/info/rfc8980>.

 [RFC9000] Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

 Multiplexed and Secure Transport", RFC 9000,

 DOI 10.17487/RFC9000, May 2021,

 <https://www.rfc-editor.org/info/rfc9000>.

 [RFC9071] Hellström, G., "RTP-Mixer Formatting of Multiparty Real-

 Time Text", RFC 9071, DOI 10.17487/RFC9071, July 2021,

 <https://www.rfc-editor.org/info/rfc9071>.

 [Saltzer] Saltzer, J.H., Reed, D.P., and D.D. Clark, "End-to-End

 Arguments in System Design", ACM TOCS, Vol 2, Number 4,

 November 1984, pp 277-288. , 1984.

Grover & ten Oever Expires 15 August 2024 [Page 35]

Internet-Draft Guidelines for HRPC February 2024

 [UDHR] United Nations General Assembly, "The Universal

 Declaration of Human Rights", 1948,

 <http://www.un.org/en/documents/udhr/>.

 [UNGP] United Nations, "United Nations Guiding Principles on

 Business and Human Rights", 2011,

 <https://www.ohchr.org/documents/publications/

 guidingprinciplesbusinesshr_en.pdf>.

 [UNHR] United Nations, "The Core International Human Rights

 Instruments and their monitoring bodies", 2011,

 <https://www.ohchr.org/en/professionalinterest/pages/

 coreinstruments.aspx>.

 [UNHRC2016]

 United Nations Human Rights Council, "UN Human Rights

 Council Resolution "The promotion, protection and

 enjoyment of human rights on the Internet" (A/HRC/32/

 L.20)", 2016, <https://documents-dds-

 ny.un.org/doc/UNDOC/LTD/G16/131/89/PDF/

 G1613189.pdf?OpenElement>.

 [W3CAccessibility]

 W3C, "Accessibility", 2015,

 <https://www.w3.org/standards/webdesign/accessibility>.

 [W3Ci18nDef]

 W3C, "Localization vs. Internationalization", 2010,

 <http://www.w3.org/International/questions/qa-i18n.en>.

 [Zittrain] Zittrain, J., "The Future of the Internet - And How to

 Stop It", Yale University Press , 2008,

 <https://dash.harvard.edu/bitstream/handle/1/4455262/

 Zittrain_Future%20of%20the%20Internet.pdf?sequence=1>.

Authors’ Addresses

 Gurshabad Grover

 Email: gurshabad@cis-india.org

 Niels ten Oever

 University of Amsterdam

 Email: mail@nielstenoever.net

Grover & ten Oever Expires 15 August 2024 [Page 36]

	draft-ietf-gnap-core-protocol-20
	draft-ietf-gnap-resource-servers-05
	draft-irtf-hrpc-association-13
	draft-irtf-hrpc-guidelines-21

