
WG Working Group N. Davis

Internet-Draft Ciena

Intended status: Informational 24 October 2022

Expires: 27 April 2023

 Modelling Boundaries

 draft-davis-netmod-modelling-boundaries-00

Abstract

 Current modelling techniques appear to have boundaries that make

 representation of some concepts in modern problems, such as intent

 and capability, challenging. The concepts all have in common the

 need to represent uncertainty and vagueness. The challenge results

 from the rigidity of boundary representation, including the

 absoluteness of instance value and the process of classification

 itself, provided by current techniques.

 When describing solutions, a softer approach seems necessary where

 the emphasis is on the focus of a particular thing. Intelligent

 control (use of AI/ML etc.) could take advantage of partial

 compatibilities etc. if a softer representation was achieved.

 The solution representation appears to require

 * Expression of range, preference and focus as a fundamental part of

 the metamodel

 * Recursive tightening of constraints as a native approach of the

 modeling technique

 This lead to need to enhance the metamodel of languages that define

 properties. It appears that the enhancement could be within, as

 extensions to, and compatible with current definitions.

 YANG is a language used to define properties and it appears that YANG

 is appropriately formed to accommodate such extensions.

About This Document

 This note is to be removed before publishing as an RFC.

 The latest revision of this draft can be found at

 https://example.com/LATEST. Status information for this document may

 be found at https://datatracker.ietf.org/doc/draft-davis-netmod-

 modelling-boundaries/.

Davis Expires 27 April 2023 [Page 1]

Internet-Draft Mobo October 2022

 Discussion of this document takes place on the WG Working Group

 mailing list (mailto:WG@example.com), which is archived at

 https://example.com/WG.

 Source for this draft and an issue tracker can be found at

 https://github.com/USER/REPO.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 27 April 2023.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 4

 1.1. Observation: Terminology 5

 2. Conventions and Definitions 5

 3. Analysis . 5

 3.1. Specific challenge areas - some terminology 5

 3.1.1. Specification of *Expectation* and *Intention* . . . 6

 3.1.2. Specification of *Capability* 6

 3.1.3. Expression of *Partial Visibility* (of state etc.) . 7

Davis Expires 27 April 2023 [Page 2]

Internet-Draft Mobo October 2022

 3.2. Observation: Progressive Narrowing of definition 7

 3.3. Observation: Definition expansion 8

 3.4. Observation: Expression of capabilities 9

 3.5. Observation: Application of expression of capability . . 9

 3.6. Observation: Compatibility 10

 3.7. Observation: Defining the boundary 11

 3.8. Exploration: The nature of the solution 12

 3.9. Clarification: Complex/Blurry/Fuzzy boundaries in the

 solution . 13

 3.10. Observation: Artificial Intelligence and uncertainty . . 14

 3.11. Observation: No longer instance config, everything is

 expectation-intention 15

 3.12. Observation: Intention-Expectation interaction 16

 3.13. Observation: Instance state 17

 3.14. Observation: Foldaway complexity 17

 3.15. Exploration: Focusses, boundaries and partial

 descriptions . 19

 3.16. Observation: Two distinct perspectives and viewpoints . . 20

 3.17. Observation: Capability in more detail 22

 3.18. Observation: Occurrence 22

 3.19. Observation: One model 23

 3.20. Observation: Partially satisfied request 24

 3.21. Observation: Other solution elements that benefit 25

 3.22. Observation: Outcome and Experience 25

 3.23. Observation: Metamodel v Model 26

 4. Solution: Formulation . 26

 4.1. Solution: Methodology 27

 4.2. Solution: Considering the property 27

 4.3. Solution: Occurrence Specification 28

 4.4. Observation: Uniformity of expression 28

 4.5. Solution: Tooling support 28

 5. Target and next steps . 28

 6. Conclusion . 29

 7. Security Considerations 30

 8. IANA Considerations . 30

 9. Informative References 30

 10. Normative References . 30

 Appendix A. Appendix A - Problem/Solution Examples 31

 Appendix B. Appendix B - Sketch of an enhanced YANG form 31

 B.1. Progression . 32

 B.2. Language . 32

 B.3. Key concepts . 33

 B.4. Observation . 33

 B.5. Progressing to the language 34

 B.6. JSONized YANG . 34

 B.6.1. JSONised Header 34

 B.6.2. JSONized body . 36

 B.7. Schema for the schema 38

Davis Expires 27 April 2023 [Page 3]

Internet-Draft Mobo October 2022

 B.8. An example of spec occurrence and rules 45

 B.8.1. Rough notes . 45

 B.9. The current schema 46

 B.10. YANG tree . 46

 B.11. Instance example . 46

 B.12. The extended schema 46

 B.13. Versioning considerations 46

 Appendix C. Appendix C - My ref / your ref 46

 Appendix D. Appendix D - Occurrence 46

 Appendix E. Appendix E - Narrowing, splitting and merging . . . 48

 E.1. Narrowing . 48

 E.2. Splitting . 50

 E.3. Merging . 50

 Appendix F. Appendix F - A traffic example 51

 Acknowledgments . 51

 Contributors . 51

 Author’s Address . 51

1. Introduction

 The essential challenge being considered in this paper is that of

 statement of partially constrained definition of a thing (property,

 collection of properties, entity, collection of entities etc.) and of

 progression through stages of refinement of constraints leading

 eventually potentially to precise single value forms of refinements

 of that thing.

 The constrained definition of a thing requires the expression of a

 boundary that surrounds all allowed/possible values for that thing.

 The paper will introduce the term "Occurrence" and explain that

 through the progression, a single occurrence gives rise to multiple

 occurrences at the next stage of refinement and that this expansion

 repeats from one stage to the next.

 It appears that many aspects of the industries’ problems/solutions

 require such a progression of gradual refinement and hence statement

 of partial constraint and occurrence. However, it seems that current

 languages do not readily accommodate the necessary structures. It is

 possible to use existing languages, but the realization seems clumsy

 and bolted on as opposed to inherent to the language.

Davis Expires 27 April 2023 [Page 4]

Internet-Draft Mobo October 2022

 Considering the apparent prevalence of need for expression of ranges

 and uncertainty, it seems strange that there should be no readily

 available language, so part of the purpose of this paper is to

 stimulate discussion to help find an appropriate existing language.

 If, as appears to be the case, there is no well-suited language, then

 the next obvious step is to consider extension of YANG so that it can

 accommodate the need.

 This paper works through an analysis expressed via threads of

 observation and exploration that are then woven together to form the

 fabric of the problem and solution.

 In an appendix, a sketch of a YANG form of solution is set out to

 assist in the understanding of the problem. It is anticipated that

 the YANG form will seed advancements to the YANG language in this

 area.

1.1. Observation: Terminology

 We all recognize the challenge with any terminology. Terms are for

 communication convenience (they are not fundamental). Unfortunately,

 each term comes with baggage and each of us has a different

 understanding of each term. Sometimes these differences are subtle,

 but sometimes a term spreads across a very wide space.

 Each key term used in this document has specific local meaning which

 the authors attempt to clarify. However, it is probable that the

 definitions here are too vague to ensure full shared understanding.

 Ongoing work will be required.

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in

 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

3. Analysis

 The following section introduces concepts and associated terminology

 and gradually assembles a picture of the needs.

3.1. Specific challenge areas - some terminology

 Each of the following require, for any property, expression of range,

 preference, uncertainty, interdependency etc. The specific

 challenges will be discussed in following sections.

Davis Expires 27 April 2023 [Page 5]

Internet-Draft Mobo October 2022

 The solution to the problem appears to need a language that supports

 expression narrowing of definition such that that language can be

 applied recursively to form a progression of increasingly narrowed

 definitions from the very broad to the very specific.

3.1.1. Specification of *Expectation* and *Intention*

 Specification of Expectation/Intention is a statement of desired

 outcome/experience in terms of constraints which includes statement

 of preference and acceptable value ranges etc.

 This has resulted from some negotiation (or imposition) where, in a

 simple case, a client and provider have formed an agreement and where

 the client has an Expectation that the agreement will be fulfilled,

 and the provider has an Intention to fulfil the agreement.

 The expression of outcome/experience is as viewed from the outside of

 the provider solution, i.e., what is exposed by the provider.

 Intention is a sub-case of "Specification of *Capability*" (and

 expectation is a sub-case of "Specification of *Need*" - note that

 "Need" is not covered in detail in this document).

 Related terms

 * intent

 * service

3.1.2. Specification of *Capability*

 This is a statement of opportunity for behaviour to be exhibited

 which includes statement of possible ranges and interdependencies

 etc.

 The expression of capability of a provider system, presented as that

 of an opaque component, results from consideration, by the provider,

 of various potential assemblies of their internal capabilities (e.g.,

 can be considered as a recursion of systems of components), governed

 by their business purpose etc.

 It is becoming increasingly apparent that there is a need for a

 machine interpretable expression of capability and hence a language

 for such expression.

 Most recently, specific cases of need have been identified as

 automation solutions in the following areas mature:

Davis Expires 27 April 2023 [Page 6]

Internet-Draft Mobo October 2022

 * Advertising capability (both at a commercial boundary and for

 components in a solution)

 * Negotiation towards contract (where capability requirement and

 offer are refined)

 * Planning infrastructure buildout (where capability of solution and

 of components is required)

 * Intent solution formation (intent is the result of negotiation,

 expressing solution capability)

 * Any situation where specialized components need to be assembled

3.1.3. Expression of *Partial Visibility* (of state etc.)

 Any real environment will suffer imprecision, loss and disruption.

 Any statement made about properties (behaviour, characteristics,

 etc.) of things in that environment may not be fully available

 (temporarily due to some impairment or permanently due to cost/

 complexity (the measure is an approximation as it is not practical to

 measure precisely)).

 This leads to the need, for any property, to be able to state

 absence, probability, uncertainty and vagueness (varying over the

 lifecycle etc. as will be discussed later).

3.2. Observation: Progressive Narrowing of definition

 Traditional modeling tends to lead to a class model (potentially with

 inheritance), which provides precise definitions of properties etc.

 (current YANG models are of this form), where each class is realized

 as instances in the solution and where each instance provides a

 precise value for each property defined as mandatory in the class

 etc.

 However, what actually appears to happen in many areas of the

 solution is a process of gradual narrowing of definition where that

 narrowing takes place in a progression of discrete steps.

 Consider the following rough example progression (stages may be

 omitted/repeated):

 * A version of a standard may provide a definition of technology

 capability.

Davis Expires 27 April 2023 [Page 7]

Internet-Draft Mobo October 2022

 * A vendor solution may have a narrower capability than the

 standard, perhaps due to a target price point etc. A vendor may

 have several solutions, each with a different narrowing

 * An application of the vendor solution may have a further narrowing

 of capability, perhaps due to some combinatorial effect in the

 deployment

 * The use of a vendor capability at a particular point in a

 structure of a solution may have a further narrowing of capability

 as a result of need or policy at that point

 * At a particular point in a structure of a solution under

 particular circumstances there may be an even narrower allowed

 capability, for example under certain environmental conditions the

 thermal considerations may require the solution to run at low

 power etc.

 * Proof of concept (PoC) of the solution may have an even narrower

 allowed capability

 * An example diagram related to a single use case for a PoC may

 require an extremely narrow definition

 * Where there is delegated control, even the fully refined

 "instance", perhaps in the single use case for the PoC mentioned

 above, may be specified in terms of constrained definition as

 opposed to absolute value.

 * Etc.

 Traditional Classification and statement of instance specification do

 not deal with the above. Some constraint mechanisms deal with the

 above in part, but these are often an afterthought, are clumsy and

 have significant shortfalls as will be illustrated.

3.3. Observation: Definition expansion

 In addition to the recursive reduction discussed above at each level

 definition may be introduced that did not appear in the previous

 stage as a result of capability from the intersection with a separate

 narrowing. For example, the vendor solution may extend with

 proprietary features not defined in the standard

 Further, there will be evolution and growth so the next development

 of the standard etc. may extend/adjust the statements.

Davis Expires 27 April 2023 [Page 8]

Internet-Draft Mobo October 2022

 Of course, any definition introduced at any point in the progression

 can be narrowed at the next stage of the progression.

 The ultimate progression is an intertwining of expansion and

 reduction stages.

3.4. Observation: Expression of capabilities

 For any control solution component at any stage of the above

 intertwined progression, it is necessary to understand the capability

 and indeed some of the progression.

 This requires runtime interpretation of expression, in normalized

 uniform machine interpretable form, of the capabilities (properties

 and constraints) exposed by the relevant assembly.

 Traditional classification is too blunt a tool for this purpose as

 will be illustrated.

3.5. Observation: Application of expression of capability

 In a control system context, capability expression applies to:

 * the controlled system with respect to the exposed model and

 allowed activities

 * the control system and its exposed capabilities (both the control

 provider and control client)

 Each of the above:

 * is always an abstraction/view of the underling real system

 * applies for any interaction at any boundary

 The above may have further depth such, for example:

 * the controlled system exposure can be controlled and adjusted

 * the control system exposure can be controlled and adjusted

 * etc.

 The capability descriptions need to detail all deterministic per case

 variations (not just a broad- brush statement on the model versions

 supported).

Davis Expires 27 April 2023 [Page 9]

Internet-Draft Mobo October 2022

3.6. Observation: Compatibility

 The following applies to any interacting entities with respect to any

 aspect of interaction (e.g., a control system component interacting

 with another control system component about things that are

 controlled).

 Note that here a component is a conceptual functional construct that

 has ports through which it can communicate with other components and

 that encapsulates some functional capability. Generalized component

 is described in [ONF TR-512.A.2]

 Two components are suitably compatible and can interact with respect

 to a particular application so long as their exposed capabilities

 have an appropriate/sufficient intersection.

 Interaction between Semi-Compatible Entities is possible where:

 * Semantic intersection enables a subset of capabilities (resulting

 in a meaningful capability set).

 * Partially mappable expression provides sufficient meaning (some

 mappings may be approximate and partially ambiguous, but only in

 areas where the this is not overly relevant)

 The result of the intersection is usually a narrower statement of

 capability than the statement for the two components (it most it can

 be the full statement). In some cases, the intersection may be the

 empty set and hence there can be no interaction opportunity.

 * Where a feature is preferred but not mandatory, the empty set

 intersection is acceptable

 * Very few properties are fundamentally mandatory, importance is

 dependent upon specific application and specific interaction

 within that application.

 For any interaction between two components A and B compatibility is

 determined by the intersection of:

 * application interaction semantic

 * interface transfer capability

 * component A capabilities/needs

 * component B capabilities/needs

Davis Expires 27 April 2023 [Page 10]

Internet-Draft Mobo October 2022

 If any of the mandatory application interaction semantic elements are

 eliminated, then the interaction cannot be supported. If preferred

 or optional semantic elements are eliminated, then the interaction

 can be supported at some degree of degraded capability.

 Note that this discussion fragment focusses on the direct interaction

 and not on the implications for other interactions etc.

 Compatibility must be considered over the intertwined lifecycles of

 the interacting components as each independently evolves in terms of

 both functional capability and interface expression. This also

 includes migration of boundaries.

3.7. Observation: Defining the boundary

 The general problem identified is the representation of a semantic

 space by defining its boundary. Clearly, the boundary is itself

 defined in terms of ranges, however, the boundary is not necessarily

 defined with absolute range values, and it is not necessarily fixed

 in time.

 The boundary may, for example,:

 * change, in position and in precision, through the lifecycle of the

 thing (as it matures... where it tends to become tighter)

 * be interdependent with other boundaries

 * have uncertainty in position of boundary and/or limited interest

 in positioning of boundary (don’t know, somewhere round about

 here, don’t care, that’s precise enough)

 * also have specification (and measurement) of acceptable, degraded

 and unacceptable positioning (there is also a need to indicate

 other aspects, e.g., for how long a particular degradation is

 acceptable or what the degradation costs etc.)

 * changes of positioning and precision over time or over stages of

 lifecycle

 * have associated probability (likelihood of a particular

 positioning) and preference (for a particular position)

 The above considerations apply similarly to intent specification,

 capability specification and partial visibility.

Davis Expires 27 April 2023 [Page 11]

Internet-Draft Mobo October 2022

 The same challenges also appear in planning and in negotiation where

 there is a need to state vaguely understood and interdependent

 properties etc.

 Considering lifecycle stages, a property defining a boundary of a

 thing, e.g., the property acceptable temperature range, may have one

 defined range at one part of the lifecycle and another defined range

 at another part of the lifecycle where this variation is known at the

 time of specification such that the specification needs to include

 this lifecycle aspect.

 The variation may be temporal or may be dependent upon some other

 variable property.

3.8. Exploration: The nature of the solution

 Considering the observations and other considerations above, the

 solution requires support for a property to

 * Be stated in terms of ranges with focusses and complex

 (potentially fuzzy) boundaries where that statement defines a

 semantic volume and where the boundary may not be sharp

 * Have statements that interrelate it with another property (or

 properties)

 * Have multiple boundary preference levels and/or probability levels

 where the preference/importance level is per interaction and not

 an aspect of fundamental property definition

 * Be defined in terms of a narrowing of a previously expressed

 volume (i.e., a further narrowing) where a single point value is a

 very narrow range (many single values are actually abstractions of

 complex ranges, e.g. 2Mbit/s is +/-15ppm)

 * Be defined in such a way that simple property definitions are not

 burdened by the structures that enable sophisticated definition

 (i.e., the expression should be such that the complexity of

 expression "folds away" for simple statements)

 * Use a representation where there is no distinction in expression

 opportunity between a statement of capability definition, intent

 definition, actual value etc. such that all expressions are of the

 same essential form

Davis Expires 27 April 2023 [Page 12]

Internet-Draft Mobo October 2022

 This is a fundamental change in the nature of the solution... a

 change in paradigm and metamodel where the properties are defined by

 complex/fuzzy bounded/focused spaces related to other complex/fuzzy

 bounded/focused spaces with preferred/probable positions etc.

3.9. Clarification: Complex/Blurry/Fuzzy boundaries in the solution

 To illustrate the complex/fuzzy boundaries, partial compatibility and

 several other aspects, an example of color usage is helpful. Whilst

 color may not be the most important aspect of the solution in key

 industries related to this work, it is an easy example to understand.

 It is suggested here that the same challenge applies to ALL

 properties at least to some relevant degree.

 Consider a request for a physical item that has a color where the

 requestor, whilst interested in the color is not overly concerned.

 Their request for the item may include an expectation on color where

 that expectation is that the choice of color is not a showstopper but

 there is a preference for red and if not red then green. The request

 does not need to include the color and if not included a choice will

 be made by the provider on some basis outside the interaction.

 The provider may not know what red is but may know green and have the

 item in green which will be appreciated by the client.

 Even if the provider does not have green any color will do. In fact,

 the provider, in its response, need not even say what the color

 actually is!

 However, if the client indicates that the item provided must not be

 pink, then unless the provider knows what pink is, it cannot satisfy

 the request and the boundary now has a hard edge, so an aspect of the

 request is now mandatory.

 In this case, assuming the provider does know what pink is, the

 provider could respond with "the color is not pink" but provide no

 more details.

 In the example above the definition of color was complex/fuzzy to

 some degree, the providers understanding of pink may not match the

 client’s exactly and the definition if the boundary between pink and

 red may be unclear and vary from occasion to occasion.

Davis Expires 27 April 2023 [Page 13]

Internet-Draft Mobo October 2022

 The color was specified by the client using colors by name as

 enumerated literals. Now consider that the provider understand color

 in RGB. It is possible that the color Red is not just 255,0,0, but

 is actually a range of colors in a volume bounded on the red scale by

 255 at one extreme and 240 at the other. Further, red is a complex

 volume including on its boundary 255,10,10 and 250,8,8 etc.

 Now when the client asks for red, the provider can select color in

 the range defined.

 But it may also be the case that the color is not perfect so that

 there is always a little green and blue somewhere between 2 and 3 on

 both scales and the red coloration process is inaccurate so that the

 color produced is somewhere between 253 and 250.

 Further the color fades a little over time and in some lights looks a

 little more bluish. These factors may need to be taken into account

 (as interactions between properties) if the request is for red and

 the duration of use is to be 10 years where the usage will be in

 various different lights.

 So, the request for red must be qualified by the above. In a

 negotiation the requestor may even have broadened their view of red

 to include some maroon shades in their preference for Red, so that

 may now be a list of similar colors etc.

 The example above illustrates the need for the opportunity to specify

 range and interrelationship as a fundamental aspect of specification

 of color. The color attribute needs the opportunity to deal with the

 above within its scope, not as a pile of arbitrary other properties.

 On the measurement side, it may not be possible to distinguish

 between anything within a range of 255 and 252 red etc. and further

 if the light level is low the color measurement may dither etc.

 In general, when a specific value is specified, e.g., "A" must equal

 5, this equates to a fuzzy setting that has hard boundaries.

 It is argued here that the above consideration applies to all

 properties.

3.10. Observation: Artificial Intelligence and uncertainty

 As the spread of system automation progresses, the problem becomes

 increasingly complex. This leads to the necessary expansion of use

 of AI/ML techniques in the solution.

Davis Expires 27 April 2023 [Page 14]

Internet-Draft Mobo October 2022

 These techniques deal well with uncertainty, approximation and

 fuzziness unlike traditional systems that tend to only work as

 precise coded solutions and absolute values with the occasional

 specific hack to deal with ranges and approximation.

 AI/ML solutions would benefit from the opportunity to express range,

 uncertainty etc. in any/all values/structures and to see uncertainty

 in all inputs. Considering that the problem space is one of range,

 preference, approximation as discussed, it seems fundamentally

 necessary to expand the opportunity for expression as discussed in

 this document.

3.11. Observation: No longer instance config, everything is

 expectation-intention

 The idea of Expectation/Intention as discussed earlier can be further

 developed. Consider an example where a client has an expectation

 that the integer property "A" (perhaps a temperature of an "oven"

 containing a component that needs to operate within a particular

 range) is to take a value between 5 and 10 (with some unit, e.g.,

 Celsius. It is OK to leave the units open when there are no specific

 values, but once values are being expressed, the units MUST be

 provided) . The provider could have the intention to make A take the

 value between 5 and 10 as requested, but to achieve this a complex

 process needs to be performed so it will take time to achieve a value

 in the range and there is some progression that needs to be reported.

 Eventually the provider achieves a value in the target range, but it

 is unable to state the value precisely as there is high-rate jitter

 and hence it can report that the value is between 6 and 9.

 The above example reflects the need to be able to state and report

 ranges for a property.

 Now consider the case where the system is more precise. The client

 requires and has the expectation for A to take the value 5 (which is

 simply a very narrow range from 5 to 5) and the provider has the

 intention to achieve this, but again this will take time. The

 provider reports progress towards 5 and eventually reports that 5 has

 been achieved.

 The above example reflects the need to be able report convergence on

 a property value even where the value is simple. In general, the

 client may want to state a maximum time allowed to achieve any

 specific outcome and/or the provider may want to state a predicted

 time for any specific interaction.

Davis Expires 27 April 2023 [Page 15]

Internet-Draft Mobo October 2022

 Finally consider a case where the system has greater performance.

 The client requires and has the expectation for A to take the value 5

 and the provider the intention to achieve this. The value can be

 achieved immediately, so the provider can simply report this back

 directly. In this case the provider would predict an effective delay

 of 0 seconds (which can be implied as the value is returned

 immediately).

 The final case could be viewed as a SET the property of an instance

 of a class and hence special, but it is no less of an intent-

 expectation case than any of the others. Indeed, it is possible that

 for a particular specific intent-expectation, on some occasions the

 achievement is immediate and on others it takes a while and for some

 parts of the range of possible settings the value is precise, but for

 other parts it is a range (perhaps at the extreme ends of operation).

 Clearly, it is highly beneficial (and even arguably, necessary) to

 have one uniform representation that caters for all cases. Ideally,

 this method would appear as light as a SET where the value is precise

 and the achievement is immediate but would deal with the

 sophistication required where the value is a range, the result is a

 sub-range, and it takes time to achieve the result.

 Assuming that such a representation is achieved, then a traditional

 "instance specification" is actually sub-case of intention/

 achievement (or "intent" as defined by rough common usage) and hence

 not something distinct. Indeed, the notion is that an instance is

 simply an occurrence at the most extreme narrowing, the lowest and

 most detailed available view, of definition and as noted above, this

 lowest available (visible) view of a realization may not be precise.

 There are always many details "below" this "lowest available visible

 view" that are not exposed.

 Any expectation/intention statement expression may have a mix of

 degrees of tightness of statement from vague to single value (and

 hence suitable to use for all cases of "instance specification") and

 allow representation of a mix of ranges and of single values.

3.12. Observation: Intention-Expectation interaction

 Clearly, a solution does not operate on a single requirement in

 isolation, there may be multiple agreements and hence multiple

 Intention-Expectations competing for the solution resources. Within

 the expression of each Intention-Expectation there is a need to state

 importance and this will interact with preemption policy.

Davis Expires 27 April 2023 [Page 16]

Internet-Draft Mobo October 2022

3.13. Observation: Instance state

 As discussed above, an instance is an occurrence at the lowest and

 most detailed available view at the extreme end of the narrowing. In

 addition to state related to progression of achievement of

 expectation/intention (traditional "config"), there is also state

 related to monitored/measured properties of the solution (not

 directly related to config).

 These properties are derived from monitoring devices that perform

 some processing of events within the solution. The events are

 detected by a detector. Very few of all of the possible event

 sources are monitored by detectors.

 All detectors are ultimately imprecise and may fail to operate. The

 information from a detector may be temporarily unavailable, delayed,

 degraded etc.

 The representation of the simple detected value should include

 qualifications related to its quality etc.

 A machine interpretable specification of capability for the property

 should provide details of its derivation from other less abstracted

 properties. For example, there may be a property that is detected

 where the detections are counted over some period and compared with a

 threshold

 where the crossing of that threshold is reflected by another property

 that is itself counted and compared with another threshold that if

 crossed changes the state of the property of concern. An example of

 a property resulting from this pattern is the Severely Error Second

 alert.

 Understanding this pattern and other related patterns would enable a

 control solution to interpret the relationship between the various

 properties (currently, at best, solutions are explicitly coded to

 deal with properties with human oriented similarities).

3.14. Observation: Foldaway complexity

 It was noted in an earlier section that "Ideally, this method would

 appear as light ... where the value is precise and the achievement is

 immediate but would deal with the sophistication required where the

 value is a range, the result is a sub-range, and it takes time to

 achieve the result.".

Davis Expires 27 April 2023 [Page 17]

Internet-Draft Mobo October 2022

 In general, it is highly desirable for the representation of common

 and simple cases to look/be simple and not be burdened by the more

 sophisticated structures that allow for more complex cases. Ideally

 the representation has "foldaway complexity".

 An analogy can be drawn with human language grammar where the

 structure that allows sophisticated speech is not visible in simple

 speech.

 Several sketches (in rough JSON) of a configuration statement for a

 property "temperature" follow.

 Basic:

 "temperature":"5",

 More versatile:

 "temperature":{

 "acceptable-range":"5-12",

 "preferred-range":"7-9"

 }

 More sophisticated:

 "temperature":{

 "acceptable-range":"5-12",

 "preferred-range":"7-9",

 "upper-warn-threshold":"11",

 "lower-warn-threshold":"6",

 "Fail-alarm"{

 "less-than":"5",

 "greater-than":"12"

 }

 }

Davis Expires 27 April 2023 [Page 18]

Internet-Draft Mobo October 2022

 In this example the schema for:

 "temperature":{

 "acceptable-range":"5-12",

 "preferred-range":"7-9"

 }

 would identify preferred-range as optional, would identify

 "acceptable-range" as mandatory and the primary property and would

 identify the foldaway nature if only one value is provided in the

 range:

 "temperature":"6"

 is conformant with the schema.

 In addition, in a simple case a subset schema could be designed that

 was compatible with the main schema that only allowed the single

 value temperature.

 Ideally, considering the common requirements across all properties,

 the terms used in the schema nested within the property name would be

 standard terms etc.

3.15. Exploration: Focusses, boundaries and partial descriptions

 Considering the progressive narrowing of boundaries, it is possible

 to consider anything as represented by a fully capable generalized

 thing with constraints (everything is a focused thing). It is also

 possible to consider a subset of things where the focus is thing with

 ports. Not all things have ports. A thing with one or more ports

 can be called a component. The component is a thing which has ports.

 Anything that has ports is a component. The boundary around this

 focus is the presence of ports.

 A physical thing is a thing that can be measured with a ruler. Some,

 but not all, things that are physical that can be measured with a

 ruler have ports.

 A functional thing is a thing that has behavior. A functional thing

 is not physical, although it must be realized eventually by physical

 things. Functional things have ports, as this is where the behavior

 is exposed (although they need not be represented).

Davis Expires 27 April 2023 [Page 19]

Internet-Draft Mobo October 2022

 So, there is a set of physical things disjoint from a set of

 functional things and a set of components that has an intersection

 with both the physical thing set and the functional thing set where

 the functional thing set is a subset of the component set.

 Anything that has ports is a component (as per the component-system

 patter described in [ONF TR-512.A.2]). Many components will not yet

 be known etc., but the semantic of "component" remains unchanged when

 they are exposed. As not all components are known, not all

 properties that can apply to components are known. Adding properties

 does not change the semantics of "component", but it does improve the

 clarity.

 The progression above is essentially, specialization by narrowing of

 focus. The broadest "Thing" has all possible characteristics and

 capabilities. Specific semantics relate to the model of a specific

 thing where that is the narrowing of the broadest thing. The

 definitions do NOT need to be orthogonal/disjoint.

 Consider the thing "Termination". The Termination:

 * Covers all aspects of "carrier" signal processing

 * includes recursive definition of encapsulated forwarding

 * includes all possible properties of termination for any signal

 (including those not yet defined)

 * includes capabilities to extract signal content and further adapt

 to anther signal

 * etc.

3.16. Observation: Two distinct perspectives and viewpoints

 Considering a system taking a provider role, there are two distinct

 perspectives

 The external perspective (the effect) - "exposed"

 * Capability (advertised to enable negotiation and selection)

 * Intention (the agreement resulting from the selection at the end

 of negotiation)

 * Achievement of intention

 The internal perspective (the realization)

Davis Expires 27 April 2023 [Page 20]

Internet-Draft Mobo October 2022

 * Realizations (alternative system design approaches to achieve

 exposed capabilities)

 * Specific chosen realization (the system to be deployed)

 * Actual realization achievement

 Both perspectives are expressed using the same model pattern and

 model elements, i.e., the component-system pattern, where a component

 is described in terms of a system of components and components are

 specialized as appropriate (as discussed earlier).

 There are two viewpoints:

 * that of the client where only the external perspective is

 available

 * that of the provider where both the internal (which is private)

 and external perspective are available

 The provider also has control of the mapping between internal and

 external perspective.

 Note that:

 * the provider may have distinct roles where each has access to a

 subset of the provider viewpoint.

 * the perspectives and viewpoints apply to both the capabilities

 being controlled by the system and the capabilities supporting the

 control system (which are controlled by another system).

 * the external perspective relates to "Customer Facing Service" (TM

 Forum, what is exposed to the customer) and the internal

 perspective to "Resource Facing Service" (how it is realized

 (roughly))

 * At any arbitrary demarcation, the same approach may be applied

 * The actual chosen demarcation may shift as the solution is

 developed and evolves

 * This can be stated as how it looks from the outside and how it

 looks on the inside

Davis Expires 27 April 2023 [Page 21]

Internet-Draft Mobo October 2022

 This is discussed further in [ONF TR-512.8] where it is noted that a

 client talks through a provider port to the provider functions about

 the controlled system where that controlled system is presented as a

 projection that has been mapped to an appropriate abstraction of the

 underlying detail.

3.17. Observation: Capability in more detail

 A Capability statement is the statement of visible effect of a thing

 and is not a statement of the specific realization of that thing.

 The visible effect may be complex. The thing may have many ports and

 activity at one port may affect activity at another. Capability

 statements will include performance and cost (environmental footprint

 etc.).

 It is important to recognized that the statement of capability is NOT

 exposing intellectual property related to how the capability is

 achieved.

 Expression of externally visible capability and expression of

 realization of that capability can both use a model of the same types

 of things, but the specific arrangement will often be very different

 as the externally visible capability is a severe abstraction of the

 internal realization where a subset of the capabilities of the

 underlying system are offered potentially in different terminology

 and in a different name space.

 The approach of expression of capability can be applied recursively

 at all levels of control abstraction from deep within the device to

 the most abstract business level.

3.18. Observation: Occurrence

 As system is constructed from components. Often a system will make

 repeated use of the same type of component. Whilst in a realization

 of that system the components are considered as instances, in the

 design, they are clearly not instances. But there are many. The

 term "Occurrence" has been used in ONF work (see [ONF TR-512]).

 In a component-system approach, an Occurrence is a single use of a

 particular component type in a system design structure. There may be

 many uses of that type in that system design structure, and hence

 many Occurrences, where each use of that type may have subtly

 different narrowing of capabilities to each other use and certainly

 different interconnectivity.

 Capability, intent and realization are all specified in terms of

 system structures and hence all require the use of Occurrence.

Davis Expires 27 April 2023 [Page 22]

Internet-Draft Mobo October 2022

 Considering the "progressive narrowing" observation earlier in this

 document, what is a singular thing at one level may result in several

 separate things at the next level, each of which is a slightly

 different narrowing of the definition of the original singular thing.

 These things are Occurrences.

 Hence, the progressive narrowing starts with a single Occurrence of

 thing at the first level and splits this into multiple Occurrence at

 the next and then each may split at the next etc.

 Note that:

 * the pictures of devices in a network structure example diagram are

 essentially Occurrences.

 * the presentation of an instance in a management view can be argued

 to also be an Occurrence.

 * that through each progressive narrowing of definition, what was a

 single "type" at one level of narrowing may cause many

 "occurrences" at the next level.

 * a type is simply an Occurrence with a particular definition where

 that Occurrence is used in the next level of definition as a type.

3.19. Observation: One model

 From a model perspective there appears to be no relevant distinction

 between what can be requested and what can be achieved. A single

 model representation of the things and their effect, based upon the

 recursive/fractal component-system pattern appears appropriate.

 The intention/expectation is expressed in terms of a structure of

 occurrence and what is realized is in terms of a similar structure of

 occurrence (where at the extreme the structure is exactly the same).

 There are however several stages and consequent perspectives:

 * the original request (the expectation retained by the client)

 * the accepted request (the intention, retained by the provider,

 normally the same as the expectation)

 * the achievable outcome (expressed by the provider, normally the

 same as the intention)

 * the current realization (more precise than the intention)

Davis Expires 27 April 2023 [Page 23]

Internet-Draft Mobo October 2022

 * the effects of the realization in the perspective of the original

 request (achievement)

 * the difference between the client expectation and the achievement

 (discrepancy)

 For example:

 * the client may wish to request an E-Tree with particular

 characteristics including endpoints, bandwidth, temporal

 characteristics etc.

 * the provider may accept this minus one endpoint.

 * the provider may not be able to achieve the accepted request

 initially as some hardware is not yet in place

 * the realization will provide subordinate details.

 * the effect of the realization can be abstracted back, freed from

 some irrelevant detail, to form the achievement (reflecting the

 details of the original E-Tree request)

 * the provider can represent the differences between the original

 request and the achievement

 For all of the above, the key model elements are a multi-pointed

 connection and a set of terminations. The detail of the realization

 is supported by a recursion of multi-pointed connections. There is

 no reason for different representational forms of the different

 stages of development.

3.20. Observation: Partially satisfied request

 The original request from the client may not be satisfiable

 * during the progression of activities formulating the solution and

 acting on that formulation

 * initially, although it may be later

 * at some intermediate stage in the lifecycle, although it was

 initially and will be again shortly

 * ever

Davis Expires 27 April 2023 [Page 24]

Internet-Draft Mobo October 2022

 Where there is knowledge of a temporary shortfall, expression of what

 is achievable as a lifecycle of related statements appears necessary

 and beneficial. Parts of this lifecycle appear to be definable

 within individual properties using the mechanism in the metamodel

 suggested by the various observation here.

3.21. Observation: Other solution elements that benefit

 The progressive narrowing approach that yields levels of Occurrences

 where those Occurrences are defined in terms of semi-constrained

 properties (as discussed in this document) appears beneficial in the

 construction of:

 -Policy (as per general definition): The condition statement could

 benefit from a generalized metamodel approach to range etc.

 * Profile/Template (for all the various interpretations of these

 terms): Various methods that support the specification of

 constraints in a single statement to be applied multiple instances

 simultaneously.

 The constraint statement would benefit modeling in general. For

 example, in UML, OCL is an add-on that tends to be "beyond" the

 normal model. An advancement to the essential metamodel would

 inherently include interaction constraints etc.

3.22. Observation: Outcome and Experience

 The term Outcome is being used here to relate to the apparent/

 emergent structure/capability made available by the provider and the

 ongoing behavior of that structure/capability.

 The term Experience is being used here to relate to the client

 perception of the effect that the provider Outcome has (i.e., the

 client perception of the Outcome). It can also be argued that the

 Experience is the client Outcome and that the provider Experience

 includes the feedback by the client on their overall experience of

 the provided capability etc.

 An Outcome/Experience may be a:

 * Momentary event of set of events

 * Constant state or set of states over time (first order)

 * Constant change of state or set of state changes over time (second

 order)

Davis Expires 27 April 2023 [Page 25]

Internet-Draft Mobo October 2022

 * ... (nth order)

 * Change of state defined some algorithm or set of changes of state

 defined by a set of algorithms

 * Etc.

 Both outcome and experience can be expressed in using the same

 approach discussed in this document.

 In the connectivity example discussed earlier, considering the

 client:

 * the expectation for the Outcome is an E-Tree (a resource!)

 * the Experience is effect of the E-Tree which is complex apparent

 adjacency (the true "service", a change of apparent proximity).

3.23. Observation: Metamodel v Model

 The metamodel is a model that constrains one or more other model(s).

 The term metamodel is essentially about the role of the model in the

 relationship to other models. The model with the metamodel role when

 related to another model influences that other model and is

 specifically designed to do so.

 A model taking a metamodel role may express how another related model

 may express properties to be represented.

 Clearly a model that takes a metamodel role is just a model and hence

 may have a related model that takes a metamodel role for it etc.

 Note that meta means "providing information about members of its own

 category" (Merriam Webster).

4. Solution: Formulation

 The following subsections consider the observations from the earlier

 sections and point to aspects of a potential solution.

 The first few subsections consider the solution in general

 independent of specific realization. The final subsection considers

 the applicability of YANG. Some considerations in the realization

 independent sections are already supported by YANG, others are not.

Davis Expires 27 April 2023 [Page 26]

Internet-Draft Mobo October 2022

4.1. Solution: Methodology

 Each type/structure/property is specified in terms of constraints

 narrowing prior definition/specification. Note that this is a common

 approach, but the recursive nature is not well represented, and each

 level of the recursion tends to seem special.

 Examples are as discussed earlier:

 * A standard may narrow an integer range

 * A usage may narrow the standard integer range

 * Etc.

 The prior definitions must be explicitly (efficiently) referenced.

 Note that this is a common approach but the specific usage here is

 distinct from normal usage. Examples relate to earlier discussion:

 * A prior definition may be used for several Occurrences in the same

 specification

 * A definition syntax may be transformed, but the semantics cannot

 be changed, only narrowed

 * A property may have preferred values etc.

 * Etc.

4.2. Solution: Considering the property

 Extending the approach could lead to a more uniform specification of

 properties in a control system context.

 Any property, e.g., temperature, may have combinations of the

 following features:

 * A detector: Allowing opportunity for approximate, unknown, range

 etc. and allowing notification of change with definable approach

 to hysteresis etc.

 * An associated control: Which has intent, achievement etc. and,

 especially where it takes time to take the control action, may

 have some progress on the action etc.

 * Thresholds based alerts: Which has intent (as above) and which has

 an associated state (allowing opportunity for approximate etc.),

 notification etc.

Davis Expires 27 April 2023 [Page 27]

Internet-Draft Mobo October 2022

 * Have inter-property interrelationships for any of the above

 * Have Units for any of the above

 * etc.

4.3. Solution: Occurrence Specification

 Any property and its range of opportunities is stated in a

 specification. Any invariant values in the specification need not be

 reported in the state of the "instance" (unless the instance is no

 longer behaving as defined in its specification).

 Ideally the metamodel should be such that, when a model designer

 chooses to define a property, they pick which of the above features

 are relevant and need not specify each separately. This would lead

 to automatic name generation etc. where the name structure can be

 predefined.

 A uniform way of expressing each of the above features could be

 developed as could tooling to generate the representation (e.g.,

 YANG) for each feature given a property name. The application of

 each feature to a property is essentially the occurrence of the

 feature.

4.4. Observation: Uniformity of expression

 Using a uniform and consistent expression for "occurrences" at all

 levels of refinement naturally allows for expression of a mix of

 constraints and absolute values.

4.5. Solution: Tooling support

 Clearly, tooling support will be vital for any initiatives in this

 area to be successful.

5. Target and next steps

 There does not seem to be readily available terminology to label/

 define the concepts in the problem space

 * Hence it has been difficult to discuss what properties the

 language needs to possess.

 * Action: Improve terminology definitions

 It appears that there is not a good language suited to solve this

 problem fully.

Davis Expires 27 April 2023 [Page 28]

Internet-Draft Mobo October 2022

 * This may only appear to be the case, i.e., there may be a language

 out there (as it has proved very difficult to describe the

 problem)

 * Action: Continue to explore and refine

 It is possible that YANG could evolve to be more suitable

 * YANG does not have all the necessary structures or recursion

 * Progress sketch for a JSON form of YANG as an illustration of the

 unification of class and instance statement representation. Work

 the proposal to suitable maturity (requirements first)

6. Conclusion

 Tackling the challenge of modelling of boundaries leads to a more

 complete method of specification of gradual refinement of definition

 and of statement of "occurrences" including classes, instances and

 various forms between.

 This method allows for:

 * Expression of range, preference and focus as a fundamental part of

 the metamodel

 * Gradual refinement and recursive tightening of constraints as a

 native approach of the modeling technique

 Gradual refinement is required in many areas of the problem/solution

 space and this more complete method naturally allows for the

 necessary representation of uncertainty and vagueness. The rigid

 boundary representation of the current approaches (e.g., class,

 instance) is accommodated within the method as a narrow case of

 application of the method.

 This softer and more continuous approach to specification refinement

 with the opportunity for uncertainty, ranges and biases better

 describes any real-world situation and hence appears more appropriate

 for an intelligent control solution (using AI/ML etc.) where that

 solution could take advantage of partial compatibilities etc.

 It appears that the enhancements to the language metamodel could be

 within, as extensions to, and compatible with current definitions of

 YANG as it appears that YANG is appropriately formed to accommodate

 such extensions.

 Note that the problem appears in expression:

Davis Expires 27 April 2023 [Page 29]

Internet-Draft Mobo October 2022

 * Intent

 * Capability

 * Partial Visibility

 * Planning

 * Negotiation

 * Policy

 * Profile/Template

 * Occurrence

 * Etc.

7. Security Considerations

 None

8. IANA Considerations

 This document has no IANA actions.

9. Informative References

 [ONF TR-512] TR-512 Core Information Model (CoreModel) v1.5 at

 https://opennetworking.org/wp- content/uploads/2021/11/TR-

 512_v1.5_OnfCoreIm-info.zip (also published by ITU-T as G.7711 at

 https://www.itu.int/rec/T-REC-G.7711/

 recommendation.asp?lang=en&parent=T-REC-G.7711-202202-I)

 [ONF TR-512.A.2] TR-512.A.2 Appendix: Model Structure, Patterns and

 Architecture (in Model Description Document within [ONF TR-512])

 [ONF TR-512.8]TR-512.8 Control (in Model Description Document within

 [ONF TR-512])

10. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

Davis Expires 27 April 2023 [Page 30]

Internet-Draft Mobo October 2022

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Appendix A. Appendix A - Problem/Solution Examples

 This appendix lists examples (to be expanded).

 * A circuit pack with a fixed mapping that supports a narrow subset

 of the capability defined in the relevant standards...

 * A slot in a shelf that takes specific circuit packs

 * A temperature sensor with particular range and precision

 * A detector that is temporarily absent

 * A detector that is degraded due to some temperature issue

 * A use of an ethernet termination in a particular configuration of

 functionality such as the ethernet termination in a G.8032 ring

 that deals specifically with the termination of signaling traffic

 * A request for an e-line where the bandwidth requirement varies

 over the day

 * A request for an e-line where there is an acceptable range of

 bandwidths and/or a cost profile for bandwidth

 * A request for an e-tree where the connectivity requirement varies

 over the week

 * An initial position for planning some infrastructure where the

 capacity of termination is known and the building is known, but

 not the specific device

 * slicing where the request is for some range of capability and the

 solution is an approximation to that capability where the

 approximation is stated as a bounded space.

Appendix B. Appendix B - Sketch of an enhanced YANG form

 In this appendix a sketch of a language, that is a development of

 YANG, that resolves some of the issues is set out. The language is

 not completely formed, and it is not the intention that this

 necessarily be the eventual expression, this is simply used for

 illustrative purposes.

Davis Expires 27 April 2023 [Page 31]

Internet-Draft Mobo October 2022

B.1. Progression

 Using this language, a progression of increasingly specific models

 can be set out (as set out in the main body of this document). The

 refinements at each stage would be in terms of reduction of semantic

 scope compared to the previous stage. At an early stage of

 refinement, the component-system pattern emerges.

 The language provides definitions for terminology (in a name space)

 where each term is defined by the specific narrowing (note that the

 terms are simply a human convenience).

 The progression is not a partition. It does not divide the space up

 into a taxonomy. The progression does lead to sets of capability

 where those sets may intersect etc.

 A traditional model is replaced by what is emergent at a stage in the

 recursion. A label (in a label space) chosen for a semantic volume

 should not be reused for anything else. Once defined the label

 should never be deleted, although it can be obsoleted (i.e., not

 expected to be used).

 If the label is encountered, its definition should be available such

 that it can be fully interpreted. The label may apply in a narrow

 application and hence the narrowing definition should be available.

B.2. Language

 As noted, it appears that there is not a good language suited to

 solve this problem fully. This may only appear to be the case, i.e.,

 there may be a language out there, as it has proved very difficult to

 describe the problem (there does not seem to be readily available

 terminology for the concepts in the problem space) and hence it has

 been difficult to discuss what properties the language needs to

 possess.

 To cut through this, the best approach appeared to be to sketch a

 language and show how it could be applied to hopefully tease out an

 existing language that could then solve the problem (or so it can be

 a basis of a new language).

 As noted earlier, considering the general and apparently broad extent

 of the problem, it seems strange that there is not an appropriate

 machine interpretable language of expression available. It is

 possible that existing languages can be used to deal with the problem

 in a somewhat cumbersome way and that this has not yet been observed.

 Cumbersomeness can be refined out over time. Preferably there will

 not need to be Yet Another Language!

Davis Expires 27 April 2023 [Page 32]

Internet-Draft Mobo October 2022

B.3. Key concepts

 Recursive narrowing appears to give rise to "occurrences", where each

 of a set of occurrences is in part the same as and in part different

 from each other. Curiously:

 * there also appears to be a parallel with the specific approach to

 specialization taken in ONF (and in YANG models using augment)

 where a "class" is actually a narrowed "occurrence" of a more

 general metaclass (see earlier discussion). The distinction in

 the general thinking is that there are no specific meta-levels.

 Narrowing can take place through a recursive continuum until all

 properties have been constrained to absolute precision (which is

 actually never possible as there is always some uncertainty,

 rounding etc.).

 * When all properties have been constrained the result is the

 statement of a unique instance at a moment in time (where each

 occurrence has a lifecycle which intertwines with the lifecycles

 of other occurrences). But this instance is itself an opaque

 representation of the effect of underlying detail.

 * this approach seems to point to some usages of the term "instance"

 being flawed and that actually the supposed instance is an

 "occurrence".

 Definitions may be of some type and may cover a subrange of that

 type. Even in an occurrence that is traditionally called an

 instance, the property values may be ranges. The key difference for

 the properties of an instance is that they are unlikely to be further

 decomposed.

B.4. Observation

 At all levels of the recursion there is a mix of schema definition

 and absolute value (instance values). So, some of the information in

 a spec looks like instance data and some like schema. This should

 not be surprising when observing through the lens of recursive

 narrowing and of occurrence.

 Curiously a YANG model definition has instance like data and schema

 data in it. For example, there is instance like data at the

 beginning of the definition with things like module, namespace,

 prefix etc. YANG does not appear uniform in its representation of

 instance like data and schema data.

 The example language developed here attempts to achieve greater

 uniformity.

Davis Expires 27 April 2023 [Page 33]

Internet-Draft Mobo October 2022

B.5. Progressing to the language

 Taking JSON as a language of expression of instances and setting out

 a YANG definition in a JSONized form appeared to allow a uniform

 blend of instance and schema.

 It has been recognized that YIN is a more well-structured form of

 YANG that points further towards this, and a JSONized form of YIN

 looked like the hand crafted JSONized YANG that has been constructed

 here (exploring the expression of recursive narrowing).

 JSON has also been simplified here in that every property value is

 considered as a string and hence in quotes (even numeric quantities).

 It is not intended that any eventual language is restricted in this

 way, the approach just simplifies the representation and resultant

 discussion.

 Note that regardless of the form of language chosen, there will be a

 need to enhance tooling etc. It is intended that the approach should

 evolve in small backward compatible increments and hence it may be

 possible to identify value-justified increments in tooling.

B.6. JSONized YANG

 The following two snippets show the instance-like header and the

 schema data in a JSONized form.

B.6.1. JSONised Header

 The opening of a YANG module (called a header in this document) is

 normally of a form illustrated in the example below:

 module equipment-spec-xyz {

 yang version "1.1";

 namespace "urn:onf:otim:yang:spec-occurrence:equp-spec-xyz{uuid}";

 prefix equip;

 etc.

 In the JSONized form all of the fields are assumed to be "instance"

 values (where it is assumed that a higher level of specification has

 specified these). The JSONized form of the example (extended with

 some other suggested fields) is:

 "module" : {

Davis Expires 27 April 2023 [Page 34]

Internet-Draft Mobo October 2022

 "name": "equipment-spec-xyz{uuid}"

 "yang-version" : "x.y",

 "namespace" : "urn:onf:otim:yang:spec-occurrence:equp-spec-xyz{uuid}",

 "prefix" : "equip",

 "import" : [

 {

 "name" : "module",

 "prefix" : "mod"

 }

 {

 "occurrence-encoding" : "JSON", //Field to explain encoding

 "rule-encoding" : "OCL", //Field to explain encoding

 "utilized-schema": [//Ref schema at next higher "occurrence" level

 {

 "namespace" : "urn:company:yang:holder-schema-xyz{uuid}",

 "prefix" : "holder"

 }

 {

 "namespace" : "urn:company:yang:tapi-spec",

 "prefix" : "tapi-spec"

 }

 {

 "namespace" : "urn:onf:otcc:yang:tapi-equipment",

Davis Expires 27 April 2023 [Page 35]

Internet-Draft Mobo October 2022

 "prefix" : "tapi-equipment"

 ...

 }

 {

 "namespace" : "urn:onf:otcc:yang:tapi-occurrence",

 ...

 }

 {

 "namespace" : "urn:company:yang:equp-schema-abc{uuid}",

 "prefix" : "equipment"

 }

 ...

 "augment": [

 {

 "path" : "..."

 }

 ...

B.6.2. JSONized body

 The core of a YANG module (called a body in this document) is

 normally of a form illustrated in the example of a fragment below:

Davis Expires 27 April 2023 [Page 36]

Internet-Draft Mobo October 2022

 grouping connection {

 list connection-end-point {

 uses connection-end-point-ref;

 key ’topology-uuid node-uuid nep-uuid cep-uuid’;

 config false;

 min-elements 2;

 description "none";

 }

 list lower-connection {

 uses connection-ref;

 key ’connection-uuid’;

 In the JSONized form all of the fields are assumed to be "instance"

 values (where it is assumed that a higher level of specification has

 specified these). The JSONized form of the example (extended with

 some other suggested fields) is:

Davis Expires 27 April 2023 [Page 37]

Internet-Draft Mobo October 2022

 "grouping":{

 "name" : "connection",

 "list": {

 "name" : "connection-end-point",

 "uses" : "connection-end-point-ref",

 "key" : "topology-uuid node-uuid nep-uuid cep-uuid",

 "config" : "false",

 "min-elements" : "2",

 "description" : "none"

 },

 "list": {

 "name" : "lower-connection",

 "uses" : "connection-ref",

 "key" : "connection-uuid",

 "config" : "false",

 "description" : "none"

 },

 Notice the uniformity/consistency between the representations of the

 header and the body.

B.7. Schema for the schema

 With this a YANG model can define a YANG model (within reason... and

 probably similar to other self-defining languages - improvements

 could probably be made to make this more possible).

 Considering an extract from tapi-equipment formulated in JSONized

 YANG:

Davis Expires 27 April 2023 [Page 38]

Internet-Draft Mobo October 2022

 "grouping":{

 "name":"common-equipment-properties",

 "description":"Properties common to all aspects of equipment",

 "leaf": {

 "name" : "asset-instance-identifier",

 "type" : "string",

 "description" : "none"

 },

 "leaf": {

 "name" : "is-powered",

 "type" : "string",

 "description" : "none"

 },

 "leaf": {

 "name" : "equipment-type-name",

 "type" : "string",

 "description" : "none"

 },

 "leaf": {

 "name" : "manufacture-date",

 "type" : "string",

 "description" : "none"

 },

 "leaf": {

Davis Expires 27 April 2023 [Page 39]

Internet-Draft Mobo October 2022

 "name" : "serial-number",

 "type" : "string",

 "description" : "none"

 },

 "leaf": {

 "name" : "temperature",

 "type" : "decimal64",

 "description" : "none"

 },

 It is expected that the above model would have been derived from a

 broader model and that it would reference that model.

 In the following development of the model a reference would be

 provided back to the model above.

 This could be used as a general definition, then constrained for a

 particular application as follows:

 "grouping":{

 "name":"common-equipment-properties",

 "description":"Properties common to all aspects of equipment",

 "leaf": {

 "name" : "asset-instance-identifier",

 "type" : "string",

 "pattern" : "^[0-9a-zA-Z]+"$, // A narrowing constraint.

 "description" : "none"

 },

 "leaf": {

 "name" : "is-powered",

Davis Expires 27 April 2023 [Page 40]

Internet-Draft Mobo October 2022

 "type" : "string",

 "supported-constraint" : "NOT_SUPPORTED",//A narrowing.

 "description" : "none"

 },

 "leaf": {

 "name" : "equipment-type-name",

 "type" : "string",

 "description" : "none"

 },

 "leaf": {

 "name" : "manufacturer-date",

 "type" : "string",

 "description" : "none"

 },

 "leaf": {

 "name" : "serial-number",

 "type" : "string",

 "description" : "none"

 },

 "leaf": {

 "name" : "temperature",

 "type" : {

 "name":"decimal64",

 "fraction-digits":"1", // A narrowing constraint.

Davis Expires 27 April 2023 [Page 41]

Internet-Draft Mobo October 2022

 "range" : "0.0..100.0",

 "precision":"+0.2,-0.2"

 },

 "units" : "Celcius", // A narrowing constraint.

 "description" : "The temperature of the boiler."

 },

 Which could be summarized with a reference to the earlier schema and

 then as follows, where the absent fields are unchanged from the

 earlier schema and the fields mentioned simply show the change/

 addition:

Davis Expires 27 April 2023 [Page 42]

Internet-Draft Mobo October 2022

 "grouping":{

 "name":"common-equipment-properties",

 "utilized-schema" : "tapi-equipment", //The reference

 "leaf": {

 "name" : "asset-instance-identifier",

 "pattern" : "[0-9a-zA-Z]"

 },

 "leaf": {

 "name" : "is-powered",

 "supported-constraint" : "NOT_SUPPORTED"

 },

 "leaf": {

 "name" : "temperature",

 "fraction-digits": "1",

 "range" : "0.0... 100.0",

 "units" : "Celcius"

 },

 And eventually instance values can be mixed with schema...

 "grouping":{

 "name":"common-equipment-properties",

 "description":"Properties common to all aspects of equipment",

 "utilized-schema" : "tapi-equipment",

 "asset-instance-identifier" : "JohnsAsset"

 "leaf": {

Davis Expires 27 April 2023 [Page 43]

Internet-Draft Mobo October 2022

 "name" : "equipment-type-name",

 "type" : "string",

 "description" : "none"

 },

 "leaf": {

 "name" : "manufacturer-date",

 "type" : "string",

 "description" : "none"

 },

 "leaf": {

 "name" : "serial-number",

 "type" : "string",

 "description" : "none"

 },

 "leaf": {

 "name" : "temperature",

 "type" : "decimal64",

 "range" : "0.0... 100.0",

 "units" : "Celcius",

 "description" : "none"

 },

Davis Expires 27 April 2023 [Page 44]

Internet-Draft Mobo October 2022

 Notice that as with normal JSON the name of the property "asset-

 instance-identifier" is followed by its value (or json-object). The

 "utilized-schema" has defined "asset-instance-identifier" and the

 utilization method hence allows the property to either be defined

 further or narrowed to a fixed value. There are clearly "key words"

 such as "leaf" that will have been defined in an "earlier" schema, so

 something like:

 "field": {

 "name":"leaf",

 "type": "strings"

 ...

 And further there would need to be a definition of "name" and "type"

 etc. and their usage in a structure.

B.8. An example of spec occurrence and rules

 This example detail will be added in a later version.

B.8.1. Rough notes

 Considering an occurrence of holder in a spec for an equipment, there

 is a need to identify all compatible equipment types (i.e., that that

 holder can accommodate). Each type would be associated with a

 general spec of capability and that spec would relate to the specific

 application (in the holder) either directly (as the holder is fully

 capable or the spec is specific to the holder) or via some variables

 in the spec (that allow modulation of the spec statements).

 There are also combinatorial rules. For example, a slot may not be

 equipped if blocked by a wide card. This can be represented

 by....Wide card

 It is possible that there are multi-slot compatibility rules.

 The functional capability may be simply the capability of the

 equipment type, but there is often functionality that emerges from a

 combination of hardware.

 In this case an equipment may support some fully formed capabilities

 and some capability fragments that need to be brought together with

 other fragments to support a meaningful function.

Davis Expires 27 April 2023 [Page 45]

Internet-Draft Mobo October 2022

 In some cases, functionality from one piece of hardware might compete

 with functionality from another or functionality might be completely

 nullified by the presence of another specific piece of hardware.

 The equipment-type-identifier is the reference to the equipment spec.

 This brings details of size and capability.

 It is assumed that the holder specification would provide width,

 position etc. and that there could be a general understanding of

 size, or there could be a more abstract representation to enable

 overlap to be accounted for.

B.9. The current schema

 This detail will be added in a later version of this document.

B.10. YANG tree

 This detail will be added in a later version of this document.

B.11. Instance example

 This example detail will be added in a later version of this

 document.

B.12. The extended schema

 This detail will be added in a later version of this document.

B.13. Versioning considerations

 This detail will be added in a later version of this document.

Appendix C. Appendix C - My ref / your ref

 This appendix will cover "my ref/your ref" naming in relationship to

 intention/expectation. The detail will be added in a later version

 of this document.

Appendix D. Appendix D - Occurrence

 An "occurrence" at one level of specification is a narrow

 ("specialized") use of an "occurrence" at the previous higher level

 of specification. There will be many "occurrences" at a lower level

 derived from an "occurrence" at a higher level. The "occurrences" at

 the lower level will be distinct from each other.

Davis Expires 27 April 2023 [Page 46]

Internet-Draft Mobo October 2022

 Considering the problem space, "Thing" has the broadest spread of

 semantics covering everything. Function could be considered as a

 narrowed thing covering only functional aspects and not physical

 aspects. Termination covers only those functions related to

 terminating a signal (and not those related to conveying it

 unchanged.

 Considering the formulation of a traditional model, a specific

 object-class (e.g., Termination Point) is a specific name for an

 "occurrence" at one level of narrowing ("specialization"). The name

 object-class is a specific "name" for an "occurrence" at the previous

 higher level. That previous higher level is called the metamodel in

 this naming scheme. This is more a narrowing of how to express as

 opposed to what to express.

 Considering the traditional model, "Thing" is effectively an object-

 class. Considering "Component-System", "Thing" has ports/facets, as

 do all of its derivatives (unless, of course, they have been narrowed

 away). The "Component-System" formulation is essentially a narrowing

 of the expression opportunity in the broadest of problem space

 considerations at a higher level than "Thing". It effectively

 provides a quantized representation of a continuous space allowing

 representation of a refinement of conceptual parts.

 In the generalized "occurrence" approach, no specific names are given

 to the levels and the levels are intentionally not normalized. The

 approach allows any number of levels, and the number of levels in one

 "branch" does not need to match the number of levels in another. The

 approach allows for whatever degrees of gradual refinement are

 necessary.

 So, a traditional "instance" is also an "occurrence" where it is an

 "occurrence" of specific object- class, i.e., of an "occurrence" at

 the previous higher level. The "instances" is a leaf in the

 metamodel structure.

 In the generalized "occurrence" approach there is no specific end

 leaf. Even when the model level has only fully resolved specific

 values, it is possible to merge in a model with non-specific value

 "occurrences" and continue to refine.

 A specific occurrence:

 * Is narrowing of a previously defined occurrence (where there may

 be many separate distinct narrowings defined at that "level", many

 occurrences

 * Is a mixture of absolute values and definitions

Davis Expires 27 April 2023 [Page 47]

Internet-Draft Mobo October 2022

 * May be a merge of narrowed previously defined occurrences (where

 the semantic phase is shifting)

 * Is the basis for further narrowing

 It also appears that an absolute value of a property at one level may

 be considered as an unstated approximation of a non-fully resolved

 property at the next level down. For example, a statement of 2 at

 one level, refines to 2+/- 15ppm over a short period at the next as

 the visibility "improves". This seems to say that all levels have a

 natural uncertainty that may not be known and hence need not be

 stated.

Appendix E. Appendix E - Narrowing, splitting and merging

E.1. Narrowing

 On the most abstract level is "thing" - without any stated parameter,

 hence without any constraints. "thing" is anything without

 restriction and can take any shape etc. All possible properties are

 allowed without restriction (they do have to be declared, but there

 is no boundary as to what is allowed to be declared). The declared

 properties are of "thing". It is a semantic set including every

 possible behavior etc. and all parameters possible.

 At the next level of narrowing, some behaviors and hence possible

 parameters are eliminated and some constrained versions of allowed

 parameters are exposed. At this point, a convenient name for the

 specific narrowing can be provided and later references. However,

 this can also be considered still as "thing".

 In the most complete realization, the semantic boundary would be

 fully defined such that properties on the boundary were appropriately

 constrained and properties beyond the boundary eliminated. For

 example, a termination-point cannot have a temperature. So, an

 expression eliminating this possibility would be necessary and so on

 for all other properties that cannot be supported. In a more

 practical implementation, most properties that are beyond the

 boundary can be assumed to be known to be beyond the boundary and

 only those with complex constraints need to be stated.

 When narrowing "thing", what it can be is reduced and hence so are

 the parameters that can be exposed. For example, if it is not

 physical, I cannot expose the parameters for weight.

 As the "thing" is narrowed the properties that are allowed to be

 exposed reduces, but there is a tendency to have more properties

 exposed as more and more properties become constrained. For example,

Davis Expires 27 April 2023 [Page 48]

Internet-Draft Mobo October 2022

 color may be irrelevant and hence not exposed or constrained for some

 of the broader "occurrences", but as the narrowing process approaches

 the useful definitions, the color becomes constrained and useful, and

 hence exposed.

 Through the narrowing process the set of opportunities becomes

 smaller and "lighter weight" (possibilities), but more is exposed

 (semantic mass reduces, semantic visibility increases).

 Consider an equipment. It is a physical thing. It may be narrowed

 to the point where it is constrained such that it can only be plugged

 into a slot. It is still an equipment, albeit a constrained forms of

 the general equipment properties for an application. The equipment

 has a property "requires-slot" set to true. During the first

 formulation, color may be of no relevance and hence is not exposed.

 Just because it is not important does not mean that the equipment

 does not have a color, it means that it is not relevant. It can take

 any color and I don’t care.

 Later, the color becomes important and hence it is exposed and later

 still it becomes necessary to choose to constrain the allowable

 colors for an application. It is still an equipment, but it has a

 spec that constrains what is allowed. The spec is for a narrow form

 of equipment. It can still be considered as an equipment even though

 it is a narrow case. It can also be considered as a "thing" with

 exactly the stated property with some further directly stated

 constraints.

 Narrowing could be considered as pruning (removal of unwanted parts).

 For example, take a property (leaf/structure in general) from the

 higher occurrence and potentially:

 * Reduce its legal range (perhaps to a single value) of the type.

 Note that changing the type is allowed if the new type covers the

 same semantics as the old type. So, Integer to real seems OK and

 Enum to its corresponding semantic space dimensions seems OK

 (e.g., color Enum to RGB ranges)

 * Specify the units where relevant (or change the units)

 * Relate its value to other property values such that its value is

 constrained

 * Remove the property completely

 * Change its name (label) to one that represents the narrow version

 of the broader property, for example, component --> termination-

 point

Davis Expires 27 April 2023 [Page 49]

Internet-Draft Mobo October 2022

 This is how modelling is often carried out although it is never

 formally described as a method. Consider the termination point, the

 model is for any connection at any layer etc, and there are

 "profiles" of parameters for particular technologies which augment

 the termination point. The profiles may may add (actually expose)

 further parameters for the same technology or for new technologies,

 but termination point can never have weight as a parameter and

 certainly cannot be sat on!!

 YANG augment is the same process in general, so YANG is positioned

 appropriately to be the language for this approach.

 Interestingly, an AI solution may eventually prefer to use semantics

 closer to thing than to EthernetTerminationPoint as it can deal with

 the shades of specification of general things.

E.2. Splitting

 Splitting semantics is relatively straight forward. Two distinct

 occurrences each narrowed from the same higher-level occurrence where

 the two new occurrences have distinct characteristics.

E.3. Merging

 As everything is an "occurrence" of thing, everything has a common

 highest level of thing. When merging, it may be necessary to go some

 way back towards that common highest level.

 Where the two occurrences are disjoint in distinct characteristics

 and identical in common characteristics, merging is simply a union.

 The result may adopt the label of the shared higher level or may have

 a new label depending upon the labeling (naming) strategy.

 Where common characteristics are not identical:

 * one may be a simple superset of the other in which case the

 superset is adopted.

 * There may be contradictions in the two specifications in which

 case there needs to be a simple precedence, e.g., Not overrides

 Must,

 Where merging two (or more) properties from higher models into one

 property

 * There must be a new name for this rephasing of the semantic if

 neither of the source properties were derived from an origin with

 the same breadth of space as the new property

Davis Expires 27 April 2023 [Page 50]

Internet-Draft Mobo October 2022

 * One of the names can be taken if it earlier in the narrowing

 corresponded to the superset of the new merged result

 For example, TerminationPoint narrowed to have no OAM capabilities

 and then OAM picked up and merged in (again) at some later stage so

 that this is still TerminationPoint (but it is NOT OAM).

 For example, a narrow form of TerminationPoint (processes of traffic

 at a point) and a narrow form Connection (conveys traffic of space

 with no transformation) merged into a (strange) long termination that

 does some distributed processing of traffic. This is neither a

 TerminationPoint nor a Connection. It could revert to Component with

 full spec, or it could become a ProcessingSpan (or similar).

Appendix F. Appendix F - A traffic example

 This example detail will be added in a later version of this

 document.

Acknowledgments

Contributors

 Martin Skorupski

 highstreet technologies

 Email: martin.skorupski@highstreet-technologies.com

Author’s Address

 Nigel Davis

 Ciena

 Email: ndavis@ciena.com

Davis Expires 27 April 2023 [Page 51]

netmod O. G. D. Dios
Internet-Draft S. Barguil
Intended status: Standards Track Telefonica
Expires: 27 April 2023 M. Boucadair
 Orange
 24 October 2022

 Extensions to the Access Control Lists (ACLs) YANG Model
 draft-dbb-netmod-acl-03

Abstract

 RFC 8519 defines a YANG data model for Access Control Lists (ACLs).
 This document discusses a set of extensions that fix many of the
 limitations of the ACL model as initially defined in RFC 8519.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Discussion of this document takes place on the Network Modeling
 Working Group mailing list (netmod@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/browse/netmod/.

 Source for this draft and an issue tracker can be found at
 https://github.com/oscargdd/draft-dbb-netmod-enhanced-acl.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 27 April 2023.

Dios, et al. Expires 27 April 2023 [Page 1]

Internet-Draft Enhanced ACLs October 2022

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology . 4
 3. Problem Statement & Gap Analysis 4
 3.1. Suboptimal Configuration: Lack of Support for Lists of
 Prefixes . 4
 3.2. Manageability: Impossibility to Use Aliases or Defined
 Sets . 8
 3.3. Bind ACLs to Devices, Not Only Interfaces 9
 3.4. Partial or Lack of IPv4/IPv6 Fragment Handling 9
 3.5. Suboptimal TCP Flags Handling 10
 3.6. Rate-Limit Action . 10
 3.7. Payload-based Filtering 10
 3.8. Reuse the ACLs Content Across Several Devices 10
 4. Overall Module Structure 11
 4.1. Enhanced ACL . 11
 4.2. Defined sets . 13
 4.3. TCP Flags Handling 13
 4.4. Fragments Handling 14
 4.5. Rate-Limit Traffic 18
 5. YANG Modules . 18
 5.1. Enhanced ACL . 18
 6. Security Considerations (TBC) 29
 7. IANA Considerations . 30
 7.1. URI Registration . 30
 7.2. YANG Module Name Registration 30
 8. References . 30
 8.1. Normative References 30
 8.2. Informative References 31
 Appendix A. Acknowledgements 32
 Authors’ Addresses . 32

Dios, et al. Expires 27 April 2023 [Page 2]

Internet-Draft Enhanced ACLs October 2022

1. Introduction

 [RFC8519] defines Access control lists (ACLs) as a user-ordered set
 of filtering rules. The model targets the configuration of the
 filtering behaviour of a device. However, the model structure, as
 defined in [RFC8519], suffers from a set of limitations. This
 document describes these limitations and proposes an enhanced ACL
 structure. The YANG module in this document is solely based on
 augmentations to the ACL YANG module defined in [RFC8519].

 The motivation of such enhanced ACL structure is discussed in detail
 in Section 3.

 When managing ACLs, it is common for network operators to group match
 elements in pre-defined sets. The consolidation into group matches
 allows for reducing the number of rules, especially in large scale
 networks. If it is needed, for example, to find a match against 100
 IP addresses (or prefixes), a single rule will suffice rather than
 creating individual Access Control Entries (ACEs) for each IP address
 (or prefix). In doing so, implementations would optimize the
 performance of matching lists vs multiple rules matching.

 The enhanced ACL structure is also meant to facilitate the management
 of network operators. Instead of entering the IP address or port
 number literals, using user-named lists decouples the creation of the
 rule from the management of the sets. Hence, it is possible to
 remove/add entries to the list without redefining the (parent) ACL
 rule.

 In addition, the notion of Access Control List (ACL) and defined sets
 is generalized so that it is not device-specific as per [RFC8519].
 ACLs and defined sets may be defined at network / administrative
 domain level and associated to devices. This approach facilitates
 the reusability across multiple network elements. For example,
 managing the IP prefix sets from a network level makes it easier to
 maintain by the security groups.

 Network operators maintain sets of IP prefixes that are related to
 each other, e.g., deny-lists or accept-lists that are associated with
 those provided by a VPN customer. These lists are maintained and
 manipulated by security expert teams.

 Note that ACLs are used locally in devices but are triggered by other
 tools such as DDoS mitigation [RFC9132] or BGP Flow Spec [RFC8955]
 [RFC8956]. Therefore, supporting means to easily map to the
 filtering rules conveyed in messages triggered by these tools is
 valuable from a network operation standpoint.

Dios, et al. Expires 27 April 2023 [Page 3]

Internet-Draft Enhanced ACLs October 2022

2. Terminology

 The keywords *MUST*, *MUST NOT*, *REQUIRED*, *SHALL*, *SHALL NOT*,
 SHOULD, *SHOULD NOT*, *RECOMMENDED*, *MAY*, and *OPTIONAL*, when
 they appear in this document, are to be interpreted as described in
 [RFC2119].

 The terminology for describing YANG modules is defined in [RFC7950].
 The meaning of the symbols in the tree diagrams is defined in
 [RFC8340].

 In addition to the terms defined in [RFC8519], this document makes
 use of the following terms:

 * Defined set: Refers to reusable description of one or multiple
 information elements (e.g., IP address, IP prefix, port number, or
 ICMP type).

3. Problem Statement & Gap Analysis

3.1. Suboptimal Configuration: Lack of Support for Lists of Prefixes

 IP prefix related data nodes, e.g., "destination-ipv4-network" or
 "destination-ipv6-network", do not support handling a list of IP
 prefixes, which may then lead to having to support large numbers of
 ACL entries in a configuration file.

 The same issue is encountered when ACLs have to be in place to
 mitigate DDoS attacks (e.g., [RFC9132] when a set of sources are
 involved in such an attack. The situation is even worse when both a
 list of sources and destination prefixes are involved.

 Figure 1 shows an example of the required ACL configuration for
 filtering traffic from two prefixes.

 {
 "ietf-access-control-list:acls": {
 "acl": [
 {
 "name": "first-prefix",
 "type": "ipv6-acl-type",
 "aces": {
 "ace": [
 {
 "name": "my-test-ace",
 "matches": {
 "ipv6": {
 "destination-ipv6-network":

Dios, et al. Expires 27 April 2023 [Page 4]

Internet-Draft Enhanced ACLs October 2022

 "2001:db8:6401:1::/64",
 "source-ipv6-network":
 "2001:db8:1234::/96",
 "protocol": 17,
 "flow-label": 10000
 },
 "udp": {
 "source-port": {
 "operator": "lte",
 "port": 80
 },
 "destination-port": {
 "operator": "neq",
 "port": 1010
 }
 }
 },
 "actions": {
 "forwarding": "accept"
 }
 }
]
 }
 },
 {
 "name": "second-prefix",
 "type": "ipv6-acl-type",
 "aces": {
 "ace": [
 {
 "name": "my-test-ace",
 "matches": {
 "ipv6": {
 "destination-ipv6-network":
 "2001:db8:6401:c::/64",
 "source-ipv6-network":
 "2001:db8:1234::/96",
 "protocol": 17,
 "flow-label": 10000
 },
 "udp": {
 "source-port": {
 "operator": "lte",
 "port": 80
 },
 "destination-port": {
 "operator": "neq",
 "port": 1010

Dios, et al. Expires 27 April 2023 [Page 5]

Internet-Draft Enhanced ACLs October 2022

 }
 }
 },
 "actions": {
 "forwarding": "accept"
 }
 }
]
 }
 }
]
 }
 }

 Figure 1: Example Illustrating Sub-optimal Use of the ACL Model
 with a Prefix List

 Such a configuration is suboptimal for both: - Network controllers
 that need to manipulate large files. All or a subset for this
 configuration will need to be passed to the underlying network
 devices

 * Devices may receive such a confirguration and thus will need to
 maintain it locally.

 (Figure 2 depicts an example of an optimized structure:

Dios, et al. Expires 27 April 2023 [Page 6]

Internet-Draft Enhanced ACLs October 2022

 {
 "ietf-access-control-list:acls": {
 "acl": [
 {
 "name": "prefix-list-support",
 "type": "ipv6-acl-type",
 "aces": {
 "ace": [
 {
 "name": "my-test-ace",
 "matches": {
 "ipv6": {
 "destination-ipv6-network": [
 "2001:db8:6401:1::/64",
 "2001:db8:6401:c::/64"
],
 "source-ipv6-network":
 "2001:db8:1234::/96",
 "protocol": 17,
 "flow-label": 10000
 },
 "udp": {
 "source-port": {
 "operator": "lte",
 "port": 80
 },
 "destination-port": {
 "operator": "neq",
 "port": 1010
 }
 }
 },
 "actions": {
 "forwarding": "accept"
 }
 }
]
 }
 }
]
 }
 }

 Figure 2: Example Illustrating Optimal Use of the ACL Model in a
 Network Context.

Dios, et al. Expires 27 April 2023 [Page 7]

Internet-Draft Enhanced ACLs October 2022

3.2. Manageability: Impossibility to Use Aliases or Defined Sets

 The same approach as the one discussed for IP prefixes can be
 generalized by introduing the concept of "aliases" or "defined sets".

 The defined sets are reusable definitions across several ACLs. Each
 category is modelled in YANG as a list of parameters related to the
 class it represents. The following sets can be considered:

 * Prefix sets: Used to create lists of IPv4 or IPv6 prefixes.

 * Protocol sets: Used to create a list of protocols.

 * Port number sets: Used to create lists of TCP or UDP port values
 (or any other transport protocol that makes uses of port numbers).
 The identity of the protocols is identified by the protocol set,
 if present. Otherwise, a set applies to any protocol.

 * ICMP sets: Uses to create lists of ICMP-based filters. This
 applies only when the protocol is set to ICMP or ICMPv6.

 A candidate structure is shown in Figure 3:

 +--rw defined-sets
 | +--rw prefix-sets
 | | +--rw prefix-set* [name]
 | | +--rw name string
 | | +--rw ip-prefix* inet:ip-prefix
 | +--rw port-sets
 | | +--rw port-set* [name]
 | | +--rw name string
 | | +--rw port* inet:port-number
 | +--rw protocol-sets
 | | +--rw protocol-set* [name]
 | | +--rw name string
 | | +--rw protocol-name* identityref
 | +--rw icmp-type-sets
 | +--rw icmp-type-set* [name]
 | +--rw name string
 | +--rw types* [type]
 | +--rw type uint8
 | +--rw code? uint8
 | +--rw rest-of-header? binary

 Figure 3: Examples of Defined Sets.

Dios, et al. Expires 27 April 2023 [Page 8]

Internet-Draft Enhanced ACLs October 2022

 Aliases may also be considered to managed resources that are
 identified by a combination of various parameters as shown in the
 candidate tree in Figure 4. Note that some aliases can be provided
 by decomposing them into separate sets.

 | +--rw aliases
 | | +--rw alias* [name]
 | | +--rw name string
 | | +--rw prefix* inet:ip-prefix
 | | +--rw port-range* [lower-port]
 | | | +--rw lower-port inet:port-number
 | | | +--rw upper-port? inet:port-number
 | | +--rw protocol* uint8
 | | +--rw fqdn* inet:domain-name
 | | +--rw uri* inet:uri
 | +--rw acls
 | ...
 | +--rw rest-of-header? binary

 Figure 4: Examples of Aliases.

3.3. Bind ACLs to Devices, Not Only Interfaces

 In the context of network management, an ACL may be enforced in many
 network locations. As such, the ACL module should allow for binding
 an ACL to multiple devices, not only (abstract) interfaces.

 The ACL name must, thus, be unique at the scale of the network, but
 the same name may be used in many devices when enforcing node-
 specific ACLs.

3.4. Partial or Lack of IPv4/IPv6 Fragment Handling

 [RFC8519] does not support fragment handling capability for IPv6 but
 offers a partial support for IPv4 by means of ’flags’. Nevertheless,
 the use of ’flags’ is problematic since it does not allow a bitmask
 to be defined. For example, setting other bits not covered by the
 ’flags’ filtering clause in a packet will allow that packet to get
 through (because it won’t match the ACE).

 Defining a new IPv4/IPv6 matching field called ’fragment’ is thus
 required to efficiently handle fragment-related filtering rules.

Dios, et al. Expires 27 April 2023 [Page 9]

Internet-Draft Enhanced ACLs October 2022

3.5. Suboptimal TCP Flags Handling

 [RFC8519] supports including flags in the TCP match fields, however
 that structure does not support matching operations as those
 supported in BGP Flow Spec. Defining this field to be defined as a
 flag bitmask together with a set of operations is meant to
 efficiently handle TCP flags filtering rules.

3.6. Rate-Limit Action

 [RFC8519] specifies that forwarding actions can be ’accept’ (i.e.,
 accept matching traffic), ’drop’ (i.e., drop matching traffic without
 sending any ICMP error message), or ’reject’ (i.e., drop matching
 traffic and send an ICMP error message to the source). However,
 there are situations where the matching traffic can be accepted, but
 with a rate-limit policy. Such capability is not currently supported
 by [RFC8519].

3.7. Payload-based Filtering

 Some transport protocols use existing protocols (e.g., TCP or UDP) as
 substrate. The match criteria for such protocols may rely upon the
 ’protocol’ under ’l3’, TCP/UDP match criteria, part of the TCP/UDP
 payload, or a combination thereof. [RFC8519] does not support
 matching based on the payload.

 Likewise, the current version of the ACL model does not support
 filtering of encapsulated traffic.

3.8. Reuse the ACLs Content Across Several Devices

 Having a global network view of the ACLs is highly valuable for
 service providers. An ACL could be defined and applied following the
 hierarchy of the network topology. So, an ACL can be defined at the
 network level and, then, that same ACL can be used (or referenced to)
 in several devices (including termination points) within the same
 network.

 This network/device ACLs differentiation introduces several new
 requirements, e.g.:

 * An ACL name can be used at both network and device levels.

 * An ACL content updated at the network level should imply a
 transaction that updates the relevant content in all the nodes
 using this ACL.

Dios, et al. Expires 27 April 2023 [Page 10]

Internet-Draft Enhanced ACLs October 2022

 * ACLs defined at the device level have a local meaning for the
 specific node.

 * A device can be associated with a router, a VRF, a logical system,
 or a virtual node. ACLs can be applied in physical and logical
 infrastructure.

4. Overall Module Structure

4.1. Enhanced ACL

 module: ietf-acl-enh
 augment /ietf-acl:acls/ietf-acl:acl:
 +--rw defined-sets
 +--rw ipv4-prefix-sets
 | +--rw prefix-set* [name]
 | +--rw name string
 | +--rw description? string
 | +--rw prefix* inet:ipv4-prefix
 +--rw ipv6-prefix-sets
 | +--rw prefix-set* [name]
 | +--rw name string
 | +--rw description? string
 | +--rw prefix* inet:ipv6-prefix
 +--rw port-sets
 | +--rw port-set* [name]
 | +--rw name string
 | +--rw port* [id]
 | +--rw id string
 | +--rw (port)?
 | +--:(port-range-or-operator)
 | +--rw port-range-or-operator
 | +--rw (port-range-or-operator)?
 | +--:(range)
 | | +--rw lower-port inet:port-number
 | | +--rw upper-port inet:port-number
 | +--:(operator)
 | +--rw operator? operator
 | +--rw port inet:port-number
 +--rw protocol-sets
 | +--rw protocol-set* [name]
 | +--rw name string
 | +--rw protocol* union
 +--rw icmp-type-sets
 +--rw icmp-type-set* [name]
 +--rw name string
 +--rw types* [type]
 +--rw type uint8

Dios, et al. Expires 27 April 2023 [Page 11]

Internet-Draft Enhanced ACLs October 2022

 +--rw code? uint8
 +--rw rest-of-header? binary
 augment /ietf-acl:acls/ietf-acl:acl/ietf-acl:aces/ietf-acl:ace
 /ietf-acl:matches:
 +--rw (payload)?
 +--:(prefix-pattern)
 +--rw prefix-pattern {match-on-payload}?
 +--rw offset? identityref
 +--rw offset-end? uint64
 +--rw operator? operator
 +--rw prefix? binary
 augment /ietf-acl:acls/ietf-acl:acl/ietf-acl:aces/ietf-acl:ace
 /ietf-acl:matches/ietf-acl:l3/ietf-acl:ipv4:
 +--rw ipv4-fragment
 | +--rw operator? operator
 | +--rw type? fragment-type
 +--rw source-ipv4-prefix-list? leafref
 +--rw destination-ipv4-prefix-list? leafref
 +--rw next-header-set? leafref
 augment /ietf-acl:acls/ietf-acl:acl/ietf-acl:aces/ietf-acl:ace
 /ietf-acl:matches/ietf-acl:l3/ietf-acl:ipv6:
 +--rw ipv6-fragment
 | +--rw operator? operator
 | +--rw type? fragment-type
 +--rw source-ipv6-prefix-list? leafref
 +--rw destination-ipv6-prefix-list? leafref
 +--rw protocol-set? leafref
 augment /ietf-acl:acls/ietf-acl:acl/ietf-acl:aces/ietf-acl:ace
 /ietf-acl:matches/ietf-acl:l4/ietf-acl:tcp:
 +--rw flags-bitmask
 | +--rw operator? operator
 | +--rw bitmask? uint16
 +--rw source-tcp-port-set?
 | -> ../../../../defined-sets/port-sets/port-set/name
 +--rw destination-tcp-port-set?
 -> ../../../../defined-sets/port-sets/port-set/name
 augment /ietf-acl:acls/ietf-acl:acl/ietf-acl:aces/ietf-acl:ace
 /ietf-acl:matches/ietf-acl:l4/ietf-acl:udp:
 +--rw source-udp-port-set?
 | -> ../../../../defined-sets/port-sets/port-set/name
 +--rw destination-udp-port-set?
 -> ../../../../defined-sets/port-sets/port-set/name
 augment /ietf-acl:acls/ietf-acl:acl/ietf-acl:aces/ietf-acl:ace
 /ietf-acl:matches/ietf-acl:l4/ietf-acl:icmp:
 +--rw icmp-set? leafref
 augment /ietf-acl:acls/ietf-acl:acl/ietf-acl:aces/ietf-acl:ace
 /ietf-acl:actions:
 +--rw rate-limit? decimal64

Dios, et al. Expires 27 April 2023 [Page 12]

Internet-Draft Enhanced ACLs October 2022

 Figure 5: Enhanced ACL tree

4.2. Defined sets

 The augmented ACL structure includes several containers to manage
 reusable sets of elements that can be matched in an ACL entry. Each
 set is uniquely identified by a name, and can be called from the
 relevant entry. The following sets are defined:

 * IPv4 prefix set: It contains a list of IPv4 prefixes. A match
 will be considered if the IP address (source or destination,
 depending on the ACL entry) is contained in any of the prefixes.

 * IPv6 prefix set: It contains a list of IPv6 prefixes. A match
 will be considered if the IP address (source or destination,
 depending on the ACL entry) is contained in any of the prefixes.

 * Port sets: It contains a list of port numbers to be used in TCP /
 UDP entries. The ports can be individual port numbers, a range of
 ports, and an operation.

 * Protocol sets: It contains a list of protocol values. Each
 protocol can be identified either by a number (e.g., 17) or a name
 (e.g., UDP).

 * ICMP sets: It contains a list of ICMP types, each of them
 identified by a type value, optionally the code and the rest of
 the header.

4.3. TCP Flags Handling

 The augmented ACL structure includes a new leaf ’flags-bitmask’ to
 better handle flags.

 Clients that support both ’flags-bitmask’ and ’flags’ matching fields
 MUST NOT set these fields in the same request.

 Figure 6 shows an example of a request to install a filter to discard
 incoming TCP messages having all flags unset.

Dios, et al. Expires 27 April 2023 [Page 13]

Internet-Draft Enhanced ACLs October 2022

 {
 "ietf-access-control-list:acls": {
 "acl": [{
 "name": "tcp-flags-example",
 "aces": {
 "ace": [{
 "name": "null-attack",
 "matches": {
 "tcp": {
 "flags-bitmask": {
 "operator": "not any",
 "bitmask": 4095
 }
 }
 },
 "actions": {
 "forwarding": "drop"
 }
 }]
 }
 }]
 }
 }

 Figure 6: Example to Deny TCP Null Attack Messages

4.4. Fragments Handling

 The augmented ACL structure includes a new leaf ’fragment’ to better
 handle fragments.

 Clients that support both ’fragment’ and ’flags’ matching fields MUST
 NOT set these fields in the same request.

 Figure 7 shows the content of a POST request to allow the traffic
 destined to 198.51.100.0/24 and UDP port number 53, but to drop all
 fragmented packets. The following ACEs are defined (in this order):

 * "drop-all-fragments" ACE: discards all fragments.

 * "allow-dns-packets" ACE: accepts DNS packets destined to
 198.51.100.0/24.

Dios, et al. Expires 27 April 2023 [Page 14]

Internet-Draft Enhanced ACLs October 2022

 {
 "ietf-access-control-list:acls": {
 "acl": [
 {
 "name": "dns-fragments",
 "type": "ipv4-acl-type",
 "aces": {
 "ace": [
 {
 "name": "drop-all-fragments",
 "matches": {
 "ipv4": {
 "ipv4-fragment": {
 "operator": "match",
 "type": "isf"
 }
 }
 },
 "actions": {
 "forwarding": "drop"
 }
 },
 {
 "name": "allow-dns-packets",
 "matches": {
 "ipv4": {
 "destination-ipv4-network": "198.51.100.0/24"
 },
 "udp": {
 "destination-port": {
 "operator": "eq",
 "port": 53
 }
 },
 "actions": {
 "forwarding": "accept"
 }
 }
 }
]
 }
 }
]
 }
 }

 Figure 7: Example Illustrating Candidate Filtering of IPv4
 Fragmented Packets.

Dios, et al. Expires 27 April 2023 [Page 15]

Internet-Draft Enhanced ACLs October 2022

 Figure 8 shows an example of the body of a POST request to allow the
 traffic destined to 2001:db8::/32 and UDP port number 53, but to drop
 all fragmented packets. The following ACEs are defined (in this
 order):

 * "drop-all-fragments" ACE: discards all fragments (including atomic
 fragments). That is, IPv6 packets that include a Fragment header
 (44) are dropped.

 * "allow-dns-packets" ACE: accepts DNS packets destined to
 2001:db8::/32.

Dios, et al. Expires 27 April 2023 [Page 16]

Internet-Draft Enhanced ACLs October 2022

 {
 "ietf-access-control-list:acls": {
 "acl": [
 {
 "name": "dns-fragments",
 "type": "ipv6-acl-type",
 "aces": {
 "ace": [
 {
 "name": "drop-all-fragments",
 "matches": {
 "ipv6": {
 "ipv6-fragment": {
 "operator": "match",
 "type": "isf"
 }
 }
 },
 "actions": {
 "forwarding": "drop"
 }
 },
 {
 "name": "allow-dns-packets",
 "matches": {
 "ipv6": {
 "destination-ipv6-network": "2001:db8::/32"
 },
 "udp": {
 "destination-port": {
 "operator": "eq",
 "port": 53
 }
 }
 },
 "actions": {
 "forwarding": "accept"
 }
 }
]
 }
 }
]
 }
 }

 Figure 8: Example Illustrating Candidate Filtering of IPv6
 Fragmented Packets.

Dios, et al. Expires 27 April 2023 [Page 17]

Internet-Draft Enhanced ACLs October 2022

4.5. Rate-Limit Traffic

 In order to support rate-limiting (see Section 3.6), a new action
 called "rate-limit" is defined.

 (#example_5) shows an ACL example to rate-limit incoming SYNs during
 a SYN flood attack.

 {
 "ietf-access-control-list:acls": {
 "acl": [{
 "name": "tcp-flags-example-with-rate-limit",
 "aces": {
 "ace": [{
 "name": "rate-limit-syn",
 "matches": {
 "tcp": {
 "flags-bitmask": {
 "operator": "match",
 "bitmask": 2
 }
 }
 },
 "actions": {
 "forwarding": "accept",
 "rate-limit": "20.00"
 }
 }]
 }
 }]
 }
 }

 Figure 9: Example Rate-Limit Incoming TCP SYNs

5. YANG Modules

5.1. Enhanced ACL

 <CODE BEGINS> file "ietf-acl-enh@2022-10-24.yang"
 module ietf-acl-enh {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-acl-enh";
 prefix enh-acl;

 import ietf-inet-types {
 prefix inet;
 reference

Dios, et al. Expires 27 April 2023 [Page 18]

Internet-Draft Enhanced ACLs October 2022

 "RFC 6991: Common YANG Data Types";
 }
 import ietf-access-control-list {
 prefix ietf-acl;
 reference
 "RFC 8519: YANG Data Model for Network Access
 Control Lists (ACLs), Section 4.1";
 }
 import ietf-packet-fields {
 prefix packet-fields;
 reference
 "RFC 8519: YANG Data Model for Network Access
 Control Lists (ACLs), Section 4.2";
 }

 organization
 "IETF NETMOD Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Mohamed Boucadair
 <mailto:mohamed.boucadair@orange.com>
 Author: Samier Barguil
 <mailto:samier.barguilgiraldo.ext@telefonica.com>
 Author: Oscar Gonzalez de Dios
 <mailto:oscar.gonzalezdedios@telefonica.com>";
 description
 "This module contains YANG definitions for enhanced ACLs.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 revision 2022-10-24 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: Extensions to the Access Control Lists (ACLs)

Dios, et al. Expires 27 April 2023 [Page 19]

Internet-Draft Enhanced ACLs October 2022

 YANG Model";
 }

 feature match-on-payload {
 description
 "Match based on a pattern is supported.";
 }

 identity offset-type {
 description
 "Base identity for payload offset type.";
 }

 identity layer3 {
 base offset-type;
 description
 "IP header.";
 }

 identity layer4 {
 base offset-type;
 description
 "Transport header (e.g., TCP or UDP).";
 }

 identity payload {
 base offset-type;
 description
 "Transport payload. For example, this represents the beginning
 of the TCP data right after any TCP options.";
 }

 typedef operator {
 type bits {
 bit not {
 position 0;
 description
 "If set, logical negation of operation.";
 }
 bit match {
 position 1;
 description
 "Match bit. This is a bitwise match operation
 defined as ’(data & value) == value’.";
 }
 bit any {
 position 2;
 description

Dios, et al. Expires 27 April 2023 [Page 20]

Internet-Draft Enhanced ACLs October 2022

 "Any bit. This is a match on any of the bits in
 bitmask. It evaluates to ’true’ if any of the bits
 in the value mask are set in the data,
 i.e., ’(data & value) != 0’.";
 }
 }
 description
 "Specifies how to apply the defined bitmask.
 ’any’ and ’match’ bits must not be set simultaneously.";
 }

 typedef fragment-type {
 type bits {
 bit df {
 position 0;
 description
 "Don’t fragment bit for IPv4.
 Must be set to 0 when it appears in an IPv6 filter.";
 }
 bit isf {
 position 1;
 description
 "Is a fragment.";
 }
 bit ff {
 position 2;
 description
 "First fragment.";
 }
 bit lf {
 position 3;
 description
 "Last fragment.";
 }
 }
 description
 "Different fragment types to match against.";
 }

 grouping tcp-flags {
 description
 "Operations on TCP flags.";
 leaf operator {
 type operator;
 default "match";
 description
 "How to interpret the TCP flags.";
 }

Dios, et al. Expires 27 April 2023 [Page 21]

Internet-Draft Enhanced ACLs October 2022

 leaf bitmask {
 type uint16;
 description
 "The bitmask matches the last 4 bits of byte 12
 and byte 13 of the TCP header. For clarity, the 4 bits
 of byte 12 corresponding to the TCP data offset field
 are not included in any matching.";
 }
 }

 grouping fragment-fields {
 description
 "Operations on fragment types.";
 leaf operator {
 type operator;
 default "match";
 description
 "How to interpret the fragment type.";
 }
 leaf type {
 type fragment-type;
 description
 "What fragment type to look for.";
 }
 }

 grouping payload {
 description
 "Operations on payload match.";
 leaf offset {
 type identityref {
 base offset-type;
 }
 description
 "Indicates the payload offset.";
 }
 leaf offset-end {
 type uint64;
 description
 "Indicates the number of bytes to cover when
 performing the prefix match.";
 }
 leaf operator {
 type operator;
 default "match";
 description
 "How to interpret the prefix match.";
 }

Dios, et al. Expires 27 April 2023 [Page 22]

Internet-Draft Enhanced ACLs October 2022

 leaf prefix {
 type binary;
 description
 "The pattern to match against.";
 }
 }

 augment "/ietf-acl:acls/ietf-acl:acl" {
 description
 "add a new container to store sets (prefix
 sets, port sets, etc";
 container defined-sets {
 description
 "Predefined sets of attributes used in policy match
 statements.";
 container ipv4-prefix-sets {
 description
 "Data definitions for a list of IPv4 or IPv6
 prefixes which are matched as part of a policy.";
 list prefix-set {
 key "name";
 description
 "List of the defined prefix sets.";
 leaf name {
 type string;
 description
 "Name of the prefix set -- this is used as a label to
 reference the set in match conditions.";
 }
 leaf description {
 type string;
 description
 "Defined Set description.";
 }
 leaf-list prefix {
 type inet:ipv4-prefix;
 description
 "List of IPv4 prefixes to be used in match
 conditions.";
 }
 }
 }
 container ipv6-prefix-sets {
 description
 "Data definitions for a list of IPv6 prefixes
 which are matched as part of a policy.";
 list prefix-set {
 key "name";

Dios, et al. Expires 27 April 2023 [Page 23]

Internet-Draft Enhanced ACLs October 2022

 description
 "List of the defined prefix sets.";
 leaf name {
 type string;
 description
 "Name of the prefix set -- this is used as a label to
 reference the set in match conditions.";
 }
 leaf description {
 type string;
 description
 "A textual description of the prefix list.";
 }
 leaf-list prefix {
 type inet:ipv6-prefix;
 description
 "List of IPv6 prefixes to be used in match
 conditions.";
 }
 }
 }
 container port-sets {
 description
 "Data definitions for a list of ports which can
 be matched in policies.";
 list port-set {
 key "name";
 description
 "List of port set definitions.";
 leaf name {
 type string;
 description
 "Name of the port set -- this is used as a label to
 reference the set in match conditions.";
 }
 list port {
 key "id";
 description
 "Port numbers along with the operator on which to
 match.";
 leaf id {
 type string;
 description
 "Identifier of the list of port numbers.";
 }
 choice port {
 description
 "Choice of specifying the port number or referring

Dios, et al. Expires 27 April 2023 [Page 24]

Internet-Draft Enhanced ACLs October 2022

 to a group of port numbers.";
 container port-range-or-operator {
 description
 "Indicates a set of ports.";
 uses packet-fields:port-range-or-operator;
 }
 }
 }
 }
 }
 container protocol-sets {
 description
 "Data definitions for a list of protocols which can
 be matched in policies.";
 list protocol-set {
 key "name";
 description
 "List of protocol set definitions.";
 leaf name {
 type string;
 description
 "Name of the protocols set -- this is used as a label to
 reference the set in match conditions.";
 }
 leaf-list protocol {
 type union {
 type uint8;
 type string; //Check if we can reuse an IANA-maintained module
 }
 description
 "Value of the protocl set.";
 }
 }
 }
 container icmp-type-sets {
 description
 "Data definitions for a list of ICMP types which can
 be matched in policies.";
 list icmp-type-set {
 key "name";
 description
 "List of ICMP type set definitions.";
 leaf name {
 type string;
 description
 "Name of the ICMP type set -- this is used as a label to
 reference the set in match conditions.";
 }

Dios, et al. Expires 27 April 2023 [Page 25]

Internet-Draft Enhanced ACLs October 2022

 list types {
 key "type";
 description
 "Includes a list of ICMP types.";
 uses packet-fields:acl-icmp-header-fields;
 }
 }
 }
 }
 }

 augment "/ietf-acl:acls/ietf-acl:acl/ietf-acl:aces"
 + "/ietf-acl:ace/ietf-acl:matches" {
 description
 "Add a new match types.";
 choice payload {
 description
 "Match a prefix pattern.";
 container prefix-pattern {
 if-feature "match-on-payload";
 description
 "Rule to perform payload-based match.";
 uses payload;
 }
 }
 }

 augment "/ietf-acl:acls/ietf-acl:acl/ietf-acl:aces"
 + "/ietf-acl:ace/ietf-acl:matches/ietf-acl:l3/ietf-acl:ipv4" {
 description
 "Handle non-initial and initial fragments for IPv4 packets.";
 container ipv4-fragment {
 description
 "Indicates how to handle IPv4 fragments.";
 uses fragment-fields;
 }
 leaf source-ipv4-prefix-list {
 type leafref {
 path "../../../../defined-sets/ipv4-prefix-sets/prefix-set/name";
 }
 description
 "A reference to a prefix list to match the source address.";
 }
 leaf destination-ipv4-prefix-list {
 type leafref {
 path "../../../../defined-sets/ipv4-prefix-sets/prefix-set/name";
 }
 description

Dios, et al. Expires 27 April 2023 [Page 26]

Internet-Draft Enhanced ACLs October 2022

 "A reference to a prefix list to match the destination address.";
 }
 leaf next-header-set {
 type leafref {
 path "../../../../defined-sets/protocol-sets/protocol-set/name";
 }
 description
 "A reference to a protocol set to match the next-header field.";
 }
 }

 augment "/ietf-acl:acls/ietf-acl:acl/ietf-acl:aces"
 + "/ietf-acl:ace/ietf-acl:matches/ietf-acl:l3/ietf-acl:ipv6" {
 description
 "Handles non-initial and initial fragments for IPv6 packets.";
 container ipv6-fragment {
 description
 "Indicates how to handle IPv6 fragments.";
 uses fragment-fields;
 }
 leaf source-ipv6-prefix-list {
 type leafref {
 path "../../../../defined-sets/ipv6-prefix-sets/prefix-set/name";
 }
 description
 "A reference to a prefix list to match the source address.";
 }
 leaf destination-ipv6-prefix-list {
 type leafref {
 path "../../../../defined-sets/ipv6-prefix-sets/prefix-set/name";
 }
 description
 "A reference to a prefix list to match the destination address.";
 }
 leaf protocol-set {
 type leafref {
 path "../../../../defined-sets/protocol-sets/protocol-set/name";
 }
 description
 "A reference to a protocol set to match the protocol field.";
 }
 }

 augment "/ietf-acl:acls/ietf-acl:acl/ietf-acl:aces"
 + "/ietf-acl:ace/ietf-acl:matches/ietf-acl:l4/ietf-acl:tcp" {
 description
 "Handles TCP flags and port sets.";
 container flags-bitmask {

Dios, et al. Expires 27 April 2023 [Page 27]

Internet-Draft Enhanced ACLs October 2022

 description
 "Indicates how to handle TCP flags.";
 uses tcp-flags;
 }
 leaf source-tcp-port-set {
 type leafref {
 path "../../../../defined-sets/port-sets/port-set/name";
 }
 description
 "A reference to a port set to match the source port.";
 }
 leaf destination-tcp-port-set {
 type leafref {
 path "../../../../defined-sets/port-sets/port-set/name";
 }
 description
 "A reference to a port set to match the destination port.";
 }
 }

 augment "/ietf-acl:acls/ietf-acl:acl/ietf-acl:aces"
 + "/ietf-acl:ace/ietf-acl:matches/ietf-acl:l4/ietf-acl:udp" {
 description
 "Handle UDP port sets.";
 leaf source-udp-port-set {
 type leafref {
 path "../../../../defined-sets/port-sets/port-set/name";
 }
 description
 "A reference to a port set to match the source port.";
 }
 leaf destination-udp-port-set {
 type leafref {
 path "../../../../defined-sets/port-sets/port-set/name";
 }
 description
 "A reference to a port set to match the destination port.";
 }
 }

 augment "/ietf-acl:acls/ietf-acl:acl/ietf-acl:aces"
 + "/ietf-acl:ace/ietf-acl:matches/ietf-acl:l4/ietf-acl:icmp" {
 description
 "Handle ICMP type sets.";
 leaf icmp-set {
 type leafref {
 path "../../../../defined-sets/icmp-type-sets/icmp-type-set/name";
 }

Dios, et al. Expires 27 April 2023 [Page 28]

Internet-Draft Enhanced ACLs October 2022

 description
 "A reference to an ICMP type set to match the ICMP type field.";
 }
 }

 augment "/ietf-acl:acls/ietf-acl:acl/ietf-acl:aces"
 + "/ietf-acl:ace/ietf-acl:actions" {
 description
 "Rate-limit action.";
 leaf rate-limit {
 when "../ietf-acl:forwarding = ’ietf-acl:accept’" {
 description
 "Rate-limit valid only when accept action is used.";
 }
 type decimal64 {
 fraction-digits 2;
 }
 units "bytes per second";
 description
 "Indicates a rate-limit for the matched traffic.";
 }
 }
 }
 <CODE ENDS>

6. Security Considerations (TBC)

 The YANG modules specified in this document define a schema for data
 that is designed to be accessed via network management protocol such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC8446].

 The Network Configuration Access Control Model (NACM) [RFC8341]
 provides the means to restrict access for particular NETCONF or
 RESTCONF users to a preconfigured subset of all available NETCONF or
 RESTCONF protocol operations and content.

 There are a number of data nodes defined in this YANG module that are
 writable/creatable/deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g., edit-config)
 to these data nodes without proper protection can have a negative
 effect on network operations. These are the subtrees and data nodes
 and their sensitivity/vulnerability:

Dios, et al. Expires 27 April 2023 [Page 29]

Internet-Draft Enhanced ACLs October 2022

 * TBC

 Some of the readable data nodes in this YANG module may be considered
 sensitive or vulnerable in some network environments. It is thus
 important to control read access (e.g., via get, get-config, or
 notification) to these data nodes. These are the subtrees and data
 nodes and their sensitivity/vulnerability:

 * TBC

7. IANA Considerations

7.1. URI Registration

 This document requests IANA to register the following URI in the "ns"
 subregistry within the "IETF XML Registry" [RFC3688]:

 URI: urn:ietf:params:xml:ns:yang:ietf-acl-enh
 Registrant Contact: The IESG.
 XML: N/A; the requested URI is an XML namespace.

7.2. YANG Module Name Registration

 This document requests IANA to register the following YANG module in
 the "YANG Module Names" subregistry [RFC6020] within the "YANG
 Parameters" registry.

 name: ietf-acl-enh
 namespace: urn:ietf:params:xml:ns:yang:ietf-ietf-acl-enh
 maintained by IANA: N
 prefix: enh-acl
 reference: RFC XXXX

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/rfc/rfc3688>.

Dios, et al. Expires 27 April 2023 [Page 30]

Internet-Draft Enhanced ACLs October 2022

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/rfc/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/rfc/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/rfc/rfc6242>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/rfc/rfc7950>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/rfc/rfc8040>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/rfc/rfc8341>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/rfc/rfc8446>.

 [RFC8519] Jethanandani, M., Agarwal, S., Huang, L., and D. Blair,
 "YANG Data Model for Network Access Control Lists (ACLs)",
 RFC 8519, DOI 10.17487/RFC8519, March 2019,
 <https://www.rfc-editor.org/rfc/rfc8519>.

 [RFC8956] Loibl, C., Ed., Raszuk, R., Ed., and S. Hares, Ed.,
 "Dissemination of Flow Specification Rules for IPv6",
 RFC 8956, DOI 10.17487/RFC8956, December 2020,
 <https://www.rfc-editor.org/rfc/rfc8956>.

8.2. Informative References

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/rfc/rfc8340>.

Dios, et al. Expires 27 April 2023 [Page 31]

Internet-Draft Enhanced ACLs October 2022

 [RFC8955] Loibl, C., Hares, S., Raszuk, R., McPherson, D., and M.
 Bacher, "Dissemination of Flow Specification Rules",
 RFC 8955, DOI 10.17487/RFC8955, December 2020,
 <https://www.rfc-editor.org/rfc/rfc8955>.

 [RFC9132] Boucadair, M., Ed., Shallow, J., and T. Reddy.K,
 "Distributed Denial-of-Service Open Threat Signaling
 (DOTS) Signal Channel Specification", RFC 9132,
 DOI 10.17487/RFC9132, September 2021,
 <https://www.rfc-editor.org/rfc/rfc9132>.

Appendix A. Acknowledgements

 Many thanks to Jon Shallow and Miguel Cros for the review and
 comments to the document, incuding priror to publishing the document.

 Thanks for Qin Wu for the comments and suggestions.

 This work is partially supported by the European Commission under
 Horizon 2020 Secured autonomic traffic management for a Tera of SDN
 flows (Teraflow) project (grant agreement number 101015857).

Authors’ Addresses

 Oscar Gonzalez de Dios
 Telefonica
 Email: oscar.gonzalezdedios@telefonica.com

 Samier Barguil
 Telefonica
 Email: samier.barguilgiraldo.ext@telefonica.com

 Mohamed Boucadair
 Orange
 Email: mohamed.boucadair@orange.com

Dios, et al. Expires 27 April 2023 [Page 32]

Internet Engineering Task Force R. Wilton, Ed.
Internet-Draft D. Ball
Intended status: Standards Track T. Singh
Expires: January 30, 2021 Cisco Systems
 S. Sivaraj
 Juniper Networks
 July 29, 2020

 Common Interface Extension YANG Data Models
 draft-ietf-netmod-intf-ext-yang-10

Abstract

 This document defines two YANG modules that augment the Interfaces
 data model defined in the "YANG Data Model for Interface Management"
 with additional configuration and operational data nodes to support
 common lower layer interface properties, such as interface MTU.

 The YANG modules in this document conform to the Network Management
 Datastore Architecture (NMDA) defined in RFC 8342.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 30, 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Wilton, et al. Expires January 30, 2021 [Page 1]

Internet-Draft Interface Extensions YANG July 2020

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 4
 1.2. Tree Diagrams . 4
 2. Interface Extensions Module 4
 2.1. Carrier Delay . 5
 2.2. Dampening . 6
 2.2.1. Suppress Threshold 7
 2.2.2. Half-Life Period 7
 2.2.3. Reuse Threshold 7
 2.2.4. Maximum Suppress Time 7
 2.3. Encapsulation . 7
 2.4. Loopback . 8
 2.5. Maximum frame size 8
 2.6. Sub-interface . 8
 2.7. Forwarding Mode . 9
 3. Interfaces Ethernet-Like Module 9
 4. Interface Extensions YANG Module 10
 5. Interfaces Ethernet-Like YANG Module 21
 6. Examples . 25
 6.1. Carrier delay configuration 25
 6.2. Dampening configuration 26
 6.3. MAC address configuration 27
 7. Acknowledgements . 29
 8. ChangeLog . 29
 8.1. Version -10 . 29
 8.2. Version -09 . 29
 8.3. Version -08 . 29
 8.4. Version -07 . 29
 8.5. Version -06 . 29
 8.6. Version -05 . 29
 8.7. Version -04 . 29
 8.8. Version -03 . 30
 8.9. Version -02 . 30
 9. IANA Considerations . 30
 9.1. YANG Module Registrations 30
 10. Security Considerations 31
 10.1. ietf-if-extensions.yang 31
 10.2. ietf-if-ethernet-like.yang 32
 11. References . 32
 11.1. Normative References 32

Wilton, et al. Expires January 30, 2021 [Page 2]

Internet-Draft Interface Extensions YANG July 2020

 11.2. Informative References 33
 Authors’ Addresses . 34

1. Introduction

 This document defines two NMDA compatible [RFC8342] YANG 1.1
 [RFC7950] modules for the management of network interfaces. It
 defines various augmentations to the generic interfaces data model
 [RFC8343] to support configuration of lower layer interface
 properties that are common across many types of network interface.

 One of the aims of this document is to provide a standard definition
 for these configuration items regardless of the underlying interface
 type. For example, a definition for configuring or reading the MAC
 address associated with an interface is provided that can be used for
 any interface type that uses Ethernet framing.

 Several of the augmentations defined here are not backed by any
 formal standard specification. Instead, they are for features that
 are commonly implemented in equivalent ways by multiple independent
 network equipment vendors. The aim of this document is to define
 common paths and leaves for the configuration of these equivalent
 features in a uniform way, making it easier for users of the YANG
 model to access these features in a vendor independent way. Where
 necessary, a description of the expected behavior is also provided
 with the aim of ensuring vendors implementations are consistent with
 the specified behaviour.

 Given that the modules contain a collection of discrete features with
 the common theme that they generically apply to interfaces, it is
 plausible that not all implementors of the YANG module will decide to
 support all features. Hence separate feature keywords are defined
 for each logically discrete feature to allow implementors the
 flexibility to choose which specific parts of the model they support.

 The augmentations are split into two separate YANG modules that each
 focus on a particular area of functionality. The two YANG modules
 defined in this document are:

 ietf-if-extensions.yang - Defines extensions to the IETF interface
 data model to support common configuration data nodes.

 ietf-if-ethernet-like.yang - Defines a module for any
 configuration and operational data nodes that are common across
 interfaces that use Ethernet framing.

Wilton, et al. Expires January 30, 2021 [Page 3]

Internet-Draft Interface Extensions YANG July 2020

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 RFC 2119 [RFC2119] RFC 8174 [RFC8174] when, and only when, they
 appear in all capitals, as shown here.

1.2. Tree Diagrams

 Tree diagrams used in this document follow the notation defined in
 [RFC8340].

2. Interface Extensions Module

 The Interfaces Extensions YANG module provides some basic extensions
 to the IETF interfaces YANG module.

 The module provides:

 o A carrier delay feature used to provide control over short lived
 link state flaps.

 o An interface link state dampening feature that is used to provide
 control over longer lived link state flaps.

 o An encapsulation container and extensible choice statement for use
 by any interface types that allow for configurable L2
 encapsulations.

 o A loopback configuration leaf that is primarily aimed at loopback
 at the physical layer.

 o MTU configuration leaves applicable to all packet/frame based
 interfaces.

 o A forwarding mode leaf to indicate the OSI layer at which the
 interface handles traffic.

 o A generic "sub-interface" identity that an interface identity
 definition can derive from if it defines a sub-interface.

 o A parent interface leaf useable for all types of sub-interface
 that are children of parent interfaces.

Wilton, et al. Expires January 30, 2021 [Page 4]

Internet-Draft Interface Extensions YANG July 2020

 The "ietf-if-extensions" YANG module has the following structure:

 module: ietf-if-extensions
 augment /if:interfaces/if:interface:
 +--rw carrier-delay {carrier-delay}?
 | +--rw down? uint32
 | +--rw up? uint32
 | +--ro carrier-transitions? yang:counter64
 | +--ro timer-running? enumeration
 +--rw dampening! {dampening}?
 | +--rw half-life? uint32
 | +--rw reuse? uint32
 | +--rw suppress? uint32
 | +--rw max-suppress-time? uint32
 | +--ro penalty? uint32
 | +--ro suppressed? boolean
 | +--ro time-remaining? uint32
 +--rw encapsulation
 | +--rw (encaps-type)?
 +--rw loopback? identityref {loopback}?
 +--rw max-frame-size? uint32 {max-frame-size}?
 +--ro forwarding-mode? identityref
 augment /if:interfaces/if:interface:
 +--rw parent-interface if:interface-ref {sub-interfaces}?
 augment /if:interfaces/if:interface/if:statistics:
 +--ro in-discard-unknown-encaps? yang:counter64
 {sub-interfaces}?

2.1. Carrier Delay

 The carrier delay feature augments the IETF interfaces data model
 with configuration for a simple algorithm that is used, generally on
 physical interfaces, to suppress short transient changes in the
 interface link state. It can be used in conjunction with the
 dampening feature described in Section 2.2 to provide effective
 control of unstable links and unwanted state transitions.

 The principle of the carrier delay feature is to use a short per
 interface timer to ensure that any interface link state transition
 that occurs and reverts back within the specified time interval is
 entirely suppressed without providing any signalling to any upper
 layer protocols that the state transition has occurred. E.g. in the
 case that the link state transition is suppressed then there is no
 change of the /if:interfaces/if:interface/oper-status or
 /if:interfaces/if:interfaces/last-change leaves for the interface
 that the feature is operating on. One obvious side effect of using

Wilton, et al. Expires January 30, 2021 [Page 5]

Internet-Draft Interface Extensions YANG July 2020

 this feature that is that any state transition will always be delayed
 by the specified time interval.

 The configuration allows for separate timer values to be used in the
 suppression of down->up->down link transitions vs up->down->up link
 transitions.

 The carrier delay down timer leaf specifies the amount of time that
 an interface that is currently in link up state must be continuously
 down before the down state change is reported to higher level
 protocols. Use of this timer can cause traffic to be black holed for
 the configured value and delay reconvergence after link failures,
 therefore its use is normally restricted to cases where it is
 necessary to allow enough time for another protection mechanism (such
 as an optical layer automatic protection system) to take effect.

 The carrier delay up timer leaf specifies the amount of time that an
 interface that is currently in link down state must be continuously
 up before the down->up link state transition is reported to higher
 level protocols. This timer is generally useful as a debounce
 mechanism to ensure that a link is relatively stable before being
 brought into service. It can also be used effectively to limit the
 frequency at which link state transition events may occur. The
 default value for this leaf is determined by the underlying network
 device.

2.2. Dampening

 The dampening feature introduces a configurable exponential decay
 mechanism to suppress the effects of excessive interface link state
 flapping. This feature allows the network operator to configure a
 device to automatically identify and selectively dampen a local
 interface which is flapping. Dampening an interface keeps the
 interface operationally down until the interface stops flapping and
 becomes stable. Configuring the dampening feature can improve
 convergence times and stability throughout the network by isolating
 failures so that disturbances are not propagated, which reduces the
 utilization of system processing resources by other devices in the
 network and improves overall network stability.

 The basic algorithm uses a counter that is increased by 1000 units
 every time the underlying interface link state changes from up to
 down. If the counter increases above the suppress threshold then the
 interface is kept down (and out of service) until either the maximum
 suppression time is reached, or the counter has reduced below the
 reuse threshold. The half-life period determines that rate at which
 the counter is periodically reduced by half.

Wilton, et al. Expires January 30, 2021 [Page 6]

Internet-Draft Interface Extensions YANG July 2020

2.2.1. Suppress Threshold

 The suppress threshold is the value of the accumulated penalty that
 triggers the device to dampen a flapping interface. The flapping
 interface is identified by the device and assigned a penalty for each
 up to down link state change, but the interface is not automatically
 dampened. The device tracks the penalties that a flapping interface
 accumulates. When the accumulated penalty reaches or exceeds the
 suppress threshold, the interface is placed in a suppressed state.

2.2.2. Half-Life Period

 The half-life period determines how fast the accumulated penalties
 can decay exponentially. The accumulated penalty decays at a rate
 that causes its value to be reduced by half after each half-life
 period.

2.2.3. Reuse Threshold

 If, after one or more half-life periods, the accumulated penalty
 decreases below the reuse threshold and the underlying interface link
 state is up then the interface is taken out of suppressed state and
 is allowed to go up.

2.2.4. Maximum Suppress Time

 The maximum suppress time represents the maximum amount of time an
 interface can remain dampened when a new penalty is assigned to an
 interface. The default of the maximum suppress timer is four times
 the half-life period. The maximum value of the accumulated penalty
 is calculated using the maximum suppress time, reuse threshold and
 half-life period.

2.3. Encapsulation

 The encapsulation container holds a choice node that is to be
 augmented with datalink layer specific encapsulations, such as HDLC,
 PPP, or sub-interface 802.1Q tag match encapsulations. The use of a
 choice statement ensures that an interface can only have a single
 datalink layer protocol configured.

 The different encapsulations themselves are defined in separate YANG
 modules defined in other documents that augument the encapsulation
 choice statement. For example the Ethernet specific basic ’dot1q-
 vlan’ encapsulation is defined in ietf-if-l3-vlan.yang and the
 ’flexible’ encapsulation is defined in ietf-flexible-
 encapsulation.yang, both modules from
 [I-D.ietf-netmod-sub-intf-vlan-model].

Wilton, et al. Expires January 30, 2021 [Page 7]

Internet-Draft Interface Extensions YANG July 2020

2.4. Loopback

 The loopback configuration leaf allows any physical interface to be
 configured to be in one of the possible following physical loopback
 modes, i.e. internal loopback, line loopback, or use of an external
 loopback connector. The use of YANG identities allows for the model
 to be extended with other modes of loopback if required.

 The following loopback modes are defined:

 o Internal loopback - All egress traffic on the interface is
 internally looped back within the interface to be received on the
 ingress path.

 o Line loopback - All ingress traffic received on the interface is
 internally looped back within the interface to the egress path.

 o Loopback Connector - The interface has a physical loopback
 connector attached that loops all egress traffic back into the
 interface’s ingress path, with equivalent semantics to internal
 loopback.

2.5. Maximum frame size

 A maximum frame size configuration leaf (max-frame-size) is provided
 to specify the maximum size of a layer 2 frame that may be
 transmitted or received on an interface. The value includes the
 overhead of any layer 2 header, the maximum length of the payload,
 and any frame check sequence (FCS) bytes. If configured, the max-
 frame-size leaf on an interface also restricts the max-frame-size of
 any child sub-interfaces, and the available MTU for protocols.

2.6. Sub-interface

 The sub-interface feature specifies the minimal leaves required to
 define a child interface that is parented to another interface.

 A sub-interface is a logical interface that handles a subset of the
 traffic on the parent interface. Separate configuration leaves are
 used to classify the subset of ingress traffic received on the parent
 interface to be processed in the context of a given sub-interface.
 All egress traffic processed on a sub-interface is given to the
 parent interface for transmission. Otherwise, a sub-interface is
 like any other interface in /if:interfaces and supports the standard
 interface features and configuration.

 For some vendor specific interface naming conventions the name of the
 child interface is sufficient to determine the parent interface,

Wilton, et al. Expires January 30, 2021 [Page 8]

Internet-Draft Interface Extensions YANG July 2020

 which implies that the child interface can never be reparented to a
 different parent interface after it has been created without deleting
 the existing sub-interface and recreating a new sub-interface. Even
 in this case it is useful to have a well defined leaf to cleanly
 identify the parent interface.

 The model also allows for arbitrarily named sub-interfaces by having
 an explicit parent-interface leaf define the child -> parent
 relationship. In this naming scenario it is also possible for
 implementations to allow for logical interfaces to be reparented to
 new parent interfaces without needing the sub-interface to be
 destroyed and recreated.

2.7. Forwarding Mode

 The forwarding mode leaf provides additional information as to what
 mode or layer an interface is logically operating and forwarding
 traffic at. The implication of this leaf is that for traffic
 forwarded at a given layer that any headers for lower layers are
 stripped off before the packet is forwarded at the given layer.
 Conversely, on egress any lower layer headers must be added to the
 packet before it is transmitted out of the interface.

 The following forwarding modes are defined:

 o Physical - Traffic is being forwarded at the physical layer. This
 includes DWDM or OTN based switching.

 o Data-link - Layer 2 based forwarding, such as Ethernet/VLAN based
 switching, or L2VPN services.

 o Network - Network layer based forwarding, such as IP, MPLS, or
 L3VPNs.

3. Interfaces Ethernet-Like Module

 The Interfaces Ethernet-Like Module is a small module that contains
 all configuration and operational data that is common across
 interface types that use Ethernet framing as their datalink layer
 encapsulation.

 This module currently contains leaves for the configuration and
 reporting of the operational MAC address and the burnt-in MAC address
 (BIA) associated with any interface using Ethernet framing.

Wilton, et al. Expires January 30, 2021 [Page 9]

Internet-Draft Interface Extensions YANG July 2020

 The "ietf-if-ethernet-like" YANG module has the following structure:

 module: ietf-if-ethernet-like
 augment /if:interfaces/if:interface:
 +--rw ethernet-like
 +--rw mac-address? yang:mac-address
 | {configurable-mac-address}?
 +--ro bia-mac-address? yang:mac-address
 augment /if:interfaces/if:interface/if:statistics:
 +--ro in-drop-unknown-dest-mac-pkts? yang:counter64

4. Interface Extensions YANG Module

 This YANG module augments the interface container defined in
 [RFC8343]. It also contains references to [RFC6991] and [RFC7224].

 <CODE BEGINS> file "ietf-if-extensions@2020-07-29.yang"
 module ietf-if-extensions {
 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-if-extensions";

 prefix if-ext;

 import ietf-yang-types {
 prefix yang;
 reference "RFC 6991: Common YANG Data Types";
 }

 import ietf-interfaces {
 prefix if;
 reference
 "RFC 8343: A YANG Data Model For Interface Management";
 }

 import iana-if-type {
 prefix ianaift;
 reference "RFC 7224: IANA Interface Type YANG Module";
 }

 organization
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>

Wilton, et al. Expires January 30, 2021 [Page 10]

Internet-Draft Interface Extensions YANG July 2020

 WG List: <mailto:netmod@ietf.org>

 Editor: Robert Wilton
 <mailto:rwilton@cisco.com>";

 description
 "This module contains common definitions for extending the IETF
 interface YANG model (RFC 8343) with common configurable layer 2
 properties.

 Copyright (c) 2020 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
 for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 revision 2020-07-29 {
 description
 "Initial revision.";

 reference
 "RFC XXXX, Common Interface Extension YANG Data Models";
 }

 feature carrier-delay {
 description
 "This feature indicates that configurable interface carrier
 delay is supported, which is a feature is used to limit the
 propagation of very short interface link state flaps.";
 reference "RFC XXXX, Section 2.1 Carrier Delay";
 }

 feature dampening {
 description

Wilton, et al. Expires January 30, 2021 [Page 11]

Internet-Draft Interface Extensions YANG July 2020

 "This feature indicates that the device supports interface
 dampening, which is a feature that is used to limit the
 propagation of interface link state flaps over longer
 periods.";
 reference "RFC XXXX, Section 2.2 Dampening";
 }

 feature loopback {
 description
 "This feature indicates that configurable interface loopback is
 supported.";
 reference "RFC XXXX, Section 2.4 Loopback";
 }

 feature max-frame-size {
 description
 "This feature indicates that the device supports configuring or
 reporting the maximum frame size on interfaces.";
 reference "RFC XXXX, Section 2.5 Maximum Frame Size";
 }

 feature sub-interfaces {
 description
 "This feature indicates that the device supports the
 instantiation of sub-interfaces. Sub-interfaces are defined
 as logical child interfaces that allow features and forwarding
 decisions to be applied to a subset of the traffic processed
 on the specified parent interface.";
 reference "RFC XXXX, Section 2.6 Sub-interface";
 }

 /*
 * Define common identities to help allow interface types to be
 * assigned properties.
 */
 identity sub-interface {
 description
 "Base type for generic sub-interfaces.

 New or custom interface types can derive from this type to
 inherit generic sub-interface configuration.";
 reference "RFC XXXX, Section 2.6 Sub-interface";
 }

 identity ethSubInterface{
 base ianaift:l2vlan;
 base sub-interface;

Wilton, et al. Expires January 30, 2021 [Page 12]

Internet-Draft Interface Extensions YANG July 2020

 description
 "This identity represents the child sub-interface of any
 interface types that uses Ethernet framing (with or without
 802.1Q tagging).";
 }

 identity loopback {
 description "Base identity for interface loopback options";
 reference "RFC XXXX, Section 2.4";
 }
 identity internal {
 base loopback;
 description
 "All egress traffic on the interface is internally looped back
 within the interface to be received on the ingress path.";
 reference "RFC XXXX, Section 2.4";
 }
 identity line {
 base loopback;
 description
 "All ingress traffic received on the interface is internally
 looped back within the interface to the egress path.";
 reference "RFC XXXX, Section 2.4";
 }
 identity connector {
 base loopback;
 description
 "The interface has a physical loopback connector attached that
 loops all egress traffic back into the interface’s ingress
 path, with equivalent semantics to loopback internal.";
 reference "RFC XXXX, Section 2.4";
 }

 identity forwarding-mode {
 description "Base identity for forwarding-mode options.";
 reference "RFC XXXX, Section 2.7";
 }
 identity physical {
 base forwarding-mode;
 description
 "Physical layer forwarding. This includes DWDM or OTN based
 optical switching.";
 reference "RFC XXXX, Section 2.7";
 }
 identity data-link {
 base forwarding-mode;
 description

Wilton, et al. Expires January 30, 2021 [Page 13]

Internet-Draft Interface Extensions YANG July 2020

 "Layer 2 based forwarding, such as Ethernet/VLAN based
 switching, or L2VPN services.";
 reference "RFC XXXX, Section 2.7";
 }
 identity network {
 base forwarding-mode;
 description
 "Network layer based forwarding, such as IP, MPLS, or L3VPNs.";
 reference "RFC XXXX, Section 2.7";
 }

 /*
 * Augments the IETF interfaces model with leaves to configure
 * and monitor carrier-delay on an interface.
 */
 augment "/if:interfaces/if:interface" {
 description
 "Augments the IETF interface model with optional common
 interface level commands that are not formally covered by any
 specific standard.";

 /*
 * Defines standard YANG for the Carrier Delay feature.
 */
 container carrier-delay {
 if-feature "carrier-delay";
 description
 "Holds carrier delay related feature configuration.";
 leaf down {
 type uint32;
 units milliseconds;
 description
 "Delays the propagation of a ’loss of carrier signal’ event
 that would cause the interface state to go down, i.e. the
 command allows short link flaps to be suppressed. The
 configured value indicates the minimum time interval (in
 milliseconds) that the carrier signal must be continuously
 down before the interface state is brought down. If not
 configured, the behaviour on loss of carrier signal is
 vendor/interface specific, but with the general
 expectation that there should be little or no delay.";
 }
 leaf up {
 type uint32;
 units milliseconds;
 description
 "Defines the minimum time interval (in milliseconds) that

Wilton, et al. Expires January 30, 2021 [Page 14]

Internet-Draft Interface Extensions YANG July 2020

 the carrier signal must be continuously present and error
 free before the interface state is allowed to transition
 from down to up. If not configured, the behaviour is
 vendor/interface specific, but with the general
 expectation that sufficient default delay should be used
 to ensure that the interface is stable when enabled before
 being reported as being up. Configured values that are
 too low for the hardware capabilties may be rejected.";
 }
 leaf carrier-transitions {
 type yang:counter64;
 units transitions;
 config false;
 description
 "Defines the number of times the underlying carrier state
 has changed to, or from, state up. This counter should be
 incremented even if the high layer interface state changes
 are being suppressed by a running carrier-delay timer.";
 }
 leaf timer-running {
 type enumeration {
 enum none {
 description
 "No carrier delay timer is running.";
 }
 enum up {
 description
 "Carrier-delay up timer is running. The underlying
 carrier state is up, but interface state is not
 reported as up.";
 }
 enum down {
 description
 "Carrier-delay down timer is running. Interface state
 is reported as up, but the underlying carrier state is
 actually down.";
 }
 }
 config false;
 description
 "Reports whether a carrier delay timer is actively running,
 in which case the interface state does not match the
 underlying carrier state.";
 }

 reference "RFC XXXX, Section 2.1 Carrier Delay";
 }

Wilton, et al. Expires January 30, 2021 [Page 15]

Internet-Draft Interface Extensions YANG July 2020

 /*
 * Augments the IETF interfaces model with a container to hold
 * generic interface dampening
 */
 container dampening {
 if-feature "dampening";
 presence
 "Enable interface link flap dampening with default settings
 (that are vendor/device specific).";
 description
 "Interface dampening limits the propagation of interface link
 state flaps over longer periods.";
 reference "RFC XXXX, Section 2.2 Dampening";

 leaf half-life {
 type uint32;
 units seconds;
 description
 "The time (in seconds) after which a penalty would be half
 its original value. Once the interface has been assigned
 a penalty, the penalty is decreased at a decay rate
 equivalent to the half-life. For some devices, the
 allowed values may be restricted to particular multiples
 of seconds. The default value is vendor/device
 specific.";
 reference "RFC XXXX, Section 2.3.2 Half-Life Period";
 }

 leaf reuse {
 type uint32;
 description
 "Penalty value below which a stable interface is
 unsuppressed (i.e. brought up) (no units). The default
 value is vendor/device specific. The penalty value for a
 link up->down state change is 1000 units.";
 reference "RFC XXXX, Section 2.2.3 Reuse Threshold";
 }

 leaf suppress {
 type uint32;
 description
 "Limit at which an interface is suppressed (i.e. held down)
 when its penalty exceeds that limit (no units). The value
 must be greater than the reuse threshold. The default
 value is vendor/device specific. The penalty value for a
 link up->down state change is 1000 units.";
 reference "RFC XXXX, Section 2.2.1 Suppress Threshold";
 }

Wilton, et al. Expires January 30, 2021 [Page 16]

Internet-Draft Interface Extensions YANG July 2020

 leaf max-suppress-time {
 type uint32;
 units seconds;
 description
 "Maximum time (in seconds) that an interface can be
 suppressed before being unsuppressed if no further link
 up->down state change penalties have been applied. This
 value effectively acts as a ceiling that the penalty value
 cannot exceed. The default value is vendor/device
 specific.";
 reference "RFC XXXX, Section 2.2.4 Maximum Suppress Time";
 }

 leaf penalty {
 type uint32;
 config false;
 description
 "The current penalty value for this interface. When the
 penalty value exceeds the ’suppress’ leaf then the
 interface is suppressed (i.e. held down).";
 reference "RFC XXXX, Section 2.2 Dampening";
 }

 leaf suppressed {
 type boolean;
 config false;
 description
 "Represents whether the interface is suppressed (i.e. held
 down) because the ’penalty’ leaf value exceeds the
 ’suppress’ leaf.";
 reference "RFC XXXX, Section 2.2 Dampening";
 }

 leaf time-remaining {
 when ’../suppressed = "true"’ {
 description
 "Only suppressed interfaces have a time remaining.";
 }
 type uint32;
 units seconds;
 config false;
 description
 "For a suppressed interface, this leaf represents how long
 (in seconds) that the interface will remain suppressed
 before it is allowed to go back up again.";
 reference "RFC XXXX, Section 2.2 Dampening";
 }
 }

Wilton, et al. Expires January 30, 2021 [Page 17]

Internet-Draft Interface Extensions YANG July 2020

 /*
 * Various types of interfaces support a configurable layer 2
 * encapsulation, any that are supported by YANG should be
 * listed here.
 *
 * Different encapsulations can hook into the common encaps-type
 * choice statement.
 */
 container encapsulation {
 when
 "derived-from-or-self(../if:type,
 ’ianaift:ethernetCsmacd’) or
 derived-from-or-self(../if:type,
 ’ianaift:ieee8023adLag’) or
 derived-from-or-self(../if:type, ’ianaift:pos’) or
 derived-from-or-self(../if:type,
 ’ianaift:atmSubInterface’) or
 derived-from-or-self(../if:type, ’ianaift:l2vlan’) or
 derived-from-or-self(../if:type, ’ethSubInterface’)" {

 description
 "All interface types that can have a configurable L2
 encapsulation.";
 }

 description
 "Holds the OSI layer 2 encapsulation associated with an
 interface.";
 choice encaps-type {
 description
 "Extensible choice of layer 2 encapsulations";
 reference "RFC XXXX, Section 2.3 Encapsulation";
 }
 }

 /*
 * Various types of interfaces support loopback configuration,
 * any that are supported by YANG should be listed here.
 */
 leaf loopback {
 when "derived-from-or-self(../if:type,
 ’ianaift:ethernetCsmacd’) or
 derived-from-or-self(../if:type, ’ianaift:sonet’) or
 derived-from-or-self(../if:type, ’ianaift:atm’) or
 derived-from-or-self(../if:type, ’ianaift:otnOtu’)" {
 description
 "All interface types that support loopback configuration.";
 }

Wilton, et al. Expires January 30, 2021 [Page 18]

Internet-Draft Interface Extensions YANG July 2020

 if-feature "loopback";
 type identityref {
 base loopback;
 }
 description "Enables traffic loopback.";
 reference "RFC XXXX, Section 2.4 Loopback";
 }

 /*
 * Allows the maximum frame size to be configured or reported.
 */
 leaf max-frame-size {
 if-feature "max-frame-size";
 type uint32 {
 range "64 .. max";
 }
 description
 "The maximum size of layer 2 frames that may be transmitted
 or received on the interface (including any frame header,
 maximum frame payload size, and frame checksum sequence).

 If configured, the max-frame-size also limits the maximum
 frame size of any child sub-interfaces. The MTU available
 to higher layer protocols is restricted to the maximum frame
 payload size, and MAY be further restricted by explicit
 layer 3 or protocol specific MTU configuration.";

 reference "RFC XXXX, Section 2.5 Maximum Frame Size";
 }

 /*
 * Augments the IETF interfaces model with a leaf that indicates
 * which mode, or layer, is being used to forward the traffic.
 */
 leaf forwarding-mode {
 type identityref {
 base forwarding-mode;
 }
 config false;

 description
 "The forwarding mode that the interface is operating in.";
 reference "RFC XXXX, Section 2.7 Forwarding Mode";
 }
 }

 /*
 * Add generic support for sub-interfaces.

Wilton, et al. Expires January 30, 2021 [Page 19]

Internet-Draft Interface Extensions YANG July 2020

 *
 * This should be extended to cover all interface types that are
 * child interfaces of other interfaces.
 */
 augment "/if:interfaces/if:interface" {
 when "derived-from(if:type, ’sub-interface’) or
 derived-from-or-self(if:type, ’ianaift:l2vlan’) or
 derived-from-or-self(if:type, ’ianaift:atmSubInterface’) or
 derived-from-or-self(if:type, ’ianaift:frameRelay’)" {
 description
 "Any ianaift:types that explicitly represent sub-interfaces
 or any types that derive from the sub-interface identity.";
 }
 if-feature "sub-interfaces";

 description
 "Adds a parent interface field to interfaces that model
 sub-interfaces.";
 leaf parent-interface {

 type if:interface-ref;

 mandatory true;
 description
 "This is the reference to the parent interface of this
 sub-interface.";
 reference "RFC XXXX, Section 2.6 Sub-interface";
 }
 }

 /*
 * Add discard counter for unknown sub-interface encapsulation
 */
 augment "/if:interfaces/if:interface/if:statistics" {
 when "derived-from-or-self(../if:type,
 ’ianaift:ethernetCsmacd’) or
 derived-from-or-self(../if:type,
 ’ianaift:ieee8023adLag’) or
 derived-from-or-self(../if:type, ’ianaift:ifPwType’)" {
 description
 "Applies to interfaces that can demultiplex ingress frames to
 sub-interfaces.";
 }
 if-feature "sub-interfaces";

 description
 "Augment the interface model statistics with a sub-interface
 demux discard counter.";

Wilton, et al. Expires January 30, 2021 [Page 20]

Internet-Draft Interface Extensions YANG July 2020

 leaf in-discard-unknown-encaps {
 type yang:counter64;
 units frames;
 description
 "A count of the number of frames that were well formed, but
 otherwise discarded because their encapsulation does not
 classify the frame to the interface or any child
 sub-interface. E.g., a frame might be discarded because the
 it has an unknown VLAN Id, or does not have a VLAN Id when
 one is expected.

 For consistency, frames counted against this counter are
 also counted against the IETF interfaces statistics. In
 particular, they are included in in-octets and in-discards,
 but are not included in in-unicast-pkts, in-multicast-pkts
 or in-broadcast-pkts, because they are not delivered to a
 higher layer.

 Discontinuities in the values of this counter can occur at
 re-initialization of the management system, and at other
 times as indicated by the value of the ’discontinuity-time’
 leaf defined in the ietf-interfaces YANG module
 (RFC 8343).";
 }
 }
 }
 <CODE ENDS>

5. Interfaces Ethernet-Like YANG Module

 This YANG module augments the interface container defined in RFC 8343
 [RFC8343] for Ethernet-like interfaces. This includes Ethernet
 interfaces, 802.3 LAG (802.1AX) interfaces, Switch Virtual
 interfaces, and Pseudo-Wire Head-End interfaces. It also contains
 references to [RFC6991], [RFC7224], and [IEEE802.3.2-2019].

 <CODE BEGINS> file "ietf-if-ethernet-like@2019-11-04.yang"
 module ietf-if-ethernet-like {
 yang-version 1.1;

 namespace
 "urn:ietf:params:xml:ns:yang:ietf-if-ethernet-like";

 prefix ethlike;

 import ietf-interfaces {

Wilton, et al. Expires January 30, 2021 [Page 21]

Internet-Draft Interface Extensions YANG July 2020

 prefix if;
 reference
 "RFC 8343: A YANG Data Model For Interface Management";
 }

 import ietf-yang-types {
 prefix yang;
 reference "RFC 6991: Common YANG Data Types";
 }

 import iana-if-type {
 prefix ianaift;
 reference "RFC 7224: IANA Interface Type YANG Module";
 }

 organization
 "IETF NETMOD (NETCONF Data Modeling Language) Working Group";

 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Editor: Robert Wilton
 <mailto:rwilton@cisco.com>";

 description
 "This module contains YANG definitions for configuration for
 ’Ethernet-like’ interfaces. It is applicable to all interface
 types that use Ethernet framing and expose an Ethernet MAC
 layer, and includes such interfaces as physical Ethernet
 interfaces, Ethernet LAG interfaces and VLAN sub-interfaces.

 Additional interface configuration and counters for physical
 Ethernet interfaces are defined in
 ieee802-ethernet-interface.yang, as part of IEEE Std
 802.3.2-2019.

 Copyright (c) 2019 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject to
 the license terms contained in, the Simplified BSD License set
 forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX

Wilton, et al. Expires January 30, 2021 [Page 22]

Internet-Draft Interface Extensions YANG July 2020

 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
 for full legal notices.";

 revision 2019-11-04 {
 description "Initial revision.";

 reference
 "RFC XXXX, Common Interface Extension YANG Data Models";
 }

 feature configurable-mac-address {
 description
 "This feature indicates that MAC addresses on Ethernet-like
 interfaces can be configured.";
 reference
 "RFC XXXX, Section 3, Interfaces Ethernet-Like Module";
 }

 /*
 * Configuration parameters for Ethernet-like interfaces.
 */
 augment "/if:interfaces/if:interface" {
 when "derived-from-or-self(if:type, ’ianaift:ethernetCsmacd’) or
 derived-from-or-self(if:type, ’ianaift:ieee8023adLag’) or
 derived-from-or-self(if:type, ’ianaift:ifPwType’)" {
 description "Applies to all Ethernet-like interfaces";
 }
 description
 "Augment the interface model with parameters for all
 Ethernet-like interfaces.";

 container ethernet-like {
 description
 "Contains parameters for interfaces that use Ethernet framing
 and expose an Ethernet MAC layer.";

 leaf mac-address {
 if-feature "configurable-mac-address";
 type yang:mac-address;
 description
 "The MAC address of the interface. The operational value
 matches the /if:interfaces/if:interface/if:phys-address
 leaf defined in ietf-interface.yang.";
 }

 leaf bia-mac-address {
 type yang:mac-address;

Wilton, et al. Expires January 30, 2021 [Page 23]

Internet-Draft Interface Extensions YANG July 2020

 config false;
 description
 "The ’burnt-in’ MAC address. I.e the default MAC address
 assigned to the interface if no MAC address has been
 explicitly configured on it.";
 }
 }
 }

 /*
 * Configuration parameters for Ethernet-like interfaces.
 */
 augment "/if:interfaces/if:interface/if:statistics" {
 when "derived-from-or-self(../if:type,
 ’ianaift:ethernetCsmacd’) or
 derived-from-or-self(../if:type,
 ’ianaift:ieee8023adLag’) or
 derived-from-or-self(../if:type, ’ianaift:ifPwType’)" {
 description "Applies to all Ethernet-like interfaces";
 }
 description
 "Augment the interface model statistics with additional
 counters related to Ethernet-like interfaces.";

 leaf in-discard-unknown-dest-mac-pkts {
 type yang:counter64;
 units frames;
 description
 "A count of the number of frames that were well formed, but
 otherwise discarded because the destination MAC address did
 not pass any ingress destination MAC address filter.

 For consistency, frames counted against this counter are
 also counted against the IETF interfaces statistics. In
 particular, they are included in in-octets and in-discards,
 but are not included in in-unicast-pkts, in-multicast-pkts
 or in-broadcast-pkts, because they are not delivered to a
 higher layer.

 Discontinuities in the values of this counter can occur at
 re-initialization of the management system, and at other
 times as indicated by the value of the ’discontinuity-time’
 leaf defined in the ietf-interfaces YANG module
 (RFC 8343).";
 }
 }
 }

Wilton, et al. Expires January 30, 2021 [Page 24]

Internet-Draft Interface Extensions YANG July 2020

 <CODE ENDS>

6. Examples

 The following sections give some examples of how different parts of
 the YANG modules could be used. Examples are not given for the more
 trivial configuration, or for sub-interfaces, for which examples are
 contained in [I-D.ietf-netmod-sub-intf-vlan-model].

6.1. Carrier delay configuration

 The following example shows how the operational state datastore could
 look like for an Ethernet interface without any carrier delay
 configuration. The down leaf value of 0 indicates that link down
 events as always propagated to high layers immediately, but an up
 leaf value of 50 indicates that the interface must be up and stable
 for at least 50 msecs before the interface is reported as being up to
 the high layers.

 <?xml version="1.0" encoding="utf-8"?>
 <interfaces
 xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type"
 xmlns:if-ext="urn:ietf:params:xml:ns:yang:ietf-if-extensions">
 <interface>
 <name>eth0</name>
 <type>ianaift:ethernetCsmacd</type>
 <if-ext:carrier-delay>
 <if-ext:down>0</if-ext:down>
 <if-ext:up>50</if-ext:up>
 </if-ext:carrier-delay>
 </interface>
 </interfaces>

 The following example shows explicit carrier delay up and down values
 have been configured. A 50 msec down leaf value has been used to
 potentially allow optical protection to recover the link before the
 higher layer protocol state is flapped. A 1 second (1000
 milliseconds) up leaf value has been used to ensure that the link is
 always reasonably stable before allowing traffic to be carried over
 it. This also has the benefit of greatly reducing the rate at which
 higher layer protocol state flaps could occur.

Wilton, et al. Expires January 30, 2021 [Page 25]

Internet-Draft Interface Extensions YANG July 2020

 <?xml version="1.0" encoding="utf-8"?>
 <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <interfaces
 xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type"
 xmlns:if-ext="urn:ietf:params:xml:ns:yang:ietf-if-extensions">
 <interface>
 <name>eth0</name>
 <type>ianaift:ethernetCsmacd</type>
 <if-ext:carrier-delay>
 <if-ext:down>50</if-ext:down>
 <if-ext:up>1000</if-ext:up>
 </if-ext:carrier-delay>
 </interface>
 </interfaces>
 </config>

6.2. Dampening configuration

 The following example shows what the operational state datastore may
 look like for an interface configured with interface dampening. The
 ’suppressed’ leaf indicates that the interface is currently
 suppressed (i.e. down) because the ’penalty’ is greater than the
 ’suppress’ leaf threshold. The ’time-remaining’ leaf indicates that
 the interface will remain suppressed for another 103 seconds before
 the ’penalty’ is below the ’reuse’ leaf value and the interface is
 allowed to go back up again.

Wilton, et al. Expires January 30, 2021 [Page 26]

Internet-Draft Interface Extensions YANG July 2020

 <?xml version="1.0" encoding="utf-8"?>
 <interfaces
 xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
 <interface>
 <name>eth0</name>
 <type>ianaift:ethernetCsmacd</type>
 <oper-status>down</oper-status>
 <dampening
 xmlns="urn:ietf:params:xml:ns:yang:ietf-if-extensions">
 <half-life>60</half-life>
 <reuse>750</reuse>
 <suppress>2000</suppress>
 <max-suppress-time>240</max-suppress-time>
 <penalty>2480</penalty>
 <suppressed>true</suppressed>
 <time-remaining>103</time-remaining>
 </dampening>
 </interface>
 </interfaces>

6.3. MAC address configuration

 The following example shows how the operational state datastore could
 look like for an Ethernet interface without an explicit MAC address
 configured. The mac-address leaf always reports the actual
 operational MAC address that is in use. The bia-mac-address leaf
 always reports the default MAC address assigned to the hardware.

 <?xml version="1.0" encoding="utf-8"?>
 <interfaces
 xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
 <interface>
 <name>eth0</name>
 <type>ianaift:ethernetCsmacd</type>
 <phys-address>00:00:5E:00:53:30</phys-address>
 <ethernet-like
 xmlns="urn:ietf:params:xml:ns:yang:ietf-if-ethernet-like">
 <mac-address>00:00:5E:00:53:30</mac-address>
 <bia-mac-address>00:00:5E:00:53:30</bia-mac-address>
 </ethernet-like>
 </interface>
 </interfaces>

Wilton, et al. Expires January 30, 2021 [Page 27]

Internet-Draft Interface Extensions YANG July 2020

 The following example shows the intended configuration for interface
 eth0 with an explicit MAC address configured.

 <?xml version="1.0" encoding="utf-8"?>
 <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <interfaces
 xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
 <interface>
 <name>eth0</name>
 <type>ianaift:ethernetCsmacd</type>
 <ethernet-like
 xmlns="urn:ietf:params:xml:ns:yang:ietf-if-ethernet-like">
 <mac-address>00:00:5E:00:53:35</mac-address>
 </ethernet-like>
 </interface>
 </interfaces>
 </config>

 After the MAC address configuration has been successfully applied,
 the operational state datastore reporting the interface MAC address
 properties would contain the following, with the mac-address leaf
 updated to match the configured value, but the bia-mac-address leaf
 retaining the same value - which should never change.

 <?xml version="1.0" encoding="utf-8"?>
 <interfaces
 xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces"
 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">
 <interface>
 <name>eth0</name>
 <type>ianaift:ethernetCsmacd</type>
 <phys-address>00:00:5E:00:53:35</phys-address>
 <ethernet-like
 xmlns="urn:ietf:params:xml:ns:yang:ietf-if-ethernet-like">
 <mac-address>00:00:5E:00:53:35</mac-address>
 <bia-mac-address>00:00:5E:00:53:30</bia-mac-address>
 </ethernet-like>
 </interface>
 </interfaces>

Wilton, et al. Expires January 30, 2021 [Page 28]

Internet-Draft Interface Extensions YANG July 2020

7. Acknowledgements

 The authors wish to thank Eric Gray, Ing-Wher Chen, Jon Culver,
 Juergen Schoenwaelder, Ladislav Lhotka, Lou Berger, Mahesh
 Jethanandani, Martin Bjorklund, Michael Zitao, Neil Ketley, Qin Wu,
 William Lupton, Xufeng Liu, Andy Bierman, and Vladimir Vassilev for
 their helpful comments contributing to this document.

8. ChangeLog

 XXX, RFC Editor, please delete this change log before publication.

8.1. Version -10

 o Update modules from github and tree diagram.

8.2. Version -09

 o Fixed IANA section.

8.3. Version -08

 o Initial updates after WG LC comments.

8.4. Version -07

 o Minor editorial updates

8.5. Version -06

 o Remove reservable-bandwidth, based on Acee’s suggestion

 o Add examples

 o Add additional state parameters for carrier-delay and dampening

8.6. Version -05

 o Incorporate feedback from Andy Bierman

8.7. Version -04

 o Incorporate feedback from Lada, some comments left as open issues.

Wilton, et al. Expires January 30, 2021 [Page 29]

Internet-Draft Interface Extensions YANG July 2020

8.8. Version -03

 o Fixed incorrect module name references, and updated tree output

8.9. Version -02

 o Minor changes only: Fix errors in when statements, use derived-
 from-or-self() for future proofing.

9. IANA Considerations

9.1. YANG Module Registrations

 The following YANG modules are requested to be registred in the IANA
 "YANG Module Names" [RFC6020] registry:

 The ietf-if-extensions module:

 Name: ietf-if-extensions

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-if-extensions

 Prefix: if-ext

 Reference: [RFCXXXX]

 The ietf-if-ethernet-like module:

 Name: ietf-if-ethernet-like

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-if-ethernet-like

 Prefix: ethlike

 Reference: [RFCXXXX]

 This document registers two URIs in the "IETF XML Registry"
 [RFC3688]. Following the format in RFC 3688, the following
 registrations have been made.

 URI: urn:ietf:params:xml:ns:yang:ietf-if-extensions

 Registrant Contact: The IESG.

 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-if-ethernet-like

Wilton, et al. Expires January 30, 2021 [Page 30]

Internet-Draft Interface Extensions YANG July 2020

 Registrant Contact: The IESG.

 XML: N/A, the requested URI is an XML namespace.

10. Security Considerations

 The YANG module defined in this memo is designed to be accessed via
 the NETCONF protocol RFC 6241 [RFC6241]. The lowest NETCONF layer is
 the secure transport layer and the mandatory to implement secure
 transport is SSH RFC 6242 [RFC6242]. The NETCONF access control
 model RFC 6536 [RFC6536] provides the means to restrict access for
 particular NETCONF users to a pre-configured subset of all available
 NETCONF protocol operations and content.

 There are a number of data nodes defined in this YANG module which
 are writable/creatable/deletable (i.e. config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations (e.g. edit-config) to
 these data nodes without proper protection can have a negative effect
 on network operations. These are the subtrees and data nodes and
 their sensitivity/vulnerability:

10.1. ietf-if-extensions.yang

 The ietf-if-extensions YANG module contains various configuration
 leaves that affect the behavior of interfaces. Modifying these
 leaves can cause an interface to go down, or become unreliable, or to
 drop traffic forwarded over it. More specific details of the
 possible failure modes are given below.

 The following leaf could cause the interface to go down and stop
 processing any ingress or egress traffic on the interface. It could
 also cause broadcast traffic storms.

 o /if:interfaces/if:interface/loopback

 The following leaves could cause instabilities at the interface link
 layer, and cause unwanted higher layer routing path changes if the
 leaves are modified, although they would generally only affect a
 device that had some underlying link stability issues:

 o /if:interfaces/if:interface/carrier-delay/down

 o /if:interfaces/if:interface/carrier-delay/up

 o /if:interfaces/if:interface/dampening/half-life

 o /if:interfaces/if:interface/dampening/reuse

Wilton, et al. Expires January 30, 2021 [Page 31]

Internet-Draft Interface Extensions YANG July 2020

 o /if:interfaces/if:interface/dampening/suppress

 o /if:interfaces/if:interface/dampening/max-suppress-time

 The following leaves could cause traffic loss on the interface
 because the received or transmitted frames do not comply with the
 frame matching criteria on the interface and hence would be dropped:

 o /if:interfaces/if:interface/encapsulation

 o /if:interfaces/if:interface/max-frame-size

 o /if:interfaces/if:interface/forwarding-mode

 Changing the parent-interface leaf could cause all traffic on the
 affected interface to be dropped. The affected leaf is:

 o /if:interfaces/if:interface/parent-interface

10.2. ietf-if-ethernet-like.yang

 Generally, the configuration nodes in the ietf-if-ethernet-like YANG
 module are concerned with configuration that is common across all
 types of Ethernet-like interfaces. The module currently only
 contains a node for configuring the operational MAC address to use on
 an interface. Adding/modifying/deleting this leaf has the potential
 risk of causing protocol instability, excessive protocol traffic, and
 general traffic loss, particularly if the configuration change caused
 a duplicate MAC address to be present on the local network . The
 following leaf is affected:

 o interfaces/interface/ethernet-like/mac-address

11. References

11.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

Wilton, et al. Expires January 30, 2021 [Page 32]

Internet-Draft Interface Extensions YANG July 2020

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [RFC8343] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
 <https://www.rfc-editor.org/info/rfc8343>.

11.2. Informative References

 [I-D.ietf-netmod-sub-intf-vlan-model]
 Wilton, R., Ball, D., tapsingh@cisco.com, t., and S.
 Sivaraj, "Sub-interface VLAN YANG Data Models", draft-
 ietf-netmod-sub-intf-vlan-model-07 (work in progress),
 July 2020.

 [IEEE802.3.2-2019]
 IEEE WG802.3 - Ethernet Working Group, "IEEE
 802.3.2-2019", 2019.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 DOI 10.17487/RFC6536, March 2012,
 <https://www.rfc-editor.org/info/rfc6536>.

Wilton, et al. Expires January 30, 2021 [Page 33]

Internet-Draft Interface Extensions YANG July 2020

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC7224] Bjorklund, M., "IANA Interface Type YANG Module",
 RFC 7224, DOI 10.17487/RFC7224, May 2014,
 <https://www.rfc-editor.org/info/rfc7224>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

Authors’ Addresses

 Robert Wilton (editor)
 Cisco Systems

 Email: rwilton@cisco.com

 David Ball
 Cisco Systems

 Email: daviball@cisco.com

 Tapraj Singh
 Cisco Systems

 Email: tapsingh@cisco.com

 Selvakumar Sivaraj
 Juniper Networks

 Email: ssivaraj@juniper.net

Wilton, et al. Expires January 30, 2021 [Page 34]

Network Working Group R. Wilton, Ed.
Internet-Draft Cisco Systems, Inc.
Updates: 6020, 7950, 8407, 8525 (if approved) R. Rahman, Ed.
Intended status: Standards Track
Expires: 27 April 2023 B. Lengyel, Ed.
 Ericsson
 J. Clarke
 Cisco Systems, Inc.
 J. Sterne
 Nokia
 24 October 2022

 Updated YANG Module Revision Handling
 draft-ietf-netmod-yang-module-versioning-07

Abstract

 This document specifies a new YANG module update procedure that can
 document when non-backwards-compatible changes have occurred during
 the evolution of a YANG module. It extends the YANG import statement
 with an earliest revision filter to better represent inter-module
 dependencies. It provides guidelines for managing the lifecycle of
 YANG modules and individual schema nodes. It provides a mechanism,
 via the revision-label YANG extension, to specify a revision
 identifier for YANG modules and submodules. This document updates
 RFC 7950, RFC 6020, RFC 8407 and RFC 8525.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 27 April 2023.

Wilton, et al. Expires 27 April 2023 [Page 1]

Internet-Draft Updated YANG Module Revision Handling October 2022

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Updates to YANG RFCs 4
 2. Terminology and Conventions 5
 3. Refinements to YANG revision handling 5
 3.1. Updating a YANG module with a new revision 6
 3.1.1. Backwards-compatible rules 7
 3.1.2. Non-backwards-compatible changes 7
 3.2. Non-backwards-compatible-revision extension statement . . 8
 3.3. Removing revisions from the revision history 8
 3.4. Revision label . 10
 3.4.1. File names . 10
 3.4.2. Revision label scheme extension statement 11
 3.5. Examples for updating the YANG module revision history . 11
 4. Import by derived revision 14
 4.1. Module import examples 16
 5. Updates to ietf-yang-library 17
 5.1. Resolving ambiguous module imports 17
 5.2. YANG library versioning augmentations 18
 5.2.1. Advertising revision-label 18
 5.2.2. Reporting how deprecated and obsolete nodes are
 handled . 18
 6. Versioning of YANG instance data 19
 7. Guidelines for using the YANG module update rules 19
 7.1. Guidelines for YANG module authors 20
 7.1.1. Making non-backwards-compatible changes to a YANG
 module . 21
 7.2. Versioning Considerations for Clients 22
 8. Module Versioning Extension YANG Modules 22
 9. Contributors . 31
 10. Security Considerations 32
 11. IANA Considerations . 32
 11.1. YANG Module Registrations 32

Wilton, et al. Expires 27 April 2023 [Page 2]

Internet-Draft Updated YANG Module Revision Handling October 2022

 11.2. Guidance for versioning in IANA maintained YANG
 modules . 33
 12. References . 34
 12.1. Normative References 35
 12.2. Informative References 35
 Appendix A. Examples of changes that are NBC 37
 Appendix B. Examples of applying the NBC change guidelines . . . 38
 B.1. Removing a data node 38
 B.2. Changing the type of a leaf node 38
 B.3. Reducing the range of a leaf node 39
 B.4. Changing the key of a list 39
 B.5. Renaming a node . 40
 Authors’ Addresses . 41

1. Introduction

 The current YANG [RFC7950] module update rules require that updates
 of YANG modules preserve strict backwards compatibility. This has
 caused problems as described in
 [I-D.ietf-netmod-yang-versioning-reqs]. This document recognizes the
 need to sometimes allow YANG modules to evolve with non-backwards-
 compatible changes, which can cause breakage to clients and importing
 YANG modules. Accepting that non-backwards-compatible changes do
 sometimes occur, it is important to have mechanisms to report when
 these changes occur, and to manage their effect on clients and the
 broader YANG ecosystem.

 This document defines a flexible versioning solution. Several other
 documents build on this solution with additional capabilities.
 [I-D.ietf-netmod-yang-schema-comparison] specifies an algorithm that
 can be used to compare two revisions of a YANG schema and provide
 granular information to allow module users to determine if they are
 impacted by changes between the revisions. The
 [I-D.ietf-netmod-yang-semver] document extends the module versioning
 work by introducing a revision label scheme based on semantic
 versioning. YANG packages [I-D.ietf-netmod-yang-packages] provides a
 mechanism to group sets of related YANG modules together in order to
 manage schema and conformance of YANG modules as a cohesive set
 instead of individually. Finally,
 [I-D.ietf-netmod-yang-ver-selection] provides a schema selection
 mechanism that allows a client to choose which schemas to use when
 interacting with a server from the available schema that are
 supported and advertised by the server. These other documents are
 mentioned here as informative references. Support of the other
 documents is not required in an implementation in order to take
 advantage of the mechanisms and functionality offered by this module
 versioning document.

Wilton, et al. Expires 27 April 2023 [Page 3]

Internet-Draft Updated YANG Module Revision Handling October 2022

 The document comprises five parts:

 * Refinements to the YANG 1.1 module revision update procedure,
 supported by new extension statements to indicate when a revision
 contains non-backwards-compatible changes, and an optional
 revision label.

 * A YANG extension statement allowing YANG module imports to specify
 an earliest module revision that may satisfy the import
 dependency.

 * Updates and augmentations to ietf-yang-library to include the
 revision label in the module and submodule descriptions, to report
 how "deprecated" and "obsolete" nodes are handled by a server, and
 to clarify how module imports are resolved when multiple revisions
 could otherwise be chosen.

 * Considerations of how versioning applies to YANG instance data.

 * Guidelines for how the YANG module update rules defined in this
 document should be used, along with examples.

 Note to RFC Editor (To be removed by RFC Editor)

 Open issues are tracked at https://github.com/netmod-wg/yang-ver-dt/
 issues.

1.1. Updates to YANG RFCs

 This document updates [RFC7950] section 11 and [RFC6020] section 10.
 Section 3 describes modifications to YANG revision handling and
 update rules, and Section 4 describes a YANG extension statement to
 do import by derived revision.

 This document updates [RFC7950] section 5.2, [RFC6020] section 5.2
 and [RFC8407] section 3.2. Section 3.4.1 describes the use of a
 revision label in the name of a file containing a YANG module or
 submodule.

 This document updates [RFC7950] section 5.6.5 and [RFC8525].
 Section 5.1 defines how a client of a YANG library datastore schema
 resolves ambiguous imports for modules which are not "import-only".

 This document updates [RFC8407] section 4.7. Section 7 provides
 guidelines on managing the lifecycle of YANG modules that may contain
 non-backwards-compatible changes and a branched revision history.

Wilton, et al. Expires 27 April 2023 [Page 4]

Internet-Draft Updated YANG Module Revision Handling October 2022

 This document updates [RFC8525] with augmentations to include
 revision labels in the YANG library data and two boolean leafs to
 indicate whether status deprecated and status obsolete schema nodes
 are implemented by the server.

2. Terminology and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document makes use of the following terminology introduced in
 the YANG 1.1 Data Modeling Language [RFC7950]:

 * schema node

 In addition, this document uses the following terminology:

 * YANG module revision: An instance of a YANG module, uniquely
 identified with a revision date, with no implied ordering or
 backwards compatibility between different revisions of the same
 module.

 * Backwards-compatible (BC) change: A backwards-compatible change
 between two YANG module revisions, as defined in Section 3.1.1

 * Non-backwards-compatible (NBC) change: A non-backwards-compatible
 change between two YANG module revisions, as defined in
 Section 3.1.2

3. Refinements to YANG revision handling

 [RFC7950] and [RFC6020] assume, but do not explicitly state, that the
 revision history for a YANG module or submodule is strictly linear,
 i.e., it is prohibited to have two independent revisions of a YANG
 module or submodule that are both directly derived from the same
 parent revision.

 This document clarifies [RFC7950] and [RFC6020] to explicitly allow
 non-linear development of YANG module and submodule revisions, so
 that they MAY have multiple revisions that directly derive from the
 same parent revision. As per [RFC7950] and [RFC6020], YANG module
 and submodule revisions continue to be uniquely identified by their
 revision date, and hence all revisions of a given module or submodule
 MUST have unique revision dates.

Wilton, et al. Expires 27 April 2023 [Page 5]

Internet-Draft Updated YANG Module Revision Handling October 2022

 A corollary to the above is that the relationship between two module
 or submodule revisions cannot be determined by comparing the module
 or submodule revision date alone, and the revision history, or
 revision label, must also be taken into consideration.

 A module’s name and revision date identifies a specific immutable
 definition of that module within its revision history. Hence, if a
 module includes submodules then to ensure that the module’s content
 is uniquely defined, the module’s "include" statements SHOULD use
 "revision-date" substatements to specify the exact revision date of
 each included submodule. When a module does not include its
 submodules by revision-date, the revision of submodules used cannot
 be derived from the including module. Mechanisms such as YANG
 packages [I-D.ietf-netmod-yang-packages], and YANG library [RFC8525],
 MAY be used to specify the exact submodule revisions used when the
 submodule revision date is not constrained by the "include"
 statement.

 [RFC7950] section 11 and [RFC6020] section 10 require that all
 updates to a YANG module are BC to the previous revision of the
 module. This document introduces a method to indicate that an NBC
 change has occurred between module revisions: this is done by using a
 new "non-backwards-compatible-revision" YANG extension statement in
 the module revision history.

 Two revisions of a module or submodule MAY have identical content
 except for the revision history. This could occur, for example, if a
 module or submodule has a branched history and identical changes are
 applied in multiple branches.

3.1. Updating a YANG module with a new revision

 This section updates [RFC7950] section 11 and [RFC6020] section 10 to
 refine the rules for permissible changes when a new YANG module
 revision is created.

 Where pragmatic, updates to YANG modules SHOULD be backwards-
 compatible, following the definition in Section 3.1.1.

 A new module revision MAY contain NBC changes, e.g., the semantics of
 an existing data-node definition MAY be changed in an NBC manner
 without requiring a new data-node definition with a new identifier.
 A YANG extension, defined in Section 3.2, is used to signal the
 potential for incompatibility to existing module users and readers.

Wilton, et al. Expires 27 April 2023 [Page 6]

Internet-Draft Updated YANG Module Revision Handling October 2022

 As per [RFC7950] and [RFC6020], all published revisions of a module
 are given a new unique revision date. This applies even for module
 revisions containing (in the module or included submodules) only
 changes to any whitespace, formatting, comments or line endings
 (e.g., DOS vs UNIX).

3.1.1. Backwards-compatible rules

 A change between two module revisions is defined as being "backwards-
 compatible" if the change conforms to the module update rules
 specified in [RFC7950] section 11 and [RFC6020] section 10, updated
 by the following rules:

 * A "status" "deprecated" statement MAY be added, or changed from
 "current" to "deprecated", but adding or changing "status" to
 "obsolete" is a non-backwards-compatible change.

 * YANG schema nodes with a "status" "obsolete" substatement MAY be
 removed from published modules, and the removal is classified as a
 backwards-compatible change. In some circumstances it may be
 helpful to retain the obsolete definitions since their identifiers
 may still be referenced by other modules and to ensure that their
 identifiers are not reused with a different meaning.

 * A statement that is defined using the YANG "extension" statement
 MAY be added, removed, or changed, if it does not change the
 semantics of the module. Extension statement definitions SHOULD
 specify whether adding, removing, or changing statements defined
 by that extension are backwards-compatible or non-backwards-
 compatible.

 * Any change made to the "revision-date" or "revision-or-derived"
 substatements of an "import" statement, including adding new
 "revision-date" or "revision-or-derived" substatements, changing
 the argument of any "revision-date" or "revision-or-derived"
 substatetements, or removing any "revision-date" or "revision-or-
 dervied" substatements, is classified as backwards-compatible.

 * Any changes (including whitespace or formatting changes) that do
 not change the semantic meaning of the module are backwards-
 compatible.

3.1.2. Non-backwards-compatible changes

 Any changes to YANG modules that are not defined by Section 3.1.1 as
 being backwards-compatible are classified as "non-backwards-
 compatible" changes.

Wilton, et al. Expires 27 April 2023 [Page 7]

Internet-Draft Updated YANG Module Revision Handling October 2022

3.2. Non-backwards-compatible-revision extension statement

 The "rev:non-backwards-compatible-revision" extension statement is
 used to indicate YANG module revisions that contain NBC changes.

 If a revision of a YANG module contains changes, relative to the
 preceding revision in the revision history, that do not conform to
 the module update rules defined in Section 3.1.1, then a "rev:non-
 backwards-compatible-revision" extension statement MUST be added as a
 substatement to the "revision" statement.

 Adding, modifying or removing a "rev:non-backwards-compatible-
 revision" extension statement is considered to be a BC change.

3.3. Removing revisions from the revision history

 Authors may wish to remove revision statements from a module or
 submodule. Removal of revision information may be desirable for a
 number of reasons including reducing the size of a large revision
 history, or removing a revision that should no longer be used or
 imported. Removing revision statements is allowed, but can cause
 issues and SHOULD NOT be done without careful analysis of the
 potential impact to users of the module or submodule. Doing so can
 lead to import breakages when import by revision-or-derived is used.
 Moreover, truncating history may cause loss of visibility of when
 non-backwards-compatible changes were introduced.

 An author MAY remove a contiguous sequence of entries from the end
 (i.e., oldest entries) of the revision history. This is acceptable
 even if the first remaining (oldest) revision entry in the revision
 history contains a rev:non-backwards-compatible-revision
 substatement.

 An author MAY remove a contiguous sequence of entries in the revision
 history as long as the presence or absence of any existing rev:non-
 backwards-compatible-revision substatements on all remaining entries
 still accurately reflect the compatibility relationship to their
 preceding entries remaining in the revision history.

 The author MUST NOT remove the first (i.e., newest) revision entry in
 the revision history.

 Example revision history:

Wilton, et al. Expires 27 April 2023 [Page 8]

Internet-Draft Updated YANG Module Revision Handling October 2022

 revision 2020-11-11 {
 rev:revision-label 4.0.0;
 rev:non-backwards-compatible-revision;
 }

 revision 2020-08-09 {
 rev:revision-label 3.0.0;
 rev:non-backwards-compatible-revision;
 }

 revision 2020-06-07 {
 rev:revision-label 2.1.0;
 }

 revision 2020-02-10 {
 rev:revision-label 2.0.0;
 rev:non-backwards-compatible-revision;
 }

 revision 2019-10-21 {
 rev:revision-label 1.1.3;
 }

 revision 2019-03-04 {
 rev:revision-label 1.1.2;
 }

 revision 2019-01-02 {
 rev:revision-label 1.1.1;
 }

 In the revision history example above, removing the revision history
 entry for 2020-02-10 would also remove the rev:non-backwards-
 compatible-revision annotation and hence the resulting revision
 history would incorrectly indicate that revision 2020-06-07 is
 backwards-compatible with revisions 2019-01-02 through 2019-10-21
 when it is not, and so this change cannot be made. Conversely,
 removing one or more revisions out of 2019-03-04, 2019-10-21 and
 2020-08-09 from the revision history would still retain a consistent
 revision history, and is acceptable, subject to an awareness of the
 concerns raised in the first paragraph of this section.

Wilton, et al. Expires 27 April 2023 [Page 9]

Internet-Draft Updated YANG Module Revision Handling October 2022

3.4. Revision label

 Each revision entry in a module or submodule MAY have a revision
 label associated with it, providing an alternative alias to identify
 a particular revision of a module or submodule. The revision label
 could be used to provide an additional versioning identifier
 associated with the revision.

 A revision label scheme is a set of rules describing how a particular
 type of revision-label operates for versioning YANG modules and
 submodules. For example, YANG Semver [I-D.ietf-netmod-yang-semver]
 defines a revision label scheme based on Semver 2.0.0 [semver].
 Other documents may define other YANG revision label schemes.

 Submodules MAY use a revision label scheme. When they use a revision
 label scheme, submodules MAY use a revision label scheme that is
 different from the one used in the including module.

 The revision label space of submodules is separate from the revision
 label space of the including module. A change in one submodule MUST
 result in a new revision label of that submodule and the including
 module, but the actual values of the revision labels in the module
 and submodule could be completely different. A change in one
 submodule does not result in a new revision label in another
 submodule. A change in a module revision label does not necessarily
 mean a change to the revision label in all included submodules.

 If a revision has an associated revision label, then it may be used
 instead of the revision date in a "rev:revision-or-derived" extension
 statement argument.

 A specific revision-label identifies a specific revision of the
 module. If two YANG modules contain the same module name and the
 same revision-label (and hence also the same revision-date) in their
 latest revision statement, then the file contents of the two modules,
 including the revision history, MUST be identical.

3.4.1. File names

 This section updates [RFC7950] section 5.2, [RFC6020] section 5.2 and
 [RFC8407] section 3.2

 If a revision has an associated revision label, then it is
 RECOMMENDED that the name of the file for that revision be of the
 form:

Wilton, et al. Expires 27 April 2023 [Page 10]

Internet-Draft Updated YANG Module Revision Handling October 2022

 module-or-submodule-name [’#’ revision-label] (’.yang’ / ’.yin’)

 E.g., acme-router-module#2.0.3.yang

 YANG module (or submodule) files may be identified using either the
 revision-date (as per [RFC8407] section 3.2) or the revision-label.

3.4.2. Revision label scheme extension statement

 The optional "rev:revision-label-scheme" extension statement is used
 to indicate which revision-label scheme a module or submodule uses.
 There MUST NOT be more than one revision label scheme in a module or
 submodule. The mandatory argument to this extension statement:

 * specifies the revision-label scheme used by the module or
 submodule

 * is defined in the document which specifies the revision-label
 scheme

 * MUST be an identity derived from "revision-label-scheme-base".

 The revision-label scheme used by a module or submodule SHOULD NOT
 change during the lifetime of the module or submodule. If the
 revision-label scheme used by a module or submodule is changed to a
 new scheme, then all revision-label statements that do not conform to
 the new scheme MUST be replaced or removed.

3.5. Examples for updating the YANG module revision history

 The following diagram, explanation, and module history illustrates
 how the branched revision history, "non-backwards-compatible"
 extension statement, and "revision-label" extension statement could
 be used:

 Example YANG module with branched revision history.

Wilton, et al. Expires 27 April 2023 [Page 11]

Internet-Draft Updated YANG Module Revision Handling October 2022

 Module revision date Revision label
 2019-01-01 <- 1.0.0
 |
 2019-02-01 <- 2.0.0
 | \
 2019-03-01 \ <- 3.0.0
 | \
 | 2019-04-01 <- 2.1.0
 | |
 | 2019-05-01 <- 2.2.0
 |
 2019-06-01 <- 3.1.0

 The tree diagram above illustrates how an example module’s revision
 history might evolve, over time. For example, the tree might
 represent the following changes, listed in chronological order from
 the oldest revision to the newest revision:

 Example module, revision 2019-06-01:

Wilton, et al. Expires 27 April 2023 [Page 12]

Internet-Draft Updated YANG Module Revision Handling October 2022

 module example-module {

 namespace "urn:example:module";
 prefix "prefix-name";
 rev:revision-label-scheme "yangver:yang-semver";

 import ietf-yang-revisions { prefix "rev"; }
 import ietf-yang-semver { prefix "yangver"; }

 description
 "to be completed";

 revision 2019-06-01 {
 rev:revision-label 3.1.0;
 description "Add new functionality.";
 }

 revision 2019-03-01 {
 rev:revision-label 3.0.0;
 rev:non-backwards-compatible-revision;
 description
 "Add new functionality. Remove some deprecated nodes.";
 }

 revision 2019-02-01 {
 rev:revision-label 2.0.0;
 rev:non-backwards-compatible-revision;
 description "Apply bugfix to pattern statement";
 }

 revision 2019-01-01 {
 rev:revision-label 1.0.0;
 description "Initial revision";
 }

 //YANG module definition starts here
 }

 Example module, revision 2019-05-01:

Wilton, et al. Expires 27 April 2023 [Page 13]

Internet-Draft Updated YANG Module Revision Handling October 2022

 module example-module {

 namespace "urn:example:module";
 prefix "prefix-name";
 rev:revision-label-scheme "yangver:yang-semver";

 import ietf-yang-revisions { prefix "rev"; }
 import ietf-yang-semver { prefix "yangver"; }

 description
 "to be completed";

 revision 2019-05-01 {
 rev:revision-label 2.2.0;
 description "Backwards-compatible bugfix to enhancement.";
 }

 revision 2019-04-01 {
 rev:revision-label 2.1.0;
 description "Apply enhancement to older release train.";
 }

 revision 2019-02-01 {
 rev:revision-label 2.0.0;
 rev:non-backwards-compatible-revision;
 description "Apply bugfix to pattern statement";
 }

 revision 2019-01-01 {
 rev:revision-label 1.0.0;
 description "Initial revision";
 }

 //YANG module definition starts here
 }

4. Import by derived revision

 [RFC7950] and [RFC6020] allow YANG module "import" statements to
 optionally require the imported module to have a particular revision
 date. In practice, importing a module with an exact revision date is
 often too restrictive because it requires the importing module to be
 updated whenever any change to the imported module occurs. The
 alternative choice of using an import statement without any revision
 date statement is also not ideal because the importing module may not
 work with all possible revisions of the imported module.

Wilton, et al. Expires 27 April 2023 [Page 14]

Internet-Draft Updated YANG Module Revision Handling October 2022

 Instead, it is desirable for an importing module to specify a
 "minimum required revision" of a module that it is compatible with,
 based on the assumption that later revisions derived from that
 "minimum required revision" are also likely to be compatible. Many
 possible changes to a YANG module do not break importing modules,
 even if the changes themselves are not strictly backwards-compatible.
 E.g., fixing an incorrect pattern statement or description for a leaf
 would not break an import, changing the name of a leaf could break an
 import but frequently would not, but removing a container would break
 imports if that container is augmented by another module.

 The ietf-revisions module defines the "revision-or-derived" extension
 statement, a substatement to the YANG "import" statement, to allow
 for a "minimum required revision" to be specified during import:

 The argument to the "revision-or-derived" extension statement is a
 revision date or a revision label.

 A particular revision of an imported module satisfies an import’s
 "revision-or-derived" extension statement if the imported module’s
 revision history contains a revision statement with a matching
 revision date or revision label.

 An "import" statement MUST NOT contain both a "revision-or-
 derived" extension statement and a "revision-date" statement.

 The "revision-or-derived" extension statement MAY be specified
 multiple times, allowing the import to use any module revision
 that satisfies at least one of the "revision-or-derived" extension
 statements.

 The "revision-or-derived" extension statement does not guarantee
 that all module revisions that satisfy an import statement are
 necessarily compatible; it only gives an indication that the
 revisions are more likely to be compatible. Hence, NBC changes to
 an imported module may also require new revisions of any importing
 modules, updated to accommodation those changes, along with
 updated import "revision-or-derived" extension statements to
 depend on the updated imported module revision.

 Adding, modifying or removing a "revision-or-derived" extension
 statement is considered to be a BC change.

Wilton, et al. Expires 27 April 2023 [Page 15]

Internet-Draft Updated YANG Module Revision Handling October 2022

4.1. Module import examples

 Consider the example module "example-module" from Section 3.5 that is
 hypothetically available in the following revision/label pairings:
 2019-01-01/1.0.0, 2019-02-01/2.0.0, 2019-03-01/3.0.0,
 2019-04-01/2.1.0, 2019-05-01/2.2.0 and 2019-06-01/3.1.0. The
 relationship between the revisions is as before:

 Module revision date Revision label
 2019-01-01 <- 1.0.0
 |
 2019-02-01 <- 2.0.0
 | \
 2019-03-01 \ <- 3.0.0
 | \
 | 2019-04-01 <- 2.1.0
 | |
 | 2019-05-01 <- 2.2.0
 |
 2019-06-01 <- 3.1.0

4.1.1. Example 1

 This example selects module revisions that match, or are derived from
 the revision 2019-02-01. E.g., this dependency might be used if
 there was a new container added in revision 2019-02-01 that is
 augmented by the importing module. It includes revisions/labels:
 2019-02-01/2.0.0, 2019-03-01/3.0.0, 2019-04-01/2.1.0,
 2019-05-01/2.2.0 and 2019-06-01/3.1.0.

 import example-module {
 rev:revision-or-derived 2019-02-01;
 }

 Alternatively, the first example could have used the revision label
 "2.0.0" instead, which selects the same set of revisions/labels.

 import example-module {
 rev:revision-or-derived 2.0.0;
 }

Wilton, et al. Expires 27 April 2023 [Page 16]

Internet-Draft Updated YANG Module Revision Handling October 2022

4.1.2. Example 2

 This example selects module revisions that are derived from
 2019-04-01 by using the revision label 2.1.0. It includes revisions/
 labels: 2019-04-01/2.1.0 and 2019-05-01/2.2.0. Even though
 2019-06-01/3.1.0 has a higher revision label number than
 2019-04-01/2.1.0 it is not a derived revision, and hence it is not a
 valid revision for import.

 import example-module {
 rev:revision-or-derived 2.1.0;
 }

4.1.3. Example 3

 This example selects revisions derived from either 2019-04-01 or
 2019-06-01. It includes revisions/labels: 2019-04-01/2.1.0,
 2019-05-01/2.2.0, and 2019-06-01/3.1.0.

 import example-module {
 rev:revision-or-derived 2019-04-01;
 rev:revision-or-derived 2019-06-01;
 }

5. Updates to ietf-yang-library

 This document updates YANG 1.1 [RFC7950] and YANG library [RFC8525]
 to clarify how ambiguous module imports are resolved. It also
 defines the YANG module, ietf-yang-library-revisions, that augments
 YANG library [RFC8525] with revision labels and two leafs to indicate
 how a server implements deprecated and obsolete schema nodes.

5.1. Resolving ambiguous module imports

 A YANG datastore schema, defined in [RFC8525], can specify multiple
 revisions of a YANG module in the schema using the "import-only"
 list, with the requirement from [RFC7950] section 5.6.5 that only a
 single revision of a YANG module may be implemented.

 If a YANG module import statement does not specify a specific
 revision within the datastore schema then it could be ambiguous as to
 which module revision the import statement should resolve to. Hence,
 a datastore schema constructed by a client using the information
 contained in YANG library may not exactly match the datastore schema
 actually used by the server.

 The following two rules remove the ambiguity:

Wilton, et al. Expires 27 April 2023 [Page 17]

Internet-Draft Updated YANG Module Revision Handling October 2022

 If a module import statement could resolve to more than one module
 revision defined in the datastore schema, and one of those revisions
 is implemented (i.e., not an "import-only" module), then the import
 statement MUST resolve to the revision of the module that is defined
 as being implemented by the datastore schema.

 If a module import statement could resolve to more than one module
 revision defined in the datastore schema, and none of those revisions
 are implemented, then the import MUST resolve to the module revision
 with the latest revision date.

5.2. YANG library versioning augmentations

 The "ietf-yang-library-revisions" YANG module has the following
 structure (using the notation defined in [RFC8340]):

 module: ietf-yang-library-revisions
 augment /yanglib:yang-library/yanglib:module-set/yanglib:module:
 +--ro revision-label? rev:revision-label
 augment /yanglib:yang-library/yanglib:module-set/yanglib:module
 /yanglib:submodule:
 +--ro revision-label? rev:revision-label
 augment /yanglib:yang-library/yanglib:module-set
 /yanglib:import-only-module/yanglib:submodule:
 +--ro revision-label? rev:revision-label
 augment /yanglib:yang-library/yanglib:schema:
 +--ro deprecated-nodes-implemented? boolean
 +--ro obsolete-nodes-absent? boolean

5.2.1. Advertising revision-label

 The ietf-yang-library-revisions YANG module augments the "module" and
 "submodule" lists in ietf-yang-library with "revision-label" leafs to
 optionally declare the revision label associated with each module and
 submodule.

5.2.2. Reporting how deprecated and obsolete nodes are handled

 The ietf-yang-library-revisions YANG module augments YANG library
 with two boolean leafs to allow a server to report how it implements
 status "deprecated" and status "obsolete" schema nodes. The leafs
 are:

 deprecated-nodes-implemented: If set to "true", this leaf indicates

Wilton, et al. Expires 27 April 2023 [Page 18]

Internet-Draft Updated YANG Module Revision Handling October 2022

 that all schema nodes with a status "deprecated" are implemented
 equivalently as if they had status "current"; otherwise deviations
 MUST be used to explicitly remove "deprecated" nodes from the
 schema. If this leaf is set to "false" or absent, then the
 behavior is unspecified.

 obsolete-nodes-absent: If set to "true", this leaf indicates that
 the server does not implement any status "obsolete" schema nodes.
 If this leaf is set to "false" or absent, then the behaviour is
 unspecified.

 Servers SHOULD set both the "deprecated-nodes-implemented" and
 "obsolete-nodes-absent" leafs to "true".

 If a server does not set the "deprecated-nodes-implemented" leaf to
 "true", then clients MUST NOT rely solely on the "rev:non-backwards-
 compatible-revision" statements to determine whether two module
 revisions are backwards-compatible, and MUST also consider whether
 the status of any nodes has changed to "deprecated" and whether those
 nodes are implemented by the server.

6. Versioning of YANG instance data

 Instance data sets [I-D.ietf-netmod-yang-instance-file-format] do not
 directly make use of the updated revision handling rules described in
 this document, as compatibility for instance data is undefined.

 However, instance data specifies the content-schema of the data-set.
 This schema SHOULD make use of versioning using revision dates and/or
 revision labels for the individual YANG modules that comprise the
 schema or potentially for the entire schema itself (e.g.,
 [I-D.ietf-netmod-yang-packages]).

 In this way, the versioning of a content-schema associated with an
 instance data set may help a client to determine whether the instance
 data could also be used in conjunction with other revisions of the
 YANG schema, or other revisions of the modules that define the
 schema.

7. Guidelines for using the YANG module update rules

 The following text updates section 4.7 of [RFC8407] to revise the
 guidelines for updating YANG modules.

Wilton, et al. Expires 27 April 2023 [Page 19]

Internet-Draft Updated YANG Module Revision Handling October 2022

7.1. Guidelines for YANG module authors

 All IETF YANG modules MUST include revision-label statements for all
 newly published YANG modules, and all newly published revisions of
 existing YANG modules. The revision-label MUST take the form of a
 YANG semantic version number [I-D.ietf-netmod-yang-semver].

 NBC changes to YANG modules may cause problems to clients, who are
 consumers of YANG models, and hence YANG module authors SHOULD
 minimize NBC changes and keep changes BC whenever possible.

 When NBC changes are introduced, consideration should be given to the
 impact on clients and YANG module authors SHOULD try to mitigate that
 impact.

 A "rev:non-backwards-compatible-revision" statement MUST be added if
 there are NBC changes relative to the previous revision.

 Removing old revision statements from a module’s revision history
 could break import by revision, and hence it is RECOMMENDED to retain
 them. If all dependencies have been updated to not import specific
 revisions of a module, then the corresponding revision statements can
 be removed from that module. An alternative solution, if the
 revision section is too long, would be to remove, or curtail, the
 older description statements associated with the previous revisions.

 The "rev:revision-or-derived" extension SHOULD be used in YANG module
 imports to indicate revision dependencies between modules in
 preference to the "revision-date" statement, which causes overly
 strict import dependencies and SHOULD NOT be used.

 A module that includes submodules SHOULD use the "revision-date"
 statement to include specific submodule revisions. The revision of
 the including module MUST be updated when any included submodule has
 changed.

 In some cases a module or submodule revision that is not strictly NBC
 by the definition in Section 3.1.2 of this specification may include
 the "non-backwards-compatible" statement. Here is an example when
 adding the statement may be desirable:

 * A "config false" leaf had its value space expanded (for example, a
 range was increased, or additional enum values were added) and the
 author or server implementor feels there is a significant
 compatibility impact for clients and users of the module or
 submodule

Wilton, et al. Expires 27 April 2023 [Page 20]

Internet-Draft Updated YANG Module Revision Handling October 2022

7.1.1. Making non-backwards-compatible changes to a YANG module

 There are various valid situations where a YANG module has to be
 modified in an NBC way. Here are some guidelines on how non-
 backwards-compatible changes can be made incrementally, with the
 assumption that deprecated nodes are implemented by the server, and
 obsolete nodes are not:

 1. The changes should be made gradually, e.g., a data node’s status
 SHOULD NOT be changed directly from "current" to "obsolete" (see
 Section 4.7 of [RFC8407]), instead the status SHOULD first be
 marked "deprecated". At some point in the future, when support
 is removed for the data node, there are two options. The first,
 and preferred, option is to keep the data node definition in the
 model and change the status to "obsolete". The second option is
 to simply remove the data node from the model, but this has the
 risk of breaking modules which import the modified module, and
 the removed identifier may be accidently reused in a future
 revision.

 2. For deprecated data nodes the "description" statement SHOULD also
 indicate until when support for the node is guaranteed (if
 known). If there is a replacement data node, rpc, action or
 notification for the deprecated node, this SHOULD be stated in
 the "description". The reason for deprecating the node can also
 be included in the "description" if it is deemed to be of
 potential interest to the user.

 3. For obsolete data nodes, it is RECOMMENDED to keep the above
 information, from when the node had status "deprecated", which is
 still relevant.

 4. When obsoleting or deprecating data nodes, the "deprecated" or
 "obsolete" status SHOULD be applied at the highest possible level
 in the data tree. For clarity, the "status" statement SHOULD
 also be applied to all descendent data nodes, but the additional
 status related information does not need to be repeated if it
 does not introduce any additional information.

 5. NBC changes which can break imports SHOULD be avoided because of
 the impact on the importing module. The importing modules could
 get broken, e.g., if an augmented node in the importing module
 has been removed from the imported module. Alternatively, the
 schema of the importing modules could undergo an NBC change due
 to the NBC change in the imported module, e.g., if a node in a
 grouping has been removed. As described in Appendix B.1, instead
 of removing a node, that node SHOULD first be deprecated and then
 obsoleted.

Wilton, et al. Expires 27 April 2023 [Page 21]

Internet-Draft Updated YANG Module Revision Handling October 2022

 See Appendix B for examples on how NBC changes can be made.

7.2. Versioning Considerations for Clients

 Guidelines for clients of modules using the new module revision
 update procedure:

 * Clients SHOULD be liberal when processing data received from a
 server. For example, the server may have increased the range of
 an operational node causing the client to receive a value which is
 outside the range of the YANG model revision it was coded against.

 * Clients SHOULD monitor changes to published YANG modules through
 their revision history, and use appropriate tooling to understand
 the specific changes between module revision. In particular,
 clients SHOULD NOT migrate to NBC revisions of a module without
 understanding any potential impact of the specific NBC changes.

 * Clients SHOULD plan to make changes to match published status
 changes. When a node’s status changes from "current" to
 "deprecated", clients SHOULD plan to stop using that node in a
 timely fashion. When a node’s status changes to "obsolete",
 clients MUST stop using that node.

8. Module Versioning Extension YANG Modules

 YANG module with extension statements for annotating NBC changes,
 revision label, revision label scheme, and importing by revision.

 <CODE BEGINS> file "ietf-yang-revisions@2022-08-22.yang"
 module ietf-yang-revisions {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-revisions";
 prefix rev;

 // RFC Ed.: We need the bis version to get the new type revision-identifier
 // If 6991-bis is not yet an RFC we need to copy the definition here
 import ietf-yang-types {
 prefix yang;
 reference
 "XXXX [ietf-netmod-rfc6991-bis]: Common YANG Data Types";
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

Wilton, et al. Expires 27 April 2023 [Page 22]

Internet-Draft Updated YANG Module Revision Handling October 2022

 Author: Joe Clarke
 <mailto:jclarke@cisco.com>

 Author: Reshad Rahman
 <mailto:reshad@yahoo.com>

 Author: Robert Wilton
 <mailto:rwilton@cisco.com>

 Author: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>

 Author: Jason Sterne
 <mailto:jason.sterne@nokia.com>";
 description
 "This YANG 1.1 module contains definitions and extensions to
 support updated YANG revision handling.

 Copyright (c) 2021 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX (inc above) with actual RFC number and
 // remove this note.

 revision 2022-10-10 {
 rev:revision-label 1.0.0-draft-ietf-netmod-yang-module-versioning-07;
 description
 "Initial version.";
 reference
 "XXXX: Updated YANG Module Revision Handling";

Wilton, et al. Expires 27 April 2023 [Page 23]

Internet-Draft Updated YANG Module Revision Handling October 2022

 }

 typedef revision-label {
 type string {
 length "1..255";
 pattern ’[a-zA-Z0-9,\-_.+]+’;
 pattern ’\d{4}-\d{2}-\d{2}’ {
 modifier invert-match;
 }
 }
 description
 "A label associated with a YANG revision.

 Alphanumeric characters, comma, hyphen, underscore, period
 and plus are the only accepted characters. MUST NOT match
 revision-date.";
 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 3.3, Revision label";
 }

 typedef revision-date-or-label {
 type union {
 type yang:revision-identifier;
 type revision-label;
 }
 description
 "Represents either a YANG revision date or a revision label";
 }

 extension non-backwards-compatible-revision {
 description
 "This statement is used to indicate YANG module revisions that
 contain non-backwards-compatible changes.

 The statement MUST only be a substatement of the ’revision’
 statement. Zero or one ’non-backwards-compatible’ statements
 per parent statement is allowed. No substatements for this
 extension have been standardized.

 If a revision of a YANG module contains changes, relative to
 the preceding revision in the revision history, that do not
 conform to the backwards-compatible module update rules defined
 in RFC-XXX, then the ’non-backwards-compatible’ statement MUST
 be added as a substatement to the revision statement.

 Conversely, if a revision does not contain a
 ’non-backwards-compatible’ statement then all changes,

Wilton, et al. Expires 27 April 2023 [Page 24]

Internet-Draft Updated YANG Module Revision Handling October 2022

 relative to the preceding revision in the revision history,
 MUST be backwards-compatible.

 A new module revision that only contains changes that are
 backwards-compatible SHOULD NOT include the
 ’non-backwards-compatible’ statement. An example of when
 an author might add the ’non-backwards-compatible’ statement
 is if they believe a change could negatively impact clients
 even though the backwards compatibility rules defined in
 RFC-XXXX classify it as a backwards-compatible change.

 Add, removing, or changing a ’non-backwards-compatible’
 statement is a backwards-compatible version change.";

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 3.2, non-backwards-compatible revision extension statement";
 }

 extension revision-label {
 argument revision-label;
 description
 "The revision label can be used to provide an additional
 versioning identifier associated with a module or submodule
 revision. One such scheme that
 could be used is [XXXX: ietf-netmod-yang-semver].

 The format of the revision-label argument MUST conform to the
 pattern defined for the revision-label typedef in this module.

 The statement MUST only be a substatement of the revision
 statement. Zero or one revision-label statements per parent
 statement are allowed. No substatements for this extension
 have been standardized.

 Revision labels MUST be unique amongst all revisions of a
 module or submodule.

 Adding a revision label is a backwards-compatible version
 change. Changing or removing an existing revision label in
 the revision history is a non-backwards-compatible version
 change, because it could impact any references to that
 revision label.";

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 3.3, Revision label";
 }

Wilton, et al. Expires 27 April 2023 [Page 25]

Internet-Draft Updated YANG Module Revision Handling October 2022

 extension revision-label-scheme {
 argument revision-label-scheme-base;
 description
 "The revision label scheme specifies which revision-label scheme
 the module or submodule uses.

 The mandatory revision-label-scheme-base argument MUST be an
 identity derived from revision-label-scheme-base.

 This extension is only valid as a top-level statement, i.e.,
 given as as a substatement to ’module’ or ’submodule’. No
 substatements for this extension have been standardized.

 This extension MUST be used if there is a revision-label
 statement in the module or submodule.

 Adding a revision label scheme is a backwards-compatible version
 change. Changing a revision label scheme is a
 non-backwards-compatible version change, unless the new revision
 label scheme is backwards-compatible with the replaced revision
 label scheme. Removing a revision label scheme is a
 non-backwards-compatible version change.";

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 3.3.1, Revision label scheme extension statement";
 }

 extension revision-or-derived {
 argument revision-date-or-label;
 description
 "Restricts the revision of the module that may be imported to
 one that matches or is derived from the specified
 revision-date or revision-label.

 The argument value MUST conform to the
 ’revision-date-or-label’ defined type.

 The statement MUST only be a substatement of the import
 statement. Zero, one or more ’revision-or-derived’ statements
 per parent statement are allowed. No substatements for this
 extension have been standardized.

 If specified multiple times, then any module revision that
 satisfies at least one of the ’revision-or-derived’ statements
 is an acceptable revision for import.

 An ’import’ statement MUST NOT contain both a

Wilton, et al. Expires 27 April 2023 [Page 26]

Internet-Draft Updated YANG Module Revision Handling October 2022

 ’revision-or-derived’ extension statement and a
 ’revision-date’ statement.

 A particular revision of an imported module satisfies an
 import’s ’revision-or-derived’ extension statement if the
 imported module’s revision history contains a revision
 statement with a matching revision date or revision label.

 The ’revision-or-derived’ extension statement does not
 guarantee that all module revisions that satisfy an import
 statement are necessarily compatible, it only gives an
 indication that the revisions are more likely to be
 compatible.

 Adding, removing or updating a ’revision-or-derived’
 statement to an import is a backwards-compatible change.
 ";

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 4, Import by derived revision";
 }

 identity revision-label-scheme-base {
 description
 "Base identity from which all revision label schemes are
 derived.";

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 3.3.1, Revision label scheme extension statement";

 }

 }
 <CODE ENDS>

 YANG module with augmentations to YANG Library to revision labels

 <CODE BEGINS> file "ietf-yang-library-revisions@2021-11-04.yang"
 module ietf-yang-library-revisions {
 yang-version 1.1;
 namespace
 "urn:ietf:params:xml:ns:yang:ietf-yang-library-revisions";
 prefix yl-rev;

Wilton, et al. Expires 27 April 2023 [Page 27]

Internet-Draft Updated YANG Module Revision Handling October 2022

 import ietf-yang-revisions {
 prefix rev;
 reference
 "XXXX: Updated YANG Module Revision Handling";
 }

 import ietf-yang-library {
 prefix yanglib;
 reference "RFC 8525: YANG Library";
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Joe Clarke
 <mailto:jclarke@cisco.com>

 Author: Reshad Rahman
 <mailto:reshad@yahoo.com>

 Author: Robert Wilton
 <mailto:rwilton@cisco.com>

 Author: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>

 Author: Jason Sterne
 <mailto:jason.sterne@nokia.com>";
 description
 "This module contains augmentations to YANG Library to add module
 level revision label and to provide an indication of how
 deprecated and obsolete nodes are handled by the server.

 Copyright (c) 2021 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.

Wilton, et al. Expires 27 April 2023 [Page 28]

Internet-Draft Updated YANG Module Revision Handling October 2022

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’, ’SHALL
 NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’, ’NOT RECOMMENDED’,
 ’MAY’, and ’OPTIONAL’ in this document are to be interpreted as
 described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
 they appear in all capitals, as shown here.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX (including in the imports above) with
 // actual RFC number and remove this note.
 // RFC Ed.: please replace revision-label version with 1.0.0 and
 // remove this note.
 revision 2021-11-04 {
 rev:revision-label 1.0.0-draft-ietf-netmod-yang-module-versioning-05;
 description
 "Initial revision";
 reference
 "XXXX: Updated YANG Module Revision Handling";
 }

 // library 1.0 modules-state is not augmented with revision-label

 augment "/yanglib:yang-library/yanglib:module-set/yanglib:module" {
 description
 "Add a revision label to module information";
 leaf revision-label {
 type rev:revision-label;
 description
 "The revision label associated with this module revision.
 The label MUST match the rev:revision-label value in the specific
 revision of the module loaded in this module-set.";

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.2.1, Advertising revision-label";
 }
 }

 augment "/yanglib:yang-library/yanglib:module-set/yanglib:module/"
 + "yanglib:submodule" {
 description
 "Add a revision label to submodule information";
 leaf revision-label {
 type rev:revision-label;
 description
 "The revision label associated with this submodule revision.
 The label MUST match the rev:revision-label value in the specific
 revision of the submodule included by the module loaded in

Wilton, et al. Expires 27 April 2023 [Page 29]

Internet-Draft Updated YANG Module Revision Handling October 2022

 this module-set.";

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.2.1, Advertising revision-label";
 }
 }

 augment "/yanglib:yang-library/yanglib:module-set/"
 + "yanglib:import-only-module" {
 description
 "Add a revision label to module information";
 leaf revision-label {
 type rev:revision-label;
 description
 "The revision label associated with this module revision.
 The label MUST match the rev:revision-label value in the specific
 revision of the module included in this module-set.";

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.2.1, Advertising revision-label";
 }
 }

 augment "/yanglib:yang-library/yanglib:module-set/"
 + "yanglib:import-only-module/yanglib:submodule" {
 description
 "Add a revision label to submodule information";
 leaf revision-label {
 type rev:revision-label;
 description
 "The revision label associated with this submodule revision.
 The label MUST match the rev:label value in the specific
 revision of the submodule included by the
 import-only-module loaded in this module-set.";

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.2.1, Advertising revision-label";
 }
 }

 augment "/yanglib:yang-library/yanglib:schema" {
 description
 "Augmentations to the ietf-yang-library module to indicate how
 deprecated and obsoleted nodes are handled for each datastore
 schema supported by the server.";

Wilton, et al. Expires 27 April 2023 [Page 30]

Internet-Draft Updated YANG Module Revision Handling October 2022

 leaf deprecated-nodes-implemented {
 type boolean;
 description
 "If set to true, this leaf indicates that all schema nodes with
 a status ’deprecated’ are implemented
 equivalently as if they had status ’current’; otherwise
 deviations MUST be used to explicitly remove deprecated
 nodes from the schema. If this leaf is absent or set to false,
 then the behavior is unspecified.";

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.2.2, Reporting how deprecated and obsolete nodes
 are handled";
 }

 leaf obsolete-nodes-absent {
 type boolean;
 description
 "If set to true, this leaf indicates that the server does not
 implement any status ’obsolete’ schema nodes. If this leaf is
 absent or set to false, then the behaviour is unspecified.";

 reference
 "XXXX: Updated YANG Module Revision Handling;
 Section 5.2.2, Reporting how deprecated and obsolete nodes
 are handled";
 }
 }
 }
 <CODE ENDS>

9. Contributors

 This document grew out of the YANG module versioning design team that
 started after IETF 101. The following individuals are (or have been)
 members of the design team and have worked on the YANG versioning
 project:

 * Balazs Lengyel

 * Benoit Claise

 * Bo Wu

 * Ebben Aries

 * Jan Lindblad

Wilton, et al. Expires 27 April 2023 [Page 31]

Internet-Draft Updated YANG Module Revision Handling October 2022

 * Jason Sterne

 * Joe Clarke

 * Juergen Schoenwaelder

 * Mahesh Jethanandani

 * Michael (Wangzitao)

 * Qin Wu

 * Reshad Rahman

 * Rob Wilton

 The initial revision of this document was refactored and built upon
 [I-D.clacla-netmod-yang-model-update]. We would like to thank Kevin
 D’Souza and Benoit Claise for their initial work in this problem
 space.

 Discussons on the use of Semver for YANG versioning has been held
 with authors of the OpenConfig YANG models. We would like to thank
 both Anees Shaikh and Rob Shakir for their input into this problem
 space.

 We would also like to thank Lou Berger, Andy Bierman, Martin
 Bjorklund, Italo Busi, Tom Hill, Scott Mansfield, Kent Watsen for
 their contributions and review comments.

10. Security Considerations

 The document does not define any new protocol or data model. There
 are no security considerations beyond those specified in [RFC7950]
 and [RFC6020].

11. IANA Considerations

11.1. YANG Module Registrations

 This document requests IANA to registers a URI in the "IETF XML
 Registry" [RFC3688]. Following the format in RFC 3688, the following
 registrations are requested.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-revisions
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

Wilton, et al. Expires 27 April 2023 [Page 32]

Internet-Draft Updated YANG Module Revision Handling October 2022

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-library-revisions
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

 The following YANG module is requested to be registred in the "IANA
 Module Names" [RFC6020]. Following the format in RFC 6020, the
 following registrations are requested:

 The ietf-yang-revisions module:

 Name: ietf-yang-revisions

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-revisions

 Prefix: rev

 Reference: [RFCXXXX]

 The ietf-yang-library-revisions module:

 Name: ietf-yang-library-revisions

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-library-
 revisions

 Prefix: yl-rev

 Reference: [RFCXXXX]

11.2. Guidance for versioning in IANA maintained YANG modules

 Note for IANA (to be removed by the RFC editor): Please check that
 the registries and IANA YANG modules are referenced in the
 appropriate way.

 IANA is responsible for maintaining and versioning YANG modules that
 are derived from other IANA registries. For example,
 "iana-if-type.yang" [IfTypeYang] is derived from the "Interface Types
 (ifType) IANA registry" [IfTypesReg], and "iana-routing-types.yang"
 [RoutingTypesYang] is derived from the "Address Family Numbers"
 [AddrFamilyReg] and "Subsequent Address Family Identifiers (SAFI)
 Parameters" [SAFIReg] IANA registries.

Wilton, et al. Expires 27 April 2023 [Page 33]

Internet-Draft Updated YANG Module Revision Handling October 2022

 Normally, updates to the registries cause any derived YANG modules to
 be updated in a backwards-compatible way, but there are some cases
 where the registry updates can cause non-backward-compatible updates
 to the derived YANG module. An example of such an update is the
 2020-12-31 revision of iana-routing-types.yang
 [RoutingTypesDecRevision], where the enum name for two SAFI values
 was changed.

 In all cases, IANA MUST follow the versioning guidance specified in
 Section 3.1, and MUST include a "rev:non-backwards-compatible-
 revision" substatement to the latest revision statement whenever an
 IANA maintained module is updated in a non-backwards-compatible way,
 as described in Section 3.2.

 Note: For published IANA maintained YANG modules that contain non-
 backwards-compatible changes between revisions, a new revision should
 be published with the "rev:non-backwards-compatible-revision"
 substatement retrospectively added to any revisions containing non-
 backwards-compatible changes.

 Non-normative examples of updates to enumeration types in IANA
 maintained modules that would be classified as non-backwards-
 compatible changes are: Changing the status of an enumeration typedef
 to obsolete, changing the status of an enum entry to obsolete,
 removing an enum entry, changing the identifier of an enum entry, or
 changing the described meaning of an enum entry.

 Non-normative examples of updates to enumeration types in IANA
 maintained modules that would be classified as backwards-compatible
 changes are: Adding a new enum entry to the end of the enumeration,
 changing the status or an enum entry to deprecated, or improving the
 description of an enumeration that does not change its defined
 meaning.

 Non-normative examples of updates to identity types in IANA
 maintained modules that would be classified as non-backwards-
 compatible changes are: Changing the status of an identity to
 obsolete, removing an identity, renaming an identity, or changing the
 described meaning of an identity.

 Non-normative examples of updates to identity types in IANA
 maintained modules that would be classified as backwards-compatible
 changes are: Adding a new identity, changing the status or an
 identity to deprecated, or improving the description of an identity
 that does not change its defined meaning.

12. References

Wilton, et al. Expires 27 April 2023 [Page 34]

Internet-Draft Updated YANG Module Revision Handling October 2022

12.1. Normative References

 [I-D.ietf-netmod-rfc6991-bis]
 Schoenwaelder, J., "Common YANG Data Types", Work in
 Progress, Internet-Draft, draft-ietf-netmod-rfc6991-bis-
 13, 22 March 2022, <https://www.ietf.org/archive/id/draft-
 ietf-netmod-rfc6991-bis-13.txt>.

 [I-D.ietf-netmod-yang-semver]
 Clarke, J., Wilton, R., Rahman, R., Lengyel, B., Sterne,
 J., and B. Claise, "YANG Semantic Versioning", Work in
 Progress, Internet-Draft, draft-ietf-netmod-yang-semver-
 07, 10 July 2022, <https://www.ietf.org/archive/id/draft-
 ietf-netmod-yang-semver-07.txt>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
 RFC 7950, DOI 10.17487/RFC7950, August 2016,
 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of
 Documents Containing YANG Data Models", BCP 216, RFC 8407,
 DOI 10.17487/RFC8407, October 2018,
 <https://www.rfc-editor.org/info/rfc8407>.

 [RFC8525] Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
 and R. Wilton, "YANG Library", RFC 8525,
 DOI 10.17487/RFC8525, March 2019,
 <https://www.rfc-editor.org/info/rfc8525>.

12.2. Informative References

Wilton, et al. Expires 27 April 2023 [Page 35]

Internet-Draft Updated YANG Module Revision Handling October 2022

 [AddrFamilyReg]
 "Address Family Numbers IANA Registry",
 <https://www.iana.org/assignments/address-family-numbers/
 address-family-numbers.xhtml>.

 [I-D.clacla-netmod-yang-model-update]
 Claise, B., Clarke, J., Lengyel, B., and K. D’Souza, "New
 YANG Module Update Procedure", Work in Progress, Internet-
 Draft, draft-clacla-netmod-yang-model-update-06, 2 July
 2018, <https://www.ietf.org/archive/id/draft-clacla-
 netmod-yang-model-update-06.txt>.

 [I-D.ietf-netmod-yang-instance-file-format]
 Lengyel, B. and B. Claise, "YANG Instance Data File
 Format", Work in Progress, Internet-Draft, draft-ietf-
 netmod-yang-instance-file-format-21, 8 October 2021,
 <https://www.ietf.org/archive/id/draft-ietf-netmod-yang-
 instance-file-format-21.txt>.

 [I-D.ietf-netmod-yang-packages]
 Wilton, R., Rahman, R., Clarke, J., Sterne, J., and B. Wu,
 "YANG Packages", Work in Progress, Internet-Draft, draft-
 ietf-netmod-yang-packages-03, 4 March 2022,
 <https://www.ietf.org/archive/id/draft-ietf-netmod-yang-
 packages-03.txt>.

 [I-D.ietf-netmod-yang-schema-comparison]
 Wilton, R., "YANG Schema Comparison", Work in Progress,
 Internet-Draft, draft-ietf-netmod-yang-schema-comparison-
 01, 2 November 2020, <https://www.ietf.org/archive/id/
 draft-ietf-netmod-yang-schema-comparison-01.txt>.

 [I-D.ietf-netmod-yang-solutions]
 Wilton, R., "YANG Versioning Solution Overview", Work in
 Progress, Internet-Draft, draft-ietf-netmod-yang-
 solutions-01, 2 November 2020,
 <https://www.ietf.org/archive/id/draft-ietf-netmod-yang-
 solutions-01.txt>.

 [I-D.ietf-netmod-yang-ver-selection]
 Wilton, R., Rahman, R., Clarke, J., Sterne, J., and B. Wu,
 "YANG Schema Selection", Work in Progress, Internet-Draft,
 draft-ietf-netmod-yang-ver-selection-00, 17 March 2020,
 <https://www.ietf.org/archive/id/draft-ietf-netmod-yang-
 ver-selection-00.txt>.

Wilton, et al. Expires 27 April 2023 [Page 36]

Internet-Draft Updated YANG Module Revision Handling October 2022

 [I-D.ietf-netmod-yang-versioning-reqs]
 Clarke, J., "YANG Module Versioning Requirements", Work in
 Progress, Internet-Draft, draft-ietf-netmod-yang-
 versioning-reqs-07, 10 July 2022,
 <https://www.ietf.org/archive/id/draft-ietf-netmod-yang-
 versioning-reqs-07.txt>.

 [IfTypesReg]
 "Interface Types (ifType) IANA Registry",
 <https://www.iana.org/assignments/smi-numbers/smi-
 numbers.xhtml#smi-numbers-5>.

 [IfTypeYang]
 "iana-if-type YANG Module",
 <https://www.iana.org/assignments/iana-if-type/iana-if-
 type.xhtml>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RoutingTypesDecRevision]
 "2020-12-31 revision of iana-routing-types.yang",
 <https://www.iana.org/assignments/yang-parameters/iana-
 routing-types@2020-12-31.yang>.

 [RoutingTypesYang]
 "iana-routing-types YANG Module",
 <https://www.iana.org/assignments/iana-routing-types/iana-
 routing-types.xhtml>.

 [SAFIReg] "Subsequent Address Family Identifiers (SAFI) Parameters
 IANA Registry", <https://www.iana.org/assignments/safi-
 namespace/safi-namespace.xhtml>.

 [semver] "Semantic Versioning 2.0.0", <https://www.semver.org>.

Appendix A. Examples of changes that are NBC

 Examples of NBC changes include:

 * Deleting a data node, or changing it to status obsolete.

 * Changing the name, type, or units of a data node.

 * Modifying the description in a way that changes the semantic
 meaning of the data node.

Wilton, et al. Expires 27 April 2023 [Page 37]

Internet-Draft Updated YANG Module Revision Handling October 2022

 * Any changes that remove any previously allowed values from the
 allowed value set of the data node, either through changes in the
 type definition, or the addition or changes to "must" statements,
 or changes in the description.

 * Adding or modifying "when" statements that reduce when the data
 node is available in the schema.

 * Making the statement conditional on if-feature.

Appendix B. Examples of applying the NBC change guidelines

 The following sections give steps that could be taken for making NBC
 changes to a YANG module or submodule using the incremental approach
 described in section Section 7.1.1.

 The examples are all for "config true" nodes.

B.1. Removing a data node

 Removing a leaf or container from the data tree, e.g., because
 support for the corresponding feature is being removed:

 1. The schema node’s status is changed to "deprecated" and the node
 is supported for some period of time (e.g. one year). This is a
 BC change.

 2. When the schema node is not supported anymore, its status is
 changed to "obsolete" and the "description" updated. This is an
 NBC change.

B.2. Changing the type of a leaf node

 Changing the type of a leaf node. e.g., a "vpn-id" node of type
 integer being changed to a string:

 1. The status of schema node "vpn-id" is changed to "deprecated" and
 the node is supported for some period of time (e.g. one year).
 This is a BC change. The description is updated to indicate that
 "vpn-name" is replacing this node.

 2. A new schema node, e.g., "vpn-name", of type string is added to
 the same location as the existing node "vpn-id". This new node
 has status "current" and its description explains that it is
 replacing node "vpn-id".

Wilton, et al. Expires 27 April 2023 [Page 38]

Internet-Draft Updated YANG Module Revision Handling October 2022

 3. During the period of time when both schema nodes are supported,
 the interactions between the two nodes is outside the scope of
 this document and will vary on a case by case basis. One
 possible option is to have the server prevent the new node from
 being set if the old node is already set (and vice-versa). The
 new node could have a "when" statement added to it to achieve
 this. The old node, however, must not have a "when" statement
 added, or an existing "when" modified to be more restrictive,
 since this would be an NBC change. In any case, the server could
 reject the old node from being set if the new node is already
 set.

 4. When the schema node "vpn-id" is not supported anymore, its
 status is changed to "obsolete" and the "description" is updated.
 This is an NBC change.

B.3. Reducing the range of a leaf node

 Reducing the range of values of a leaf-node, e.g., consider a "vpn-
 id" schema node of type uint32 being changed from range 1..5000 to
 range 1..2000:

 1. If all values which are being removed were never supported, e.g.,
 if a vpn-id of 2001 or higher was never accepted, this is a BC
 change for the functionality (no functionality change). Even if
 it is an NBC change for the YANG model, there should be no impact
 for clients using that YANG model.

 2. If one or more values being removed was previously supported,
 e.g., if a vpn-id of 3333 was accepted previously, this is an NBC
 change for the YANG model. Clients using the old YANG model will
 be impacted, so a change of this nature should be done carefully,
 e.g., by using the steps described in Appendix B.2

B.4. Changing the key of a list

 Changing the key of a list has a big impact to the client. For
 example, consider a "sessions" list which has a key "interface" and
 there is a need to change the key to "dest-address". Such a change
 can be done in steps:

 1. The status of list "sessions" is changed to "deprecated" and the
 list is supported for some period of time (e.g. one year). This
 is a BC change. The description is updated to indicate the new
 list that is replacing this list.

Wilton, et al. Expires 27 April 2023 [Page 39]

Internet-Draft Updated YANG Module Revision Handling October 2022

 2. A new list is created in the same location with the same
 descendant schema nodes but with "dest-address" as key. Finding
 an appropriate name for the new list can be difficult. In this
 case the new list is called "sessions-address", has status
 "current" and its description should explain that it is replacing
 list "session".

 3. During the period of time when both lists are supported, the
 interactions between the two lists is outside the scope of this
 document and will vary on a case by case basis. One possible
 option is to have the server prevent entries in the new list from
 being created if the old list already has entries (and vice-
 versa).

 4. When list "sessions" is not available anymore, its status is
 changed to "obsolete" and the "description" is updated. This is
 an NBC change.

B.5. Renaming a node

 A leaf or container schema node may be renamed, either due to a
 spelling error in the previous name or because of a better name. For
 example a node "ip-adress" could be renamed to "ip-address":

 1. The status of the existing node "ip-adress" is changed to
 "deprecated" and is supported for some period of time (e.g. one
 year). This is a BC change. The description is updated to
 indicate the node that is replacing this node.

 2. The new schema node "ip-address" is added to the same location as
 the existing node "ip-adress". This new node has status
 "current" and its description should explain that it is replacing
 node "ip-adress".

 3. During the period of time when both nodes are available, the
 interactions between the two nodes is outside the scope of this
 document and will vary on a case by case basis. One possible
 option is to have the server prevent the new node from being set
 if the old node is already set (and vice-versa). The new node
 could have a "when" statement added to it to achieve this. The
 old node, however, must not have a "when" statement added, or an
 existing "when" modified to be more restrictive, since this would
 be an NBC change. In any case, the server could reject the old
 node from being set if the new node is already set.

 4. When node "ip-adress" is not available anymore, its status is
 changed to "obsolete" and the "description" is updated. This is
 an NBC change.

Wilton, et al. Expires 27 April 2023 [Page 40]

Internet-Draft Updated YANG Module Revision Handling October 2022

Authors’ Addresses

 Robert Wilton (editor)
 Cisco Systems, Inc.
 Email: rwilton@cisco.com

 Reshad Rahman (editor)
 Email: reshad@yahoo.com

 Balazs Lengyel (editor)
 Ericsson
 Email: balazs.lengyel@ericsson.com

 Joe Clarke
 Cisco Systems, Inc.
 Email: jclarke@cisco.com

 Jason Sterne
 Nokia
 Email: jason.sterne@nokia.com

Wilton, et al. Expires 27 April 2023 [Page 41]

Network Working Group J. Clarke, Ed.
Internet-Draft R. Wilton, Ed.
Updates: 8407 (if approved) Cisco Systems, Inc.
Intended status: Standards Track R. Rahman
Expires: 27 April 2023
 B. Lengyel
 Ericsson
 J. Sterne
 Nokia
 B. Claise
 Huawei
 24 October 2022

 YANG Semantic Versioning
 draft-ietf-netmod-yang-semver-08

Abstract

 This document specifies a scheme and guidelines for applying an
 extended set of semantic versioning rules to revisions of YANG
 artifacts (e.g., modules and packages). Additionally, this document
 defines an RFCAAAA-compliant revision-label-scheme for this YANG
 semantic versioning scheme.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 27 April 2023.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Clarke, et al. Expires 27 April 2023 [Page 1]

Internet-Draft YANG Semver October 2022

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 2. Terminology and Conventions 3
 3. YANG Semantic Versioning 4
 3.1. Relationship Between SemVer and YANG Semver 4
 3.2. YANG Semver Pattern 4
 3.3. Semantic Versioning Scheme for YANG Artifacts 5
 3.3.1. Branching Limitations with YANG Semver 7
 3.3.2. YANG Semver with submodules 8
 3.3.3. Examples for YANG semantic versions 8
 3.4. YANG Semantic Version Update Rules 10
 3.5. Examples of the YANG Semver Label 12
 3.5.1. Example Module Using YANG Semver 12
 3.5.2. Example of Package Using YANG Semver 14
 4. Import Module by Semantic Version 14
 5. Guidelines for Using Semver During Module Development 15
 5.1. Pre-release Version Precedence 16
 5.2. YANG Semver in IETF Modules 17
 5.2.1. Guidelines for IETF Module Development 17
 5.2.2. Guidelines for Published IETF Modules 17
 6. YANG Module . 18
 7. Contributors . 20
 8. Security Considerations 20
 9. IANA Considerations . 20
 9.1. YANG Module Registrations 20
 9.2. Guidance for YANG Semver in IANA maintained YANG modules
 and submodules . 21
 10. References . 21
 10.1. Normative References 22
 10.2. Informative References 22
 Appendix A. Example IETF Module Development 23
 Authors’ Addresses . 25

Clarke, et al. Expires 27 April 2023 [Page 2]

Internet-Draft YANG Semver October 2022

1. Introduction

 [I-D.ietf-netmod-yang-module-versioning] puts forth a number of
 concepts relating to modified rules for updating YANG modules and
 submodules, a means to signal when a new revision of a module or
 submodule has non-backwards-compatible (NBC) changes compared to its
 previous revision, and a scheme that uses the revision history as a
 lineage for determining from where a specific revision of a YANG
 module or submodule is derived. Additionally, section 3.4 of
 [I-D.ietf-netmod-yang-module-versioning] defines a revision-label
 which can be used as an alias to provide additional context or as a
 meaningful label to refer to a specific revision.

 This document defines a revision-label scheme that uses extended
 semantic versioning rules [SemVer] for YANG artifacts (i.e., YANG
 modules, YANG submodules, and YANG packages
 [I-D.ietf-netmod-yang-packages]) as well as the revision label
 definition for using this scheme. The goal being to add a human
 readable revision label that provides compatibility information for
 the YANG artifact without needing to compare or parse its body. The
 label and rules defined herein represent the RECOMMENDED revision
 label scheme for IETF YANG artifacts.

 Note that a specific revision of the SemVer 2.0.0 specification is
 referenced here (from June 19, 2020) to provide an immutable version.
 This is because the 2.0.0 version of the specification has changed
 over time without any change to the semantic version itself. In some
 cases the text has changed in non-backwards-compatible ways.

2. Terminology and Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Additionally, this document uses the following terminology:

 * YANG artifact: YANG modules, YANG submodules, and YANG packages
 [I-D.ietf-netmod-yang-packages] are examples of YANG artifacts for
 the purposes of this document.

 * SemVer: A version string that corresponds to the rules defined in
 [SemVer]. This specific camel-case notation is the one used by
 the SemVer 2.0.0 website and used within this document to
 distinguish between YANG Semver.

Clarke, et al. Expires 27 April 2023 [Page 3]

Internet-Draft YANG Semver October 2022

 * YANG Semver: A revision-label identifier that is consistent with
 the extended set of semantic versioning rules, based on [SemVer] ,
 defined within this document.

3. YANG Semantic Versioning

 This section defines YANG Semantic Versioning, explains how it is
 used with YANG artifacts, and describes the rules associated with
 changing an artifact’s semantic version when its contents are
 updated.

3.1. Relationship Between SemVer and YANG Semver

 [SemVer] is completely compatible with YANG Semver in that a SemVer
 semantic version number is legal according to the YANG Semver rules
 (though the inverse is not necessarily true). YANG Semver is a
 superset of the SemVer rules, and allow for limited branching within
 YANG artifacts. If no branching occurs within a YANG artifact (i.e.,
 you do not use the compatibility modifiers described below), the YANG
 Semver version label will appear as a SemVer version number.

3.2. YANG Semver Pattern

 YANG artifacts that employ semantic versioning as defined in this
 document MUST use a version string (e.g., in revision-label or as a
 package version) that corresponds to the following pattern:
 ’X.Y.Z_COMPAT’. Where:

 * X, Y and Z are mandatory non-negative integers that are each less
 than or equal to 2147483647 (i.e., the maximum signed 32-bit
 integer value) and MUST NOT contain leading zeroes,

 * The ’.’ is a literal period (ASCII character 0x2e),

 * The ’_’ is an optional single literal underscore (ASCII character
 0x5f) and MUST only be present if the following COMPAT element is
 included,

 * COMPAT, if specified, MUST be either the literal string
 "compatible" or the literal string "non_compatible".

 Additionally, [SemVer] defines two specific types of metadata that
 may be appended to a semantic version string. Pre-release metadata
 MAY be appended to a YANG Semver string after a trailing ’-’
 character. Build metadata MAY be appended after a trailing ’+’
 character. If both pre-release and build metadata are present, then
 build metadata MUST follow pre-release metadata. While build
 metadata MUST be ignored when comparing YANG semantic versions, pre-

Clarke, et al. Expires 27 April 2023 [Page 4]

Internet-Draft YANG Semver October 2022

 release metadata MUST be used during module and submodule development
 as specified in Section 5 . Both pre-release and build metadata are
 allowed in order to support all the [SemVer] rules. Thus, a version
 lineage that follows strict [SemVer] rules is allowed for a YANG
 artifact.

 To signal the use of this versioning scheme, modules and submodules
 MUST set the revision-label-scheme extension, as defined in
 [I-D.ietf-netmod-yang-module-versioning] , to the identity "yang-
 semver". That identity value is defined in the ietf-yang-semver
 module below.

 Additionally, this ietf-yang-semver module defines a typedef that
 formally specifies the syntax of the YANG Semver.

3.3. Semantic Versioning Scheme for YANG Artifacts

 This document defines the YANG semantic versioning scheme that is
 used for YANG artifacts that employ the YANG Semver label. The
 versioning scheme has the following properties:

 * The YANG semantic versioning scheme is extended from version 2.0.0
 of the semantic versioning scheme defined at semver.org [SemVer]
 to cover the additional requirements for the management of YANG
 artifact lifecyles that cannot be addressed using the semver.org
 2.0.0 versioning scheme alone.

 * Unlike the [SemVer] versioning scheme, the YANG semantic
 versioning scheme supports updates to older versions of YANG
 artifacts, to allow for bug fixes and enhancements to artifact
 versions that are not the latest. However, it does not provide
 for the unlimited branching and updating of older revisions which
 are documented by the general rules in
 [I-D.ietf-netmod-yang-module-versioning] .

 * YANG artifacts that follow the [SemVer] versioning scheme are
 fully compatible with implementations that understand the YANG
 semantic versioning scheme defined in this document.

 * If updates are always restricted to the latest revision of the
 artifact only, then the version numbers used by the YANG semantic
 versioning scheme are exactly the same as those defined by the
 [SemVer] versioning scheme.

 Every YANG module and submodule versioned using the YANG semantic
 versioning scheme specifies the module’s or submodule’s semantic
 version as the argument to the ’rev:revision-label’ statement.

Clarke, et al. Expires 27 April 2023 [Page 5]

Internet-Draft YANG Semver October 2022

 Because the rules put forth in
 [I-D.ietf-netmod-yang-module-versioning] are designed to work well
 with existing versions of YANG and allow for artifact authors to
 migrate to this scheme, it is not expected that all revisions of a
 given YANG artifact will have a semantic version label. For example,
 the first revision of a module or submodule may have been produced
 before this scheme was available.

 YANG packages that make use of this YANG Semver will reflect that in
 the package metadata.

 As stated above, the YANG semantic version is expressed as a string
 of the form: ’X.Y.Z_COMPAT’.

 * ’X’ is the MAJOR version. Changes in the MAJOR version number
 indicate changes that are non-backwards-compatible to versions
 with a lower MAJOR version number.

 * ’Y’ is the MINOR version. Changes in the MINOR version number
 indicate changes that are backwards-compatible to versions with
 the same MAJOR version number, but a lower MINOR version number
 and no "_compatible" or "_non_compatible" modifier.

 * ’Z’ is the PATCH version. Changes in the PATCH version number can
 indicate an editorial change to the YANG artifact. In conjunction
 with the ’_COMPAT’ modifier (see below) changes to ’Z’ may
 indicate a more substantive module change. An editorial change is
 defined to be a change in the YANG artifact’s content that does
 not affect the semantic meaning or functionality provided by the
 artifact in any way. Some examples include correcting a spelling
 mistake in the description of a leaf within a YANG module or
 submodule, non-significant whitespace changes (e.g., realigning
 description statements or changing indentation), or changes to
 YANG comments. Note: restructuring how a module uses, or does not
 use, submodules is treated as an editorial level change on the
 condition that there is no change in the module’s semantic
 behavior due to the restructuring.

 * ’_COMPAT’ is an additional modifier, unique to YANG Semver (i.e.,
 not valid in [SemVer]), that indicates backwards-compatible, or
 non-backwards-compatible changes relative to versions with the
 same MAJOR and MINOR version numbers, but lower PATCH version
 number, depending on what form modifier ’_COMPAT’ takes:

 - If the modifier string is absent, the change represents an
 editorial change.

Clarke, et al. Expires 27 April 2023 [Page 6]

Internet-Draft YANG Semver October 2022

 - If, however, the modifier string is present, the meaning is
 described below:

 - "_compatible" - the change represents a backwards-compatible
 change

 - "_non_compatible" - the change represents a non-backwards-
 compatible change

 The ’_COMPAT’ modifier string is "sticky". Once a revision of a
 module has a modifier in the revision label, then all descendants of
 that revision with the same X.Y version digits will also have a
 modifier. The modifier can change from "_compatible" to
 "_non_compatible" in a descendant revision, but the modifier MUST NOT
 change from "_non_compatible" to "_compatible" and MUST NOT be
 removed. The persistence of the "_non_compatible" modifier ensures
 that comparisons of revision labels do not give the false impression
 of compatibility between two potentially non-compatible revisions.
 If "_non_compatible" was removed, for example between revisions
 "3.3.2_non_compatible" and "3.3.3" (where "3.3.3" was simply an
 editorial change), then comparing revision labels of "3.3.3" back to
 an ancestor "3.0.0" would look like they are backwards compatible
 when they are not (since "3.3.2_non_compatible" was in the chain of
 ancestors and introduced a non-backwards-compatible change).

 The YANG artifact name and YANG semantic version uniquely identify a
 revision of said artifact. There MUST NOT be multiple instances of a
 YANG artifact definition with the same name and YANG semantic version
 but different content (and in the case of modules and submodules,
 different revision dates).

 There MUST NOT be multiple versions of a YANG artifact that have the
 same MAJOR, MINOR and PATCH version numbers, but different patch
 modifier strings. E.g., artifact version "1.2.3_non_compatible" MUST
 NOT be defined if artifact version "1.2.3" has already been defined.

3.3.1. Branching Limitations with YANG Semver

 YANG artifacts that use the YANG Semver revision-label scheme MUST
 ensure that two artifacts with the same MAJOR version number and no
 _compatible or _non_compatible modifiers are backwards compatible.
 Therefore, certain branching schemes cannot be used with YANG Semver.
 For example, the following branched parent-child module relationship
 using the following YANG Semver revision labels is not supported:

Clarke, et al. Expires 27 April 2023 [Page 7]

Internet-Draft YANG Semver October 2022

 3.5.0 -- 3.6.0 (add leaf foo)
 |
 |
 3.20.0 (added leaf bar)

 In this case, given only the revision labels 3.6.0 and 3.20.0 without
 any parent-child relationship information, one would assume that
 3.20.0 is backwards compatible with 3.6.0. But in the illegal
 example above, 3.20.0 is not backwards compatible with 3.6.0 since
 3.20.0 does not contain the leaf foo.

 Note that this type of branched parent-child relationship, where two
 revisions have different backwards compatible changes based on the
 same parent, is allowed in [I-D.ietf-netmod-yang-module-versioning].

3.3.2. YANG Semver with submodules

 YANG Semver MAY be used to version submodules. Submodule version are
 separate of any version on the including module, but if a submodule
 has changed, then the version of the including module MUST also be
 updated.

 The rules for determining the version change of a submodule are the
 same as those defined in Section 3.2 and Section 3.3 as applied to
 YANG modules, except they only apply to the part of the module schema
 defined within the submodule’s file.

 One interesting case is moving definitions from one submodule to
 another in a way that does not change the resultant schema of the
 including module. In this case:

 1. The including module has editorial changes

 2. The submodule with the schema definition removed has non-
 backwards-compatible changes

 3. The submodule with the schema definitions added has backwards-
 compatible changes

 Note that the meaning of a submodule may change drastically despite
 having no changes in content or revision due to changes in other
 submodules belonging to the same module (e.g. groupings and typedefs
 declared in one submodule and used in another).

3.3.3. Examples for YANG semantic versions

 The following diagram and explanation illustrate how YANG semantic
 versions work.

Clarke, et al. Expires 27 April 2023 [Page 8]

Internet-Draft YANG Semver October 2022

 YANG Semantic versions for an example module:

 0.1.0
 |
 0.2.0
 |
 1.0.0
 |
 1.1.0 -> 1.1.1_compatible -> 1.1.2_non_compatible
 |
 1.2.0 -> 1.2.1_non_compatible -> 1.2.2_non_compatible
 | \
 2.0.0 \
 | \--> 1.3.0 -> 1.3.1_non_compatible
 3.0.0 |
 | 1.4.0
 3.1.0

 The tree diagram above illustrates how the version history might
 evolve for an example module. The tree diagram only shows the
 parent/child ancestry relationships between the revisions. It does
 not describe the chronology of the revisions (i.e. when in time each
 revision was published relative to the other revisions).

 The following description lists an example of what the chronological
 order of the revisions could look like, from oldest revision to
 newest:

 0.1.0 - first pre-release module version

 0.2.0 - second pre-release module version (with NBC changes)

 1.0.0 - first release (may have NBC changes from 0.2.0)

 1.1.0 - added new functionality, leaf "foo" (BC)

 1.2.0 - added new functionality, leaf "baz" (BC)

 2.0.0 - change existing model for performance reasons, e.g. re-key
 list (NBC)

 1.3.0 - improve existing functionality, added leaf "foo-64" (BC)

 1.1.1_compatible - backport "foo-64" leaf to 1.1.x to avoid
 implementing "baz" from 1.2.0. This revision was created after
 1.2.0 otherwise it may have been released as 1.2.0. (BC)

Clarke, et al. Expires 27 April 2023 [Page 9]

Internet-Draft YANG Semver October 2022

 3.0.0 - NBC bugfix, rename "baz" to "bar"; also add new BC leaf
 "wibble"; (NBC)

 1.3.1_non_compatible - backport NBC fix, rename "baz" to "bar"
 (NBC)

 1.2.1_non_compatible - backport NBC fix, rename "baz" to "bar"
 (NBC)

 1.1.2_non_compatible - NBC point bug fix, not required in 2.0.0
 due to model changes (NBC)

 1.4.0 - introduce new leaf "ghoti" (BC)

 3.1.0 - introduce new leaf "wobble" (BC)

 1.2.2_non_compatible - backport "wibble". This is a BC change but
 "non_compatible" modifier is sticky. (BC)

 The partial ancestry relationships based on the semantic versioning
 numbers are as follows:

 1.0.0 < 1.1.0 < 1.2.0 < 2.0.0 < 3.0.0 < 3.1.0

 1.0.0 < 1.1.0 < 1.1.1_compatible < 1.1.2_non_compatible

 1.0.0 < 1.1.0 < 1.2.0 < 1.2.1_non_compatible <
 1.2.2_non_compatible

 1.0.0 < 1.1.0 < 1.2.0 < 1.3.0 < 1.3.1_non_compatible

 1.0.0 < 1.1.0 < 1.2.0 < 1.3.0 < 1.4.0

 There is no ordering relationship between "1.1.1_non_compatible" and
 either "1.2.0" or "1.2.1_non_compatible", except that they share the
 common ancestor of "1.1.0".

 Looking at the version number alone does not indicate ancestry. The
 module definition in "2.0.0", for example, does not contain all the
 contents of "1.3.0". Version "2.0.0" is not derived from "1.3.0".

3.4. YANG Semantic Version Update Rules

 When a new revision of an artifact is produced, then the following
 rules define how the YANG semantic version for the new artifact
 revision is calculated, based on the changes between the two artifact
 revisions, and the YANG semantic version of the base artifact
 revision from which the changes are derived.

Clarke, et al. Expires 27 April 2023 [Page 10]

Internet-Draft YANG Semver October 2022

 The following four rules specify the RECOMMENDED, and REQUIRED
 minimum, update to a YANG semantic version:

 1. If an artifact is being updated in a non-backwards-compatible
 way, then the artifact version
 "X.Y.Z[_compatible|_non_compatible]" SHOULD be updated to
 "X+1.0.0" unless that version has already been used for this
 artifact but with different content, in which case the artifact
 version "X.Y.Z+1_non_compatible" SHOULD be used instead.

 2. If an artifact is being updated in a backwards-compatible way,
 then the next version number depends on the format of the current
 version number:

 i "X.Y.Z" - the artifact version SHOULD be updated to
 "X.Y+1.0", unless that version has already been used for
 this artifact but with different content, when the artifact
 version SHOULD be updated to "X.Y.Z+1_compatible" instead.

 ii "X.Y.Z_compatible" - the artifact version SHOULD be updated
 to "X.Y.Z+1_compatible".

 iii "X.Y.Z_non_compatible" - the artifact version SHOULD be
 updated to "X.Y.Z+1_non_compatible".

 3. If an artifact is being updated in an editorial way, then the
 next version number depends on the format of the current version
 number:

 i "X.Y.Z" - the artifact version SHOULD be updated to
 "X.Y.Z+1"

 ii "X.Y.Z_compatible" - the artifact version SHOULD be updated
 to "X.Y.Z+1_compatible".

 iii "X.Y.Z_non_compatible" - the artifact version SHOULD be
 updated to "X.Y.Z+1_non_compatible".

 4. YANG artifact semantic version numbers beginning with 0, i.e.,
 "0.X.Y", are regarded as pre-release definitions and need not
 follow the rules above. Either the MINOR or PATCH version
 numbers may be updated, regardless of whether the changes are
 non-backwards-compatible, backwards-compatible, or editorial.
 See Section 5 for more details on using this notation during
 module and submodule development.

 5. Additional pre-release rules for modules that have had at least
 one release are specified in Section 5 .

Clarke, et al. Expires 27 April 2023 [Page 11]

Internet-Draft YANG Semver October 2022

 Although artifacts SHOULD be updated according to the rules above,
 which specify the recommended (and minimum required) update to the
 version number, the following rules MAY be applied when choosing a
 new version number:

 1. An artifact author MAY update the version number with a more
 significant update than described by the rules above. For
 example, an artifact could be given a new MAJOR version number
 (i.e., X+1.0.0), even though no non-backwards-compatible changes
 have occurred, or an artifact could be given a new MINOR version
 number (i.e., X.Y+1.0) even if the changes were only editorial.

 2. An artifact author MAY skip version numbers. That is, an
 artifact’s revision history could be 1.0.0, 1.1.0, and 1.3.0
 where 1.2.0 is skipped. Note that skipping versions has an
 impact when importing modules by revision-or-derived. See
 Section 4 for more details on importing modules with revision-
 label version gaps.

 Although YANG Semver always indicates when a non-backwards-
 compatible, or backwards-compatible change may have occurred to a
 YANG artifact, it does not guarantee that such a change has occurred,
 or that consumers of that YANG artifact will be impacted by the
 change. Hence, tooling, e.g.,
 [I-D.ietf-netmod-yang-schema-comparison] , also plays an important
 role for comparing YANG artifacts and calculating the likely impact
 from changes.

 [I-D.ietf-netmod-yang-module-versioning] defines the "rev:non-
 backwards-compatible" extension statement to indicate where non-
 backwards-compatible changes have occurred in the module revision
 history. If a revision entry in a module’s revision history includes
 the "rev:non-backwards-compatible" statement then that MUST be
 reflected in any YANG semantic version associated with that revision.
 However, the reverse does not necessarily hold, i.e., if the MAJOR
 version has been incremented it does not necessarily mean that a
 "rev:non-backwards-compatible" statement would be present.

3.5. Examples of the YANG Semver Label

3.5.1. Example Module Using YANG Semver

 Below is a sample YANG module that uses the YANG Semver revision-
 label based on the rules defined in this document.

Clarke, et al. Expires 27 April 2023 [Page 12]

Internet-Draft YANG Semver October 2022

 module example-versioned-module {
 yang-version 1.1;
 namespace "urn:example:versioned:module";
 prefix "exvermod";
 rev:revision-label-scheme "ysver:yang-semver";

 import ietf-yang-revisions { prefix "rev"; }
 import ietf-yang-semver { prefix "ysver"; }

 description
 "to be completed";

 revision 2017-08-30 {
 description "Backport ’wibble’ leaf";
 rev:revision-label 1.2.2_non_compatible;
 }

 revision 2017-07-30 {
 description "Rename ’baz’ to ’bar’";
 rev:revision-label 1.2.1_non_compatible;
 rev:non-backwards-compatible;
 }

 revision 2017-04-20 {
 description "Add new functionality, leaf ’baz’";
 rev:revision-label 1.2.0;
 }

 revision 2017-04-03 {
 description "Add new functionality, leaf ’foo’";
 rev:revision-label 1.1.0;
 }

 revision 2017-02-07 {
 description "First release version.";
 rev:revision-label 1.0.0;
 }

 // Note: YANG Semver rules do not apply to 0.X.Y labels.
 // The following pre-release revision statements would not
 // appear in any final published version of a module. They
 // are removed when the final version is published.
 // During the pre-release phase of development, only a
 // single one of these revision statements would appear

 // revision 2017-01-30 {
 // description "NBC changes to initial revision";
 // rev:revision-label 0.2.0;

Clarke, et al. Expires 27 April 2023 [Page 13]

Internet-Draft YANG Semver October 2022

 // rev:non-backwards-compatible; // optional
 // // (theoretically no
 // // ’previous released version’)
 // }

 // revision 2017-01-26 {
 // description "Initial module version";
 // rev:revision-label 0.1.0;
 // }

 //YANG module definition starts here
 }

3.5.2. Example of Package Using YANG Semver

 Below is an example YANG package that uses the YANG Semver revision
 label based on the rules defined in this document.

 {
 "ietf-yang-instance-data:instance-data-set": {
 "name": "example-yang-pkg",
 "target-ptr": "TBD",
 "timestamp": "2018-09-06T17:00:00Z",
 "description": "Example IETF package definition",
 "content-data": {
 "ietf-yang-package:yang-package": {
 "name": "example-yang-pkg",
 "version": "1.3.1",
 ...
 }

4. Import Module by Semantic Version

 [I-D.ietf-netmod-yang-module-versioning] allows for imports to be
 done based on a module or a derived revision of a module. The
 rev:revision-or-derived statement can specify either a revision date
 or a revision label. The YANG Semver revision-label value can be
 used as the argument to rev:revision-or-derived . When used as such,
 any module that contains exactly the same YANG semantic version in
 its revision history may be used to satisfy the import requirement.
 For example:

 import example-module {
 rev:revision-or-derived 3.0.0;
 }

Clarke, et al. Expires 27 April 2023 [Page 14]

Internet-Draft YANG Semver October 2022

 Note: the import lookup does not stop when a non-backward-compatible
 change is encountered. That is, if module B imports a module A at or
 derived from version 2.0.0, resolving that import will pass through a
 revision of module A with version "2.1.0_non_compatible" in order to
 determine if the present instance of module A derives from "2.0.0".

 If an import by revision-or-derived cannot locate the specified
 revision-label in a given module’s revision history, that import will
 fail. This is noted in the case of version gaps. That is, if a
 module’s history includes "1.0.0", "1.1.0", and "1.3.0", an import
 from revision-or-derived at "1.2.0" will be unable to locate the
 specified revision entry and thus the import cannot be satisfied.

5. Guidelines for Using Semver During Module Development

 This section and the IETF-specific sub-section below provides YANG
 Semver-specific guidelines to consider when developing new YANG
 modules. As such this section updates [RFC8407] .

 Development of a brand new YANG module or submodule outside of the
 IETF that uses YANG Semver as its revision-label scheme SHOULD begin
 with a 0 for the MAJOR version component. This allows the module or
 submodule to disregard strict SemVer rules with respect to non-
 backwards-compatible changes during its initial development.
 However, module or submodule developers MAY choose to use the SemVer
 pre-release syntax instead with a 1 for the MAJOR version component.
 For example, an initial module or submodule revision-label might be
 either 0.0.1 or 1.0.0-alpha.1. If the authors choose to use the 0
 MAJOR version component scheme, they MAY switch to the pre-release
 scheme with a MAJOR version component of 1 when the module or
 submodule is nearing initial release (e.g., a module’s or submodule’s
 revision label may transition from 0.3.0 to 1.0.0-beta.1 to indicate
 it is more mature and ready for testing).

 When using pre-release notation, the format MUST include at least one
 alphabetic component and MUST end with a ’.’ or ’-’ and then one or
 more digits. These alphanumeric components will be used when
 deciding pre-release precedence. The following are examples of valid
 pre-release versions:

 1.0.0-alpha.1

 1.0.0-alpha.3

 2.1.0-beta.42

 3.0.0-202007.rc.1

Clarke, et al. Expires 27 April 2023 [Page 15]

Internet-Draft YANG Semver October 2022

 When developing a new revision of an existing module or submodule
 using the YANG Semver revision-label scheme, the intended target
 semantic version MUST be used along with pre-release notation. For
 example, if a released module or submodule which has a current
 revision-label of 1.0.0 is being modified with the intent to make
 non-backwards-compatible changes, the first development MAJOR version
 component must be 2 with some pre-release notation such as -alpha.1,
 making the version 2.0.0-alpha.1. That said, every publicly
 available release of a module or submodule MUST have a unique YANG
 Semver revision-label (where a publicly available release is one that
 could be implemented by a vendor or consumed by an end user).
 Therefore, it may be prudent to include the year or year and month
 development began (e.g., 2.0.0-201907-alpha.1). As a module or
 submodule undergoes development, it is possible that the original
 intent changes. For example, a 1.0.0 version of a module or
 submodule that was destined to become 2.0.0 after a development cycle
 may have had a scope change such that the final version has no non-
 backwards-compatible changes and becomes 1.1.0 instead. This change
 is acceptable to make during the development phase so long as pre-
 release notation is present in both versions (e.g., 2.0.0-alpha.3
 becomes 1.1.0-alpha.4). However, on the next development cycle
 (after 1.1.0 is released), if again the new target release is 2.0.0,
 new pre-release components must be used such that every revision-
 label for a given module or submodule MUST be unique throughout its
 entire lifecycle (e.g., the first pre-release version might be
 2.0.0-202005-alpha.1 if keeping the same year and month notation
 mentioned above).

5.1. Pre-release Version Precedence

 As a module or submodule is developed, the scope of the work may
 change. That is, while a ratified module or submodule with revision-
 label 1.0.0 is initially intended to become 2.0.0 in its next
 ratified version, the scope of work may change such that the final
 version is 1.1.0. During the development cycle, the pre-release
 versions could move from 2.0.0-some-pre-release-tag to 1.1.0-some-
 pre-release-tag. This downwards changing of version numbers makes it
 difficult to evaluate semantic version rules between pre-release
 versions. However, taken independently, each pre-release version can
 be compared to the previously ratified version (e.g., 1.1.0-some-pre-
 release-tag and 2.0.0-some-pre-release-tag can each be compared to
 1.0.0). Module and submodule developers SHOULD maintain only one
 revision statement in a pre-released module or submodule that
 reflects the latest revision. IETF authors MAY choose to include an
 appendix in the associated draft to track overall changes to the
 module or submodule.

Clarke, et al. Expires 27 April 2023 [Page 16]

Internet-Draft YANG Semver October 2022

5.2. YANG Semver in IETF Modules

 All published IETF modules and submodules MUST use YANG semantic
 versions for their revision-labels.

 Development of a new module or submodule within the IETF SHOULD begin
 with the 0 MAJOR number scheme as described above. When revising an
 existing IETF module or submodule, the revision-label MUST use the
 target (i.e., intended) MAJOR and MINOR version components with a 0
 PATCH version component. If the intended ratified release will be
 non-backward-compatible with the current ratified release, the MINOR
 version component MUST be 0.

5.2.1. Guidelines for IETF Module Development

 All IETF modules and submodules in development MUST use the whole
 document name as a pre-release version string, including the current
 document revision. For example, if a module or submodule which is
 currently released at version 1.0.0 is being revised to include non-
 backwards-compatible changes in draft-user-netmod-foo, its
 development revision-labels MUST include 2.0.0-draft-user-netmod-foo
 followed by the document’s revision (e.g., 2.0.0-draft-user-netmod-
 foo-02). This will ensure each pre-release version is unique across
 the lifecycle of the module or submodule. Even when using the 0
 MAJOR version for initial module or submodule development (where
 MINOR and PATCH can change), appending the draft name as a pre-
 release component helps to ensure uniqueness when there are perhaps
 multiple, parallel efforts creating the same module or submodule.

 Some draft revisions may not include an update to the YANG modules or
 submodules contained in the draft. In that case, those modules or
 submodules that are not updated do not not require a change to their
 versions. Updates to the YANG Semver version MUST only be done when
 the revision of the module changes.

 See Appendix A for a detailed example of IETF pre-release versions.

5.2.2. Guidelines for Published IETF Modules

 For IETF YANG modules and submodules that have already been
 published, revision-labels MUST be retroactively applied to all
 existing revisions when the next new revision is created, starting at
 version "1.0.0" for the initial published revision, and then
 incrementing according to the YANG Semver version rules specified in
 Section 3.4 . For example, if a module or submodule started out in
 the pre-NMDA ([RFC8342]) world, and then had NMDA support added
 without removing any legacy "state" branches -- and you are looking
 to add additional new features -- a sensible choice for the target

Clarke, et al. Expires 27 April 2023 [Page 17]

Internet-Draft YANG Semver October 2022

 YANG Semver would be 1.2.0 (since 1.0.0 would have been the initial,
 pre-NMDA release, and 1.1.0 would have been the NMDA revision).

6. YANG Module

 This YANG module contains the typedef for the YANG semantic version
 and the identity to signal its use.

 <CODE BEGINS> file "ietf-yang-semver@2022-09-13.yang"
 module ietf-yang-semver {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yang-semver";
 prefix ysver;
 rev:revision-label-scheme "yang-semver";

 import ietf-yang-revisions {
 prefix rev;
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <http://tools.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Joe Clarke
 <mailto:jclarke@cisco.com>
 Author: Robert Wilton
 <mailto:rwilton@cisco.com>
 Author: Reshad Rahman
 <mailto:reshad@yahoo.com>
 Author: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>
 Author: Jason Sterne
 <mailto:jason.sterne@nokia.com>
 Author: Benoit Claise
 <mailto:benoit.claise@huawei.com>";
 description
 "This module provides type and grouping definitions for YANG
 packages.

 Copyright (c) 2022 IETF Trust and the persons identified as
 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Revised BSD License
 set forth in Section 4.c of the IETF Trust’s Legal Provisions

Clarke, et al. Expires 27 April 2023 [Page 18]

Internet-Draft YANG Semver October 2022

 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX; see
 the RFC itself for full legal notices.";

 // RFC Ed.: update the date below with the date of RFC publication
 // and remove this note.
 // RFC Ed.: replace XXXX with actual RFC number and remove this
 // note.
 // RFC Ed. update the rev:revision-label to "1.0.0".

 revision 2022-09-13 {
 rev:revision-label "1.0.0-draft-ietf-netmod-yang-semver-08";
 description
 "Initial revision";
 reference
 "RFC XXXX: YANG Semantic Versioning.";
 }

 /*
 * Identities
 */

 identity yang-semver {
 base rev:revision-label-scheme-base;
 description
 "The revision-label scheme corresponds to the YANG Semver
 scheme which is defined by the pattern in the ’version’
 typedef below. The rules governing this revision-label
 scheme are defined in the reference for this identity.";
 reference
 "RFC XXXX: YANG Semantic Versioning.";
 }

 /*
 * Typedefs
 */

 typedef version {
 type rev:revision-label {
 pattern ’[0-9]+[.][0-9]+[.][0-9]+(_(non_)?compatible)?’
 + ’(-[A-Za-z0-9.-]+[.-][0-9]+)?([+][A-Za-z0-9.-]+)?’;
 }
 description
 "Represents a YANG semantic version. The rules governing the
 use of this revision label scheme are defined in the
 reference for this typedef.";

Clarke, et al. Expires 27 April 2023 [Page 19]

Internet-Draft YANG Semver October 2022

 reference
 "RFC XXXX: YANG Semantic Versioning.";
 }
 }
 <CODE ENDS>

7. Contributors

 This document grew out of the YANG module versioning design team that
 started after IETF 101. The design team consists of the following
 members whom have worked on the YANG versioning project: Balazs
 Lengyel, Benoit Claise, Bo Wu, Ebben Aries, Jan Lindblad, Jason
 Sterne, Joe Clarke, Juergen Schoenwaelder, Mahesh Jethanandani,
 Michael (Wangzitao), Qin Wu, Reshad Rahman, and Rob Wilton.

 The initial revision of this document was refactored and built upon
 [I-D.clacla-netmod-yang-model-update] . We would like the thank
 Kevin D’Souza for his initial work in this problem space.

 Discussions on the use of SemVer for YANG versioning has been held
 with authors of the OpenConfig YANG models based on their own
 [openconfigsemver] . We would like thank both Anees Shaikh and Rob
 Shakir for their input into this problem space.

8. Security Considerations

 The document does not define any new protocol or data model. There
 are no security impacts.

9. IANA Considerations

9.1. YANG Module Registrations

 This document requests IANA to register a URI in the "IETF XML
 Registry" [RFC3688] . Following the format in RFC 3688, the
 following registration is requested.

 URI: urn:ietf:params:xml:ns:yang:ietf-yang-semver

 Registrant Contact: The IESG.

 XML: N/A, the requested URI is an XML namespace.

 The following YANG module is requested to be registered in the "IANA
 Module Names" [RFC6020] . Following the format in RFC 6020, the
 following registrations are requested:

 The ietf-yang-semver module:

Clarke, et al. Expires 27 April 2023 [Page 20]

Internet-Draft YANG Semver October 2022

 Name: ietf-yang-semver

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yang-semver

 Prefix: ysver

 Reference: [RFCXXXX]

9.2. Guidance for YANG Semver in IANA maintained YANG modules and
 submodules

 Note for IANA (to be removed by the RFC editor): Please check that
 the registries and IANA YANG modules and submodules are referenced in
 the appropriate way.

 IANA is responsible for maintaining and versioning some YANG modules
 and submodules, e.g., iana-if-types.yang [IfTypeYang] and iana-
 routing-types.yang [RoutingTypesYang] .

 In addition to following the rules specified in the IANA
 Considerations section of [I-D.ietf-netmod-yang-module-versioning] ,
 IANA maintained YANG modules and submodules MUST also include a YANG
 Semver revision label for all new revisions, as defined in Section 3
 .

 The YANG Semver version associated with the new revision MUST follow
 the rules defined in Section 3.4 .

 Note: For IANA maintained YANG modules and submodules that have
 already been published, revision labels MUST be retroactively applied
 to all existing revisions when the next new revision is created,
 starting at version "1.0.0" for the initial published revision, and
 then incrementing according to the YANG Semver rules specified in
 Section 3.4 .

 Most changes to IANA maintained YANG modules and submodules are
 expected to be backwards-compatible changes and classified as MINOR
 version changes. The PATCH version may be incremented instead when
 only editorial changes are made, and the MAJOR version would be
 incremented if non-backwards-compatible changes are made.

 Given that IANA maintained YANG modules are versioned with a linear
 history, it is anticipated that it should not be necessary to use the
 "_compatible" or "_non_compatible" modifiers to the "Z_COMPAT"
 version element.

10. References

Clarke, et al. Expires 27 April 2023 [Page 21]

Internet-Draft YANG Semver October 2022

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of
 Documents Containing YANG Data Models", BCP 216, RFC 8407,
 DOI 10.17487/RFC8407, October 2018,
 <https://www.rfc-editor.org/info/rfc8407>.

 [I-D.ietf-netmod-yang-module-versioning]
 Wilton, R., Rahman, R., Lengyel, B., Clarke, J., and J.
 Sterne, "Updated YANG Module Revision Handling", Work in
 Progress, Internet-Draft, draft-ietf-netmod-yang-module-
 versioning-06, 10 July 2022,
 <https://www.ietf.org/archive/id/draft-ietf-netmod-yang-
 module-versioning-06.txt>.

10.2. Informative References

 [I-D.clacla-netmod-yang-model-update]
 Claise, B., Clarke, J., Lengyel, B., and K. D’Souza, "New
 YANG Module Update Procedure", Work in Progress, Internet-
 Draft, draft-clacla-netmod-yang-model-update-06, 2 July
 2018, <https://www.ietf.org/archive/id/draft-clacla-
 netmod-yang-model-update-06.txt>.

 [I-D.ietf-netmod-yang-packages]
 Wilton, R., Rahman, R., Clarke, J., Sterne, J., and B. Wu,
 "YANG Packages", Work in Progress, Internet-Draft, draft-
 ietf-netmod-yang-packages-03, 4 March 2022,
 <https://www.ietf.org/archive/id/draft-ietf-netmod-yang-
 packages-03.txt>.

Clarke, et al. Expires 27 April 2023 [Page 22]

Internet-Draft YANG Semver October 2022

 [I-D.ietf-netmod-yang-schema-comparison]
 Wilton, R., "YANG Schema Comparison", Work in Progress,
 Internet-Draft, draft-ietf-netmod-yang-schema-comparison-
 01, 2 November 2020, <https://www.ietf.org/archive/id/
 draft-ietf-netmod-yang-schema-comparison-01.txt>.

 [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
 and R. Wilton, "Network Management Datastore Architecture
 (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
 <https://www.rfc-editor.org/info/rfc8342>.

 [openconfigsemver]
 "Semantic Versioning for Openconfig Models",
 <http://www.openconfig.net/docs/semver/>.

 [SemVer] "Semantic Versioning 2.0.0 (text from June 19, 2020)",
 <https://github.com/semver/semver/
 blob/8b2e8eec394948632957639dfa99fc7ec6286911/semver.md>.

 [IfTypeYang]
 "iana-if-type YANG Module",
 <https://www.iana.org/assignments/iana-if-type/iana-if-
 type.xhtml>.

 [RoutingTypesYang]
 "iana-routing-types YANG Module",
 <https://www.iana.org/assignments/iana-routing-types/iana-
 routing-types.xhtml>.

Appendix A. Example IETF Module Development

 Assume a new YANG module is being developed in the netmod working
 group in the IETF. Initially, this module is being developed in an
 individual internet draft, draft-jdoe-netmod-example-module. The
 following represents the initial version tree (i.e., value of
 revision-label) of the module as it’s being initially developed.

 Version lineage for initial module development:

 0.0.1-draft-jdoe-netmod-example-module-00
 |
 0.1.0-draft-jdoe-netmod-example-module-01
 |
 0.2.0-draft-jdoe-netmod-example-module-02
 |
 0.2.1-draft-jdoe-netmod-example-module-03

Clarke, et al. Expires 27 April 2023 [Page 23]

Internet-Draft YANG Semver October 2022

 At this point, development stabilizes, and the workgroup adopts the
 draft. Thus now the draft becomes draft-ietf-netmod-example-module.
 The initial pre-release lineage continues as follows.

 Continued version lineage after adoption:

 1.0.0-draft-ietf-netmod-example-module-00
 |
 1.0.0-draft-ietf-netmod-example-module-01
 |
 1.0.0-draft-ietf-netmod-example-module-02

 At this point, the draft is ratified and becomes RFC12345 and the
 YANG module version becomes 1.0.0.

 A time later, the module needs to be revised to add additional
 capabilities. Development will be done in a backwards-compatible
 way. Two new individual drafts are proposed to go about adding the
 capabilities in different ways: draft-jdoe-netmod-exmod-enhancements
 and draft-asmith-netmod-exmod-changes. These are initially developed
 in parallel with the following versions.

 Parallel development for next module revision (track 1):

 1.1.0-draft-jdoe-netmod-exmod-enhancements-00
 |
 1.1.0-draft-jdoe-netmod-exmod-enhancements-01

 In parallel with (track 2):

 1.1.0-draft-asmith-netmod-exmod-changes-00
 |
 1.1.0-draft-asmith-netmod-exmod-changes-01

 At this point, the WG decides to merge some aspects of both and adopt
 the work in asmith’s draft as draft-ietf-netmod-exmod-changes. A
 single version lineage continues.

 1.1.0-draft-ietf-netmod-exmod-changes-00
 |
 1.1.0-draft-ietf-netmod-exmod-changes-01
 |
 1.1.0-draft-ietf-netmod-exmod-changes-02
 |
 1.1.0-draft-ietf-netmod-exmod-changes-03

 The draft is ratified, and the new module version becomes 1.1.0.

Clarke, et al. Expires 27 April 2023 [Page 24]

Internet-Draft YANG Semver October 2022

Authors’ Addresses

 Joe Clarke (editor)
 Cisco Systems, Inc.
 7200-12 Kit Creek Rd
 Research Triangle Park, North Carolina
 United States of America
 Phone: +1-919-392-2867
 Email: jclarke@cisco.com

 Robert Wilton (editor)
 Cisco Systems, Inc.
 Email: rwilton@cisco.com

 Reshad Rahman
 Email: reshad@yahoo.com

 Balazs Lengyel
 Ericsson
 1117 Budapest
 Magyar Tudosok Korutja
 Hungary
 Phone: +36-70-330-7909
 Email: balazs.lengyel@ericsson.com

 Jason Sterne
 Nokia
 Email: jason.sterne@nokia.com

 Benoit Claise
 Huawei
 Email: benoit.claise@huawei.com

Clarke, et al. Expires 27 April 2023 [Page 25]

NETMOD Q. Ma

Internet-Draft Q. Wu

Intended status: Standards Track Huawei

Expires: 23 April 2023 B. Lengyel

 Ericsson

 H. Li

 HPE

 20 October 2022

 YANG Extension and Metadata Annotation for Immutable Flag

 draft-ma-netmod-immutable-flag-04

Abstract

 This document defines a YANG extension named "immutable" to indicate

 that specific "config true" data nodes are not allowed to be

 created/deleted/updated. To indicate that specific entries of a

 list/leaf-list node or instances inside list entries cannot be

 updated/deleted after initialization, a metadata annotation with the

 same name is also defined. Any data node or instance marked as

 immutable is read-only to the clients of YANG-driven management

 protocols, such as NETCONF, RESTCONF and other management operations

 (e.g., SNMP and CLI requests).

 This document aims to provide more visibility into immutability

 characteristic of particular schema or instance nodes by defining a

 standard mechanism to allow the server to document the existing

 immutable configuration data, while this doesn’t mean attaching such

 restrictions is encouraged.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 23 April 2023.

Ma, et al. Expires 23 April 2023 [Page 1]

Internet-Draft Immutable Flag October 2022

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2

 1.1. Terminology . 3

 2. Overview . 4

 3. "Immutable" YANG Extension 5

 4. "Immutable" Metadata Annotation 6

 5. Inheritance of Immutability 7

 6. YANG Module . 8

 7. IANA Considerations . 11

 7.1. The "IETF XML" Registry 12

 7.2. The "YANG Module Names" Registry 12

 8. Security Considerations 12

 Acknowledgements . 12

 References . 12

 Normative References . 12

 Informative References . 13

 Appendix A. Usage Examples 14

 A.1. Interface Example . 14

 A.1.1. Creating an Interface with a "type" Value 15

 A.1.2. Updating the Value of an Interface Type 16

 A.2. Immutable System Capabilities Modelled as "config

 true" . 17

 A.3. Immutable System-defined List Entries 18

 Appendix B. Changes between revisions 18

 Appendix C. Open Issues tracking 19

 Authors’ Addresses . 19

1. Introduction

 YANG [RFC7950] is a data modeling language used to model both state

 and configuration data, based on the "config" statement. However

 there exists data that cannot be modified by the client, but still

 needs to be declared as "config true" to:

Ma, et al. Expires 23 April 2023 [Page 2]

Internet-Draft Immutable Flag October 2022

 * allow configuration of data nodes under immutable lists or

 containers;

 * ensure the existence of specific list entries that are provided

 and needed by the system, while additional list entries can be

 created, modified or deleted;

 * place "when", "must" and "leafref" constraints between

 configuration and immutable schema nodes.

 For example, the interface type value created by the system due to

 the hardware currently present in the device cannot be modified by

 clients, while configurations such as MTU created by the system are

 free to be modified by the client. Further examples and use-cases

 are described in Appendix A.

 Allowing some configuration to be modifiable while other parts are

 not is inconsistent and introduces ambiguity to clients.

 To address this issue, this document defines a YANG extension named

 "immutable" to indicate that specific "config true" data nodes are

 not allowed to be created/deleted/updated. To indicate that specific

 entries of a list/leaf-list node or instances inside list entries

 cannot be updated/deleted after initialization, a metadata annotation

 [RFC7952] with the same name is also defined. Any data node or

 instance marked as immutable is read-only to the clients of YANG-

 driven management protocols, such as NETCONF, RESTCONF and other

 management operations (e.g., SNMP and CLI requests). Marking

 instance data nodes as immutable (as opposed to marking schema-nodes)

 is useful when only some instances of a list or leaf-list shall be

 marked as read-only.

 It is already the case that a server can reject any configuration for

 any reason, e.g., when a client tries to modify an immutable

 configuration data. This document aims to provide more visibility

 into immutability characteristic of particular schema or instance

 nodes by defining a standard mechanism to allow the server to

 document the existing immutable configuration data, while this

 doesn’t mean attaching such restrictions is encouraged.

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in BCP

 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

Ma, et al. Expires 23 April 2023 [Page 3]

Internet-Draft Immutable Flag October 2022

 The following terms are defined in [RFC6241] and [RFC8341] and are

 not redefined here:

 * configuration data

 * access operation

 * write access

 The following terms are defined in this document:

 immutable: A schema or instance node property indicating that the

 configuration data is not allowed to be created/deleted/updated.

2. Overview

 The "immutable" concept defined in this document only indicates write

 access restrictions to read-write datastores. A particular data node

 or instance MUST have the same immutability in all read-write

 datastores. The immutable annotation information should also be

 visible even in read-only datastores (e.g., <system>, <intended>,

 <operational>), however this only serves as information about the

 data node itself, but has no effect on the handling of the read-only

 datastore. The immutability property of a particular data node or

 instance MUST be protocol-independent and user-independent.

 If a particular leaf-list node is marked as "immutable" without

 exceptions for "delete" in the schema, the server SHOULD NOT annotate

 its instances, as that provides no additional information. If a

 particular container/list/leaf/anydata/anyxml node is marked as

 "immutable" without exceptions for "delete" or "update" in the

 schema, the server SHOULD NOT annotate its instances, as that

 provides no additional information.

 Already today the server rejects any attempt to the "create",

 "delete" or "update" access operations on an immutable configuration

 data. This document allows the existing immutable data node or

 instance to be marked by YANG extension or metadata annotation.

 Requests to create/update/delete an immutable configuration data

 always return an error (except the exceptions argument in YANG

 extension). The error reporting is performed immediately at an

 <edit-config> operation time, regardless what the target

 configuration datastore is. For an example of an "invalid-value"

 error response, see Appendix A.1.2.

 However the following operations SHOULD be allowed:

Ma, et al. Expires 23 April 2023 [Page 4]

Internet-Draft Immutable Flag October 2022

 * Use a create, update, delete/remove operation on an immutable node

 if the effective change is null. E.g., if a leaf has a current

 value of "5" it should be allowed to replace it with a value of

 "5";

 * Create an immutable node with a same value initially set by the

 system if it doesn’t exist in the datastore. E.g., it should be

 allowed to explicitly configure a system-defined interface name

 and type in <running> as the same values in <system>;

 * Delete an immutable node in <running> which is instantiated in

 <system> and copied into <running>, unless the resource is no

 longer available (e.g., the interface removed physically), there

 is no way to actually delete system configuration from a server

 [I-D.ma-netmod-with-system], even if the node in the schema tree

 is declared as "immutable" without the exception for "delete".

 Note that even if a particular data node is immutable without the

 exception for "delete", it still can be deleted with its parent node,

 e.g., /if:interfaces/if:interface/if:type leaf is immutable, but the

 deletion to the /if:interfaces/if:interface list entry is allowed; if

 a particular data node is immutable without the exception for

 "create", it means the client can never create the instance of it,

 regardless the handling of its parent node.

 When a specific data node or instance is marked as "immutable", NACM

 cannot override this to allow create/delete/update access. Servers

 will ignore such NACM rule. For example, if a particular data node

 is marked as "im:immutable" without the "exceptions" argument for

 update, the server will ignore any user-defined NACM rule to allow

 update access operation to that specific data node.

 Write access restriction due to general YANG rules has no need to be

 marked as immutable. For example, key leaf which is given a value

 when a list entry is created cannot be modified and deleted unless

 the list entry is deleted. A mandatory leaf MUST exist and cannot be

 deleted if the ancestor node exists in the data tree. Decorating the

 key leaf and mandatory leaf as immutable provides no additional

 information in these cases.

3. "Immutable" YANG Extension

 The "immutable" YANG extension can be a substatement to a "config

 true" leaf, leaf-list, container, list, anydata or anyxml statement.

 It indicates that data nodes based on the parent statement are not

 allowed to be added, removed or updated except according to the

 exceptions argument. Any such write attempt will be rejected by the

 server.

Ma, et al. Expires 23 April 2023 [Page 5]

Internet-Draft Immutable Flag October 2022

 The "immutable" YANG extension defines an argument statement named

 "exceptions" which gives a list of operations that users are

 permitted to invoke for the specified node.

 The following values are supported for the "exceptions" argument:

 * Create: allow users to create instances of the data node;

 * Update: allow users to modify instances of the data node;

 * Delete: allow users to delete instances of the data node.

 If more than one value are intended, a space-separated string for the

 "exceptions" argument is used. For example, if the instance of a

 particular data node can always be created and modified, it cannot be

 deleted, the following "immutable" YANG extension with "create" and

 "update" exceptions could be defined in a substatement to that data

 node:

 im:immutable "create update";

 Providing an empty string for the "exceptions" argument is equivalent

 to a single extension without an argument followed. Providing all 3

 values has the same effect as not using this exceptions at all, but

 can be used anyway.

 Note that leaf-list instances can be created and deleted, but not

 modified. Any exception for "update" operation to leaf-list data

 nodes SHOULD be ignored.

4. "Immutable" Metadata Annotation

 The "immutable" flag is used to indicate the immutability of a

 particular instantiated data node. It only applies to the list/leaf-

 list entries or instances inside particular list entries. The values

 are boolean types indicating whether the data node instance is

 immutable or not.

 Note that "immutable" metadata annotation is used to annotate

 instances of a list/leaf-list rather than schema nodes. For

 instance, a list node may exist in multiple instances in the data

 tree, "immutable" can annotate some of the instances as read-only,

 while others are not.

 Any list/leaf-list instance annotated with immutable="true" is read-

 only to clients, which means that once an instance is created, the

 client cannot update/delete it. If a list entry is annotated with

 immutable="true", any contained descendant instances of any type

Ma, et al. Expires 23 April 2023 [Page 6]

Internet-Draft Immutable Flag October 2022

 (including leafs, lists, containers, etc.) inside the specific

 instance is not allowed to be created, updated and deleted without

 the need to annotate descendant nodes instances explicitly.

 When the client retrieves a particular datastore, immutable data node

 instances MUST be annotated with immutable="true" by the server. If

 the "immutable" metadata annotation for a list/leaf-list entry is not

 specified, the default "immutable" value is false.

5. Inheritance of Immutability

 Comment: This section tries to answer the questions : Is immutable

 inherited down the containment hierarchy? If it is, should we allow

 overriding the immutability of a particular contained element (i.e.,

 to declare a contained data node as immutable=false inside an

 immutable container/list) ?

 Unless otherwise specified, the immutability for data nodes is

 inherited from their parent nodes. The immutability in the hierarchy

 is inherited downwards towards the leaf/leaf-list nodes.

 Specifically, if a node has child elements, non-modification to that

 node means any child elements is not allowed to be create, update and

 delete. E.g., if a particular instance of a list node is not allowed

 to be updated, any descendant node instance is not allowed to be

 create, update and delete inside that list instance. In this case,

 there is no need to mark the descendant nodes as immutable.

 For the following YANG example:

 list role {

 key name;

 leaf name {

 type string;

 }

 leaf-list granted-operation {

 type enumeration {

 enum read;

 enum write;

 enum execute;

 enum debug;

 }

 }

 }

 A system-defined corresponding XML instance with immutable annotation

 example:

Ma, et al. Expires 23 April 2023 [Page 7]

Internet-Draft Immutable Flag October 2022

 <role im:immutable="rue">

 <name>owner</name>

 <granted-operation>read</granted-operation>

 <granted-operation>write</granted-operation>

 <granted-operation>execute</granted-operation>

 <granted-operation>debug</granted-operation>

 </role>

 The role instance named "owner" is annotated with immutable="true",

 which means that this instance is not allowed to be updated and

 deleted, all of the child nodes are not allowed to be created,

 updated and deleted inside this instance. For example, if a client

 tries to delete an existing granted-operation "debug" inside the

 "owner" role in an <edit-config> operation, an "operation-not-

 supported" error is returned.

 However, sometimes there is a desire to override the immutability of

 a particular contained node. For example, given the following list

 definition:

 list application {

 im:immutable "create delete";

 key name;

 leaf name {

 type string;

 }

 leaf protocol {

 type enumeration {

 enum tcp;

 enum udp;

 }

 }

 leaf port-number {

 im:immutable "update";

 type string;

 }

 }

 Any list entries of the list node "application" is allowed to be

 created and deleted, but not modification. However, the contained

 leaf node "port-number" has the immutability with exception for

 "update" operation, this means that modification to the value of leaf

 node "port-number" inside "application" list instance is allowed.

6. YANG Module

Ma, et al. Expires 23 April 2023 [Page 8]

Internet-Draft Immutable Flag October 2022

 <CODE BEGINS>

 file="ietf-immutable@2022-08-11.yang"

 // RFC Ed.: replace XXXX with RFC number and remove this note

 module ietf-immutable {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-immutable";

 prefix im;

 import ietf-yang-metadata {

 prefix md;

 }

 organization

 "IETF Network Modeling (NETMOD) Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/netmod/>

 WG List: <mailto:netmod@ietf.org>

 Author: Qiufang Ma

 <mailto:maqiufang1@huawei.com>

 Author: Qin Wu

 <mailto:bill.wu@huawei.com>

 Author: Balazs Lengyel

 <mailto:balazs.lengyel@ericsson.com>

 Author: Hongwei Li

 <mailto:flycoolman@gmail.com>";

 description

 "This module defines a metadata annotation named ’immutable’

 to indicate the immutability of a particular instantiated

 data node. Any instantiated data node marked with

 immutable=’true’ by the server is read-only to the clients

 of YANG-driven management protocols, such as NETCONF,

 RESTCONF as well as SNMP and CLI requests.

 The module defines the immutable extension that indicates

 that data nodes based on data-definition statement cannot

 be added removed or updated except according to the

 exceptions argument.

 Copyright (c) 2022 IETF Trust and the persons identified

 as authors of the code. All rights reserved.

Ma, et al. Expires 23 April 2023 [Page 9]

Internet-Draft Immutable Flag October 2022

 Redistribution and use in source and binary forms, with

 or without modification, is permitted pursuant to, and

 subject to the license terms contained in, the Revised

 BSD License set forth in Section 4.c of the IETF Trust’s

 Legal Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC HHHH

 (https://www.rfc-editor.org/info/rfcHHHH); see the RFC

 itself for full legal notices.

 The key words ’MUST’, ’MUST NOT’, ’REQUIRED’, ’SHALL’,

 ’SHALL NOT’, ’SHOULD’, ’SHOULD NOT’, ’RECOMMENDED’,

 ’NOT RECOMMENDED’, ’MAY’, and ’OPTIONAL’ in this document

 are to be interpreted as described in BCP 14 (RFC 2119)

 (RFC 8174) when, and only when, they appear in all

 capitals, as shown here.";

 revision 2022-08-11 {

 description

 "Initial revision.";

 reference

 "RFC XXXX: YANG Extension and Metadata Annotation for Immutable Flag";

 }

 extension immutable {

 argument exceptions;

 description

 "The ’immutable’ extension as a substatement to a data

 definition statement indicates that data nodes based on

 the parent statement MUST NOT be added, removed or

 updated by management protocols, such as NETCONF,

 RESTCONF or other management operations (e.g., SNMP

 and CLI requests) except when indicated by the

 exceptions argument.

 Immutable data MAY be marked as config true to allow

 ’leafref’, ’when’ or ’must’ constraints to be based

 on it.

 The statement MUST only be a substatement of the leaf,

 leaf-list, container, list, anydata, anyxml statements.

 Zero or one immutable statement per parent statement

 is allowed.

 No substatements are allowed.

 The argument is a list of operations that are

 permitted to be used for the specified node, while

Ma, et al. Expires 23 April 2023 [Page 10]

Internet-Draft Immutable Flag October 2022

 other operations are forbidden by the immutable extension.

 - create: allows users to create instances of the data node

 - update: allows users to modify instances of the data node

 - delete: allows users to delete instances of the data node

 To disallow all user write access, omit the argument;

 To allow only create and delete user access, provide

 the string ’create delete’ for the ’exceptions’ parameter.

 Providing all 3 parameters has the same effect as not

 using this extension at all, but can be used anyway.

 Equivalent YANG definition for this extension:

 leaf immutable {

 type bits {

 bit create;

 bit update;

 bit delete;

 }

 default ’’;

 }

 Adding immutable or removing values from the

 exceptions argument of an existing immutable statement

 are non-backwards compatible changes.

 Other changes to immutable are backwards compatible.";

 }

 md:annotation immutable {

 type boolean;

 description

 "The ’immutable’ annotation indicates the immutability of an

 instantiated data node. Any data node instance marked as

 ’immutable=true’ is read-only to clients and cannot be

 updated through NETCONF, RESTCONF or CLI. It applies to the

 list and leaf-list entries. The default is ’immutable=false’

 if not specified for an instance.";

 }

 }

 <CODE ENDS>

7. IANA Considerations

Ma, et al. Expires 23 April 2023 [Page 11]

Internet-Draft Immutable Flag October 2022

7.1. The "IETF XML" Registry

 This document registers one XML namespace URN in the ’IETF XML

 registry’, following the format defined in [RFC3688].

 URI: urn:ietf:params:xml:ns:yang:ietf-immutable

 Registrant Contact: The IESG.

 XML: N/A, the requested URIs are XML namespaces.

7.2. The "YANG Module Names" Registry

 This document registers one module name in the ’YANG Module Names’

 registry, defined in [RFC6020].

 name: ietf-immutable

 prefix: im

 namespace: urn:ietf:params:xml:ns:yang:ietf-immutable

 RFC: XXXX // RFC Ed.: replace XXXX and remove this comment

8. Security Considerations

 The YANG module specified in this document defines a metadata

 annotation for data nodes that is designed to be accessed network

 management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040].

 The lowest NETCONF layer is the secure transport layer, and the

 mandatory-to-implement secure transport is Secure Shell (SSH)

 [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-

 implement secure transport is TLS [RFC8446].

 Since immutable information is tied to applied configuration values,

 it is only accessible to clients that have the permissions to read

 the applied configuration values.

 The security considerations for the Defining and Using Metadata with

 YANG (see Section 9 of [RFC7952]) apply to the metadata annotation

 defined in this document.

Acknowledgements

 Thanks to Kent Watsen, Andy Bierman, Robert Wilton, Jan Lindblad,

 Reshad Rahman, Anthony Somerset, Lou Berger, Joe Clarke for

 reviewing, and providing important input to, this document.

References

Normative References

Ma, et al. Expires 23 April 2023 [Page 12]

Internet-Draft Immutable Flag October 2022

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

 DOI 10.17487/RFC3688, January 2004,

 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for

 the Network Configuration Protocol (NETCONF)", RFC 6020,

 DOI 10.17487/RFC6020, October 2010,

 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,

 and A. Bierman, Ed., "Network Configuration Protocol

 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure

 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,

 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",

 RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC7952] Lhotka, L., "Defining and Using Metadata with YANG",

 RFC 7952, DOI 10.17487/RFC7952, August 2016,

 <https://www.rfc-editor.org/info/rfc7952>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

 <https://www.rfc-editor.org/info/rfc8040>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration

 Access Control Model", STD 91, RFC 8341,

 DOI 10.17487/RFC8341, March 2018,

 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol

 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,

 <https://www.rfc-editor.org/info/rfc8446>.

Informative References

Ma, et al. Expires 23 April 2023 [Page 13]

Internet-Draft Immutable Flag October 2022

 [I-D.ma-netmod-with-system]

 Ma, Q., Wu, Q., and C. Feng, "System-defined

 Configuration", Work in Progress, Internet-Draft, draft-

 ma-netmod-with-system-05, 29 September 2022,

 <https://www.ietf.org/archive/id/draft-ma-netmod-with-

 system-05.txt>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Appendix A. Usage Examples

A.1. Interface Example

 This section shows how to use im:immutable YANG extension to mark

 some data node as immutable.

 When an interface is physically present, the system will create an

 interface entry automatically with valid name and type values in

 <system> (see [I-D.ma-netmod-with-system]). The system-generated

 data is dependent on and must represent the HW present, and as a

 consequence must not be changed by the client. The data is modelled

 as "config true" and should be marked as immutable.

 Seemingly an alternative would be to model the list and these leaves

 as "config false", but that does not work because:

 * The list cannot be marked as "config false", because it needs to

 contain configurable child nodes, e.g., ip-address or enabled;

 * The key leaf (name) cannot be marked as "config false" as the list

 itself is config true;

 * The type cannot be marked "config false", because we MAY need to

 reference the type to make different configuration nodes

 conditionally available.

 The immutability of the data is the same for all interface instances,

 thus following fragment of a fictional interface module including an

 "immutable" YANG extension can be used:

Ma, et al. Expires 23 April 2023 [Page 14]

Internet-Draft Immutable Flag October 2022

 container interfaces {

 list interface {

 key "name";

 leaf name {

 type string;

 }

 leaf type {

 im:immutable "create";

 type identityref {

 base ianaift:iana-interface-type;

 }

 mandatory true;

 }

 leaf mtu {

 type uint16;

 }

 leaf-list ip-address {

 type inet:ip-address;

 }

 }

 }

 Note that the "name" leaf is defined as a list key which can never

 been modified for a particular list entry, there is no need to mark

 "name" as immutable.

A.1.1. Creating an Interface with a "type" Value

 As defined in the YANG model, there is an exception for "create"

 operation. Assume the interface hardware is not present physically

 at this point, the client is allowed to create an interface named

 "eth0" with a type value in <running>:

Ma, et al. Expires 23 April 2023 [Page 15]

Internet-Draft Immutable Flag October 2022

 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

 message-id="101">

 <edit-config>

 <target>

 <running/>

 </target>

 <config>

 <interface xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0"

 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type"

 xc:operation="create">

 <name>eth0</name>

 <type>ianaift:ethernetCsmacd</type>

 </interface>

 </config>

 </edit-config>

 </rpc>

 <rpc-reply message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <ok/>

 </rpc-reply>

 The interface data does not appear in <operational> since the

 physical interface doesn’t exist. When the interface is inserted,

 the system will detect it and create the associated configuration in

 <system>. The system tries to merge the interface configuration in

 the <running> datastore with the same name as the inserted interface

 configuration in <system>. If no such interface configuration named

 "eth0" is found in <system> or the type set by the client doesn’t

 match the real interface type generated by the system, only the

 system-defined interface configuration is applied and present in

 <operational>.

A.1.2. Updating the Value of an Interface Type

 Assume the system applied the interface configuration named "eth0"

 successfully. If a client tries to change the type of an interface

 to a value that doesn’t match the real type of the interface used by

 the system, the request will be rejected by the server:

Ma, et al. Expires 23 April 2023 [Page 16]

Internet-Draft Immutable Flag October 2022

 <rpc message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

 xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">

 <edit-config>

 <target>

 <running/>

 </target>

 <config>

 <interface xc:operation="merge"

 xmlns:ianaift="urn:ietf:params:xml:ns:yang:iana-if-type">

 <name>eth0</name>

 <type>ianaift:tunnel</type>

 </interface>

 </config>

 </edit-config>

 </rpc>

 <rpc-reply message-id="101"

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"

 xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0">

 <rpc-error>

 <error-type>application</error-type>

 <error-tag>invalid-value</error-tag>

 <error-severity>error</error-severity>

 <error-path xmlns:t="http://example.com/schema/1.2/config">

 /interfaces/interface[name="eth0"]/type

 </error-path>

 <error-message xml:lang="en">

 Invalid type for interface eth0

 </error-message>

 </rpc-error>

 </rpc-reply>

A.2. Immutable System Capabilities Modelled as "config true"

 System capabilities might be represented as system-defined data nodes

 in the model. Configurable data nodes might need constraints

 specified as "when", "must" or "path" statements to ensure that

 configuration is set according to the system’s capabilities. E.g.,

 * A timer can support the values 1,5,8 seconds. This is defined in

 the leaf-list ’supported-timer-values’.

 * When the configurable ’interface-timer’ leaf is set, it should be

 ensured that one of the supported values is used. The natural

 solution would be to make the ’interface-timer’ a leaf-ref

 pointing at the ’supported-timer-values’.

Ma, et al. Expires 23 April 2023 [Page 17]

Internet-Draft Immutable Flag October 2022

 However, this is not possible as ’supported-timer-values’ must be

 read-only thus config=false while ’interface-timer’ must be writable

 thus config=true. According to the rules of YANG it is not allowed

 to put a constraint between config true and false schema nodes.

 The solution is that the supported-timer-values data node in the YANG

 Model shall be defined as "config true" and shall also be marked with

 the "immutable" extension. After this the ’interface-timer’ shall be

 defined as a leaf-ref pointing at the ’supported-timer-values’.

A.3. Immutable System-defined List Entries

 There are some system-defined entries for a "config true" list which

 are present in <system> (see [I-D.ma-netmod-with-system]) and cannot

 be updated by the client, such system-defined instances should be

 defined immutable. The client is free to define, update and delete

 their own list entries in <running>. Thus the list data node in the

 YANG model cannot be marked as "immutable" extension as a whole. But

 some of the system-defined list entries need to be protected if they

 are copied from the <system> datastore to <running>.

 An immutable metadata annotation can be useful in this case. When

 the client retrieves those system-defined entries towards <system>

 (or <running> if they are copied into <running>), an immutable="true"

 annotation is returned; so that the client can understand that the

 predefined list entries shall not be updated but they can configure

 their list entries without any restriction.

Appendix B. Changes between revisions

 Note to RFC Editor (To be removed by RFC Editor)

 v03 - v04

 * Clarify how immutable flag interacts with NACM mechanism.

 v02 - v03

 * rephrase and avoid using "server MUST reject" statement, and try

 to clarify that this documents aims to provide visibility into

 existing immutable behavior;

 * Add a new section to discuss the inheritance of immutability;

 * Clarify that deletion to an immutable node in <running> which is

 instantiated in <system> and copied into <running> should always

 be allowed;

Ma, et al. Expires 23 April 2023 [Page 18]

Internet-Draft Immutable Flag October 2022

 * Clarify that write access restriction due to general YANG rules

 has no need to be marked as immutable.

 * Add an new section named "Acknowledgements";

 * editoral changes.

 v01 - v02

 * clarify the relation between the creation/deletion of the

 immutable data node with its parent data node;

 * Add a "TODO" comment about the inheritance of the immutable

 property;

 * Define that the server should reject write attempt to the

 immutable data node at an <edit-config> operation time, rather

 than waiting until a <commit> or <validate> operation takes place;

 v00 - v01

 * Added immutable extension

 * Added new use-cases for immutable extension and annotation

 * Added requirement that an update that means no effective change

 should always be allowed

 * Added clarification that immutable is only applied to read-write

 datastore

 * Narrowed the applied scope of metadata annotation to list/leaf-

 list instances

Appendix C. Open Issues tracking

 * Can we do better about the "immutable" terminology?

 * Is the preferred solution best?

Authors’ Addresses

 Qiufang Ma

 Huawei

 101 Software Avenue, Yuhua District

 Nanjing

 Jiangsu, 210012

 China

Ma, et al. Expires 23 April 2023 [Page 19]

Internet-Draft Immutable Flag October 2022

 Email: maqiufang1@huawei.com

 Qin Wu

 Huawei

 101 Software Avenue, Yuhua District

 Nanjing

 Jiangsu, 210012

 China

 Email: bill.wu@huawei.com

 Balazs Lengyel

 Ericsson

 Email: balazs.lengyel@ericsson.com

 Hongwei Li

 HPE

 Email: flycoolman@gmail.com

Ma, et al. Expires 23 April 2023 [Page 20]

Network Working Group Q. Ma
Internet-Draft Q. Wu
Intended status: Standards Track Huawei
Expires: 26 April 2023 M. Boucadair
 Orange
 D. King
 Old Dog Consulting
 23 October 2022

 A Policy-based Network Access Control
 draft-ma-opsawg-ucl-acl-00

Abstract

 This document defines two YANG modules for policy-based network
 access control, which provide consistent and efficient enforcement of
 network access control policies based on user-group identity. In
 addition, this document defines a mechanism to ease the maintenance
 of the mapping between a user-group ID and a set of IP/MAC addresses
 to enforce policy-based network access control. Finally, the
 document defines a RADIUS attribute that is used to communicate the
 user group identifier as part of identification and authorization
 information.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 26 April 2023.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Ma, et al. Expires 26 April 2023 [Page 1]

Internet-Draft Policy-based Access Control October 2022

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2
 2. Terminology . 3
 3. Sample Usage . 4
 4. Policy-based Network Access Control: An Overview 4
 4.1. User Groups . 7
 5. YANG Modules . 8
 5.1. The UCL Group YANG Module 8
 5.1.1. Module Overview 8
 5.1.2. The YANG Module 9
 5.2. The UCL Extension to the ACL Model 14
 5.2.1. Module Overview 14
 5.2.2. The YANG Module 16
 6. User Access Control Group ID RADIUS Attribute 19
 7. Table of Attributes . 20
 8. Security Considerations 21
 8.1. YANG . 21
 8.2. RADIUS . 21
 9. IANA Considerations . 22
 9.1. YANG . 22
 9.2. RADIUS . 22
 10. Acknowledgements . 23
 11. References . 23
 11.1. Informative References 23
 11.2. Normative References 24
 Authors’ Addresses . 25

1. Introduction

 With the increased adoption of remote access technologies (e.g.,
 Virtual Private Networks (VPNs)), Small- and Medium-size Businesses
 (SMBs) are increasingly adopting cloud-based security services to
 replace or complement on-premises security tools. Such tools are
 meant to facilitate access to Enterprise resources for authorized
 users from anywhere. However, from a technical standpoint, enabling
 large-scale employee mobility across many access locations induces a
 set of challenges compared to conventional network access management
 approaches, e.g.:

Ma, et al. Expires 26 April 2023 [Page 2]

Internet-Draft Policy-based Access Control October 2022

 * Endpoints do not have a stable IP address. For example, Wireless
 LAN (WLAN) and VPN clients, as well as back-end Virtual Machine
 (VM)-based servers, can move; their IP addresses could change as a
 result. This means that relying on IP/transport fields (e.g., the
 5-tuple) is inadequate to ensure consistent and efficient security
 policy enforcement. IP address-based policies may not be flexible
 enough to accommodate endpoints with volatile IP addresses.

 * With the massive adoption of teleworking, there is now a need to
 apply different security policies to the same set of users under
 different circumstances (e.g., prevent relaying attacks against a
 local attachment point to the Enterprise network). For example,
 network access might be granted based upon criteria such as users’
 location, source network reputation, users’ role, time-of-day,
 type of network device used (e.g., corporate issued device versus
 personal device), device’s security posture, etc. This means the
 network needs to recognize the users’ identity and their current
 context, and map the users to their correct access entitlement to
 the network.

 This document defines two YANG modules for policy-based Network
 Access Control [NIST-ABAC]. These modules are meant to ensure
 consistent enforcement of access control policies based on user-group
 identity. In addition, this document defines a mechanism to
 establish mapping between the user-group ID and IP/MAC addresses to
 execute the policy-based access control.

 Also, the document defines a RADIUS attribute that used to
 communicate the user group identifier as part of identification and
 authorization information (Section 6).

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119][RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The meanings of the symbols in tree diagrams are defined in
 [RFC8340].

 The document uses the terms defined in [RFC8519].

 In the current version of the draft, the term "user" refers also to
 the host that actually connect to a network. Also, The term "user"
 refers to any user of the network. As such, servers, terminals, and

Ma, et al. Expires 26 April 2023 [Page 3]

Internet-Draft Policy-based Access Control October 2022

 other devices are also classified and assigned to their respective
 user-groups. Future versions of the document will call out
 specifically whether a user or a user’s host are concerned.

3. Sample Usage

 The network needs to recognize the users’ identities regardless of
 the change of the IP addresses of the device they use to connected to
 the network. Then, the network maps the users to their access
 authorization rights. As discussed in the introduction, because
 there is a large number of users and the IP addresses of the same
 user are in different network segments, deploying a network access
 control policy for each IP address or network segment is heavy
 workload. An alternative approach is to configure user groups to
 classify users (and their devices) and associate ACLs with user
 groups so that users in each group can share a group of ACL rules.
 This approach greatly reduces the workload of the administrator and
 optimizes the ACL resources on the device that behaves as a PEP
 (Policy Enforcement Point) [RFC3198]. The Network ACLs (NACLs) can
 be provisioned on devices using specific mechanisms, such as
 [RFC8519] or [I-D.dbb-netmod-acl].

 Network access control policies may need to vary over time. For
 example, companies may restrict/grant employees access to specific
 resources (internal and/or external resources) during work hours,
 while another policy is adopted during off-hours and weekends. A
 network administrator may also require to enforce traffic shaping
 (Section 2.3.3.3 of [RFC2475]) and policing (Section 2.3.3.4 of
 [RFC2475]) during peak hours in order not to affect other data
 services.

4. Policy-based Network Access Control: An Overview

 To provide real-time and consistent enforcement of access control
 policies, the following functional entities and interfaces are
 involved:

 * A Service Orchestrator which coordinates the overall service,
 including security policies.

 * A Policy Decision Point (PDP) [RFC8519] maintains access
 permissions associated with different user groups, inter groups,
 and aggregates information about device types, access locations,
 and other attribute information. One or multiple PDPs can be
 deployed in a network. The inter-user-group access permissions
 describe user group to group communication policies.

Ma, et al. Expires 26 April 2023 [Page 4]

Internet-Draft Policy-based Access Control October 2022

 * The Security Controller is responsible for implementing the YANG
 module defined in Section 5.1 and maintains the user-to-"user-
 group" mapping with attributes information. If necessary, the
 Security Controller retrieves the access permissions from the PDP
 and pushes the required user-group access control policies to
 relevant PEPs that need them.

 The Security Controller exposes a RESTCONF [RFC8040] or NETCONF
 [RFC6241] interface to the PDP.

 * A User Authentication Device (UAD) entity which handles
 authentication requests. When access is granted, the UAD provides
 the group identifier (group ID) to which the user belongs when the
 user first logs onto the network. The UAD interacts with a AAA
 server to complete user authentication using RADIUS [RFC2865]. A
 new attribute is defined in Section 6.

 * The PEP is the central entity which is responsible for
 implementing the YANG module defined in Section 5.2 and
 maintaining Access Control Lists, and enforcing appropriate
 policies. A PEP maps incoming packets to their associated user-
 group IDs, and acts on the user-group IDs. The policies are
 expressed as user-group (not IP or MAC address) IDs so as to
 decouple the user identity from the network addresses of the
 user’s device. If the PEP also co-locates with the user
 authentication device, it maintains the mapping between the user-
 group IDs and the IP or MAC address.

 Multiple PEPs can be involved in a network.

 A PEP exposes a NETCONF interface to the Security Controller.

 A PEP may be collocated with a UAD.

 Figure 1 provides the overall architecture and procedure for policy-
 based access control management.

Ma, et al. Expires 26 April 2023 [Page 5]

Internet-Draft Policy-based Access Control October 2022

 +-----------------+
 | Orchestrator |
 +-+-------------+-+
 Service | |
 ======================|=============|==============
 Network +----+---+ ++---------+
 | PDP +--------+Security |
 (Step 1)| | +----+Controller|
 +----+---+ | +-+---+----+
 | | | |
 +----+-------+-+ | |
 | AAA | | |
 | Server | | |
 +--------------+ | |
 | | (Step 2)
 | |
 (Step 4) +------+-+ |

 (Step 3) ///// | | | \\\\\
 +-------+ /// | | | \\\
 |User #1+---------------------+ | | | \\
 +-------+ || +--+-+ +--+-+ +-+-----+ |
 Site 1 || | | | User | ||
 || |PEP | |Authentication| ||
 || | | | Device (UAD) | ||
 +--------+ || +----+ +--------------+ |
 |User #2 +--------------------+ (Step 5) //
 +--------+ \\\ ///
 \\\\\ /////

 Figure 1: An Architecture for Group-based Policy Management

 In reference to Figure 1, the following typical flow is experienced:

 Step 1: Administrators (or the Orchestrator) configure the users,
 user-groups, and related attribute information on the Security
 Controller using the YANG module defined in Section 5.1. The
 inter-user-group and group-to-group access permissions are also
 managed by administrators and maintained by the PDP.

 Step 2: The user-group-based access control policies are maintained
 on relevant PEPs under the controller’s management. This may
 require obtaining access control permissions and attribute
 information from the PDP and an AAA server. This is implemented
 via the Security Controller.

 Step 3: When a user first logs onto the network, the user is

Ma, et al. Expires 26 April 2023 [Page 6]

Internet-Draft Policy-based Access Control October 2022

 required to be authenticated (e.g., using user name and password)
 at the UAD.

 Step 4: The authentication request is then relayed to the AAA server
 (see Section 6). If the authentication request succeeds, the user
 is placed in a user-group, as determined by the PDP and the user-
 group ID is returned to the user authentication device as the
 authentication result. The UAD also records the mapping between
 the user-group IDs and the IP or MAC address and reports to the
 controller. If the authentication fails, then the user is not
 assigned a user-group, which also means that the user has no or
 limited access permissions for the network. ACLs are enforced so
 that flows from that IP address are discarded by the network.

 Step 5: The user’s subsequent traffic is allowed or permitted based
 on the user-group based access control policies maintained by the
 PEP, during which process PEP matches common header information,
 such as n-tuple and then maps it to the user-group ID . If the PEP
 is also the UAD, it already maintains the mapping information.
 Otherwise, it requests the mapping information from the
 controller.

4.1. User Groups

 The user-group ID is an identifier that represents the collective
 identity of a group of users. It is determined by a set of pre-
 defined policy criteria (e.g., source IP address, geolocation data,
 time of day, or device certificate). Users may be moved to different
 user-groups if their composite attributes, environment, and/or local
 enterprise policy change.

 A user is authenticated, and classified at the network ingress, and
 assigned to a user-group. A user’s group membership may change as
 aspects of the user change. For example, if the user-group
 membership is determined solely by the source IP address, then a
 given user’s user-group ID will change when the user moves to a new
 IP address that falls outside of the range of addresses of the
 previous user-group.

Ma, et al. Expires 26 April 2023 [Page 7]

Internet-Draft Policy-based Access Control October 2022

 This document does not make an assumption how groups are defined.
 Such considerations are deployment specific and are out of scope.
 However, and for illustration purposes, Table 1 shows an example of
 how user-group definitions may be characterized. User-groups may
 share several common criteria. That is, user-group criteria are not
 mutually exclusive. For example, the policy criteria of user-groups
 R&D Regular and R&D BYOD may share the same set of users that belong
 to the R&D organization, and differ only in the type of clients
 (firm-issued clients vs. users’ personal clients). Likewise, the
 same user may be assigned to different user-groups depending on the
 time of day or the type of day (e.g., weekdays versus weekends), etc.

 +--------------+------------+--------------------------------+
 | Group Name | Group ID | Group Definition |
 +--------------+------------+--------------------------------+
 | R&D | 10 | R&D employees |
 +--------------+------------+--------------------------------+
 | R&D BYOD | 11 | Personal devices of R&D |
 | | | employees |
 +--------------+------------+--------------------------------+
 | Sales | 20 | Sales employees |
 +--------------+------------+--------------------------------+
 | VIP | 30 | VIP employees |
 +--------------+------------+--------------------------------+
 | Workflow | 40 | IP addresses of Workflow |
 | | | resource servers |
 +--------------+------------+--------------------------------+
 | R&D Resource | 50 | IP addresses of R&D resource |
 | | | servers |
 +--------------+------------+--------------------------------+
 |Sales Resource| 54 | IP addresses of Sales resource |
 | | | servers |
 +--------------+------------+--------------------------------+

 Figure 2: Table 1: User-Group Example

5. YANG Modules

5.1. The UCL Group YANG Module

5.1.1. Module Overview

 Figure 3 provide an overview of the tree structure of the "ietf-ucl-
 group" module.

Ma, et al. Expires 26 April 2023 [Page 8]

Internet-Draft Policy-based Access Control October 2022

 module: ietf-ucl-group
 +--rw ucl-groups
 +--rw user-group* [group-id]
 +--rw group-id uint32
 +--rw role? identityref
 +--rw user* [user-name]
 +--rw user-name string
 +--rw address-grouping-mapping
 | +--rw address* [address-id]
 | +--rw address-id uint32
 | +--rw ipv4-address? inet:ipv4-prefix
 | +--rw ipv6-address? inet:ipv6-prefix
 | +--rw mac-address? yang:mac-address
 +--rw access-locations
 | +--rw location* [location-id]
 | +--rw location-id string
 | +--rw address? string
 | +--rw postal-code? string
 +--rw accessed-devices? identityref
 +--rw start-time? yang:date-and-time
 +--rw end-time? yang:date-and-time

 Figure 3: UCL Tree Diagram

 This module is defined as a standalone module and used to establish
 on the Security Controller the mapping between group-id and
 associated attributes such as role, location, IP address, MAC
 address, accessed resources, access period. Attributes are assigned
 to specific users, and then determine access based on those
 attributes. These attributes could include a user’s position or
 role, but may also include their location, the time of day, and other
 factors.

5.1.2. The YANG Module

 This module imports [RFC6991].

 <CODE BEGINS>
 file="ietf-ucl-group@2022-10-14.yang"
 module ietf-ucl-group {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-ucl-group";
 prefix uclg;

 import ietf-yang-types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types, Section 3";

Ma, et al. Expires 26 April 2023 [Page 9]

Internet-Draft Policy-based Access Control October 2022

 }
 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types, Section 4";
 }

 organization
 "IETF OPSAWG Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/opsawg/>
 WG List: <mailto:opsawg@ietf.org>";
 description
 "This YANG module defines XXX.

 Copyright (c) 2022 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Revised
 BSD License set forth in Section 4.c of the IETF Trust’s
 Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC
 itself for full legal notices.";

 revision 2022-10-14 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: A Policy-based Network Access Control";
 }

 identity device-type {
 description
 "Base identity for device type.";
 }

 identity role-type {
 description
 "Identity for role group type.";
 }

 identity smartphone {
 base device-type;

Ma, et al. Expires 26 April 2023 [Page 10]

Internet-Draft Policy-based Access Control October 2022

 description
 "Identity for the smartphone terminal device.";
 }

 identity tablet {
 base device-type;
 description
 "Identity for the tablet accessed device.";
 }

 identity laptop {
 base device-type;
 description
 "Identity for the laptop accessed device.";
 }

 identity pc {
 base device-type;
 description
 "Identity for the PC accessed device.";
 }

 identity finance {
 base role-type;
 description
 "Identity for the finance role.";
 }

 identity sales {
 base role-type;
 description
 "Identity for the sales role.";
 }

 identity research {
 base role-type;
 description
 "Identity for the research role.";
 }

 identity developer {
 base role-type;
 description
 "Identity for the developer role.";
 }

 identity vip {
 base role-type;

Ma, et al. Expires 26 April 2023 [Page 11]

Internet-Draft Policy-based Access Control October 2022

 description
 "Identity for the VIP role.";
 }

 identity visitor {
 base role-type;
 description
 "Identity for the guest role.";
 }

 container ucl-groups {
 description
 "Defines the UCL groups";
 list user-group {
 key "group-id";
 description
 "The user group with which the traffic flow is
 associated can be identified by a user-group id.";
 leaf group-id {
 type uint32;
 description
 "The ID of the group which is used to
 identified a user group. This identifier is
 unique within the scope of a network.";
 }
 leaf role {
 type identityref {
 base role-type;
 }
 description
 "The common role of this user-group.";
 }
 list user {
 key "user-name";
 description
 "List of users indexed by their user-name.";
 leaf user-name {
 type string {
 length "1..max";
 }
 description
 "A special name given to a user to uniquely identify them.";
 }
 container address-grouping-mapping {
 description
 "Defines lists of IP and MAC addresses.";
 list address {
 key "address-id";

Ma, et al. Expires 26 April 2023 [Page 12]

Internet-Draft Policy-based Access Control October 2022

 description
 "The possible accessed address of the user, identified
 by the address-id.";
 leaf address-id {
 type uint32;
 description
 "A unique address-id that identifies a user’s accessed
 address.";
 }
 leaf ipv4-address {
 type inet:ipv4-prefix;
 description
 "The IPv4 address prefix of the user’s accessed IP.";
 }
 leaf ipv6-address {
 type inet:ipv6-prefix;
 description
 "The IPv6 address prefix of the user’s accessed IP.";
 }
 leaf mac-address {
 type yang:mac-address;
 description
 "The mac address of the user’s accessed device.";
 }
 }
 }
 container access-locations {
 description
 "Defines lists of locations.";
 list location {
 key "location-id";
 description
 "List of locations.";
 leaf location-id {
 type string {
 length "1..max";
 }
 description
 "Location id information.";
 }
 leaf address {
 type string;
 description
 "User detailed address information.";
 }
 leaf postal-code {
 type string;
 description

Ma, et al. Expires 26 April 2023 [Page 13]

Internet-Draft Policy-based Access Control October 2022

 "Postal code information of the user’s
 accessed location.";
 }
 }
 }
 leaf accessed-devices {
 type identityref {
 base device-type;
 }
 description
 "The user’s accessed device type.";
 }
 leaf start-time {
 type yang:date-and-time;
 description
 "The start time that the user belongs to
 this group ID.";
 }
 leaf end-time {
 type yang:date-and-time;
 description
 "The end time that the user belongs to
 this group ID.";
 }
 }
 }
 }
 }
 <CODE ENDS>

5.2. The UCL Extension to the ACL Model

5.2.1. Module Overview

 Figure 4 provides the tree strcuture of the "ietf-ucl-acl" module.

Ma, et al. Expires 26 April 2023 [Page 14]

Internet-Draft Policy-based Access Control October 2022

 module: ietf-ucl-acl
 augment /acl:acls/acl:acl/acl:aces/acl:ace/acl:matches:
 +--rw (user-control-groups)? {match-on-user-group}?
 +--:(source-match)
 | +--rw source-match
 | +--rw (match)?
 | +--:(user-group)
 | | +--rw user-group-id? uint32
 | +--:(IP-address)
 | +--rw ipv4-network? inet:ipv4-prefix
 | +--rw ipv6-network? inet:ipv6-prefix
 +--:(destination-match)
 +--rw destination-match
 +--rw (match)?
 +--:(user-group)
 | +--rw user-group-id? uint32
 +--:(IP-address)
 +--rw ipv4-network? inet:ipv4-prefix
 +--rw ipv6-network? inet:ipv6-prefix
 augment /acl:acls/acl:acl/acl:aces/acl:ace:
 +--rw time-range {match-on-user-group}?
 +--rw (time-range-type)?
 +--:(periodic-range)
 | +--rw month* lmap:month-or-all
 | +--rw day-of-month* lmap:day-of-months-or-all
 | +--rw day-of-week* lmap:weekday-or-all
 | +--rw hour* lmap:hour-or-all
 +--:(absolute-range)
 +--rw start-time? yang:date-and-time
 +--rw end-time? yang:date-and-time

 Figure 4: UCL Extension

 This module specifies an extension to the IETF-ACL model [RFC8519]
 such that the UCL group index may be referenced by augmenting the
 "matches" node. Four types of UCL group are supported:

 * U2U: Inter-groups communication, i.e., both source and destination
 identifiers are user groups.

 * N2N: Both source and destination identifiers are IP address
 prefixes.

 * U2N: The source identifier is one specific user group while the
 destination identifier is one specific IP address prefix.

 * N2U: The source identifier is one specific IP address prefix while
 the destination identifier is one specific user group.

Ma, et al. Expires 26 April 2023 [Page 15]

Internet-Draft Policy-based Access Control October 2022

5.2.2. The YANG Module

 This module imports [RFC6991], [RFC8194] and [RFC8519].

 <CODE BEGINS>
 file="ietf-ucl-acl@2022-10-14.yang"
 module ietf-ucl-acl {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-ucl-acl";
 prefix uacl;

 import ietf-yang-types {
 prefix yang;
 reference
 "RFC 6991: Common YANG Data Types, Section 3";
 }
 import ietf-inet-types {
 prefix inet;
 reference
 "RFC 6991: Common YANG Data Types, Section 4";
 }
 import ietf-lmap-common {
 prefix lmap;
 reference
 "RFC 8194: A YANG Data Model for LMAP Measurement Agents";
 }
 import ietf-access-control-list {
 prefix acl;
 reference
 "RFC 8519: YANG Data Model for Network Access
 Control Lists (ACLs)";
 }

 organization
 "IETF OPSWG Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/opsawg/>
 WG List: <mailto:opsawg@ietf.org>";
 description
 "This YANG module defines XXX.

 Copyright (c) 2022 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Revised
 BSD License set forth in Section 4.c of the IETF Trust’s

Ma, et al. Expires 26 April 2023 [Page 16]

Internet-Draft Policy-based Access Control October 2022

 Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX
 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC
 itself for full legal notices.";

 revision 2022-10-14 {
 description
 "Initial revision.";
 reference
 "RFC XXXX: A Policy-based Network Access Control";
 }

 feature match-on-user-group {
 description
 "The device can support matching on user groups.";
 }

 grouping match-range-source-destination {
 description
 "A grouping used for source/desttination macthes.";
 choice match {
 description
 "Add a new match choice for the user group.";
 case user-group {
 leaf user-group-id {
 type uint32;
 description
 "The matched user group ID that uniquely identifies
 a user group.";
 }
 }
 case IP-address {
 leaf ipv4-network {
 type inet:ipv4-prefix;
 description
 "The matched IPv4 address prefix.";
 }
 leaf ipv6-network {
 type inet:ipv6-prefix;
 description
 "The matched IPv6 address prefix.";
 }
 }
 }
 }

Ma, et al. Expires 26 April 2023 [Page 17]

Internet-Draft Policy-based Access Control October 2022

 augment "/acl:acls/acl:acl/acl:aces/acl:ace/acl:matches" {
 if-feature "match-on-user-group";
 description
 "Add new match types.";
 choice user-control-groups {
 description
 "Add new source and destination matches based on the
 user group.";
 container source-match {
 description
 "The source matched information.";
 uses match-range-source-destination;
 }
 container destination-match {
 description
 "The destination matched information.";
 uses match-range-source-destination;
 }
 }
 }

 augment "/acl:acls/acl:acl/acl:aces/acl:ace" {
 if-feature "match-on-user-group";
 description
 "Add a new parameter to the Access Control Entry (ACE).";
 container time-range {
 description
 "This container defines when the access control
 entry rules are in effect.

 If it is not configured, the access control entry
 is immediately and always in effect.";
 choice time-range-type {
 description
 "Choice based on the type of the time range.";
 case periodic-range {
 leaf-list month {
 type lmap:month-or-all;
 description
 "A set of months at which ace will trigger.
 The wildcard means all months.";
 }
 leaf-list day-of-month {
 type lmap:day-of-months-or-all;
 description
 "A set of days of the month at which ace will
 trigger. The wildcard means all days of a month.";
 }

Ma, et al. Expires 26 April 2023 [Page 18]

Internet-Draft Policy-based Access Control October 2022

 leaf-list day-of-week {
 type lmap:weekday-or-all;
 description
 "A set of weekdays at which ace will trigger.
 The wildcard means all weekdays.";
 }
 leaf-list hour {
 type lmap:hour-or-all;
 description
 "A set of hours at which ace will trigger. The
 wildcard means all hours of a day.";
 }
 }
 case absolute-range {
 leaf start-time {
 type yang:date-and-time;
 description
 "The time when the ace starts to take effect.";
 }
 leaf end-time {
 type yang:date-and-time;
 description
 "The time when the ace ends to take effect.";
 }
 }
 }
 }
 }
 }
 <CODE ENDS>

6. User Access Control Group ID RADIUS Attribute

 The User-Access-Group-ID RADIUS attribute and its embedded TLVs are
 defined with globally unique names. The definition of the attribute
 follows the guidelines in Section 2.7.1 of [RFC6929]. This attribute
 is used to indicate the user-group ID to be used by the UAD. When
 the User-Access-Group-ID RADIUS attribute is present in the RADIUS
 Access-Accept, the system applies the related access control to the
 users after it authenticates.

 The value fields of the Attribute are encoded in clear and not
 encrypted as, for example, Tunnel- Password Attribute [RFC2868].

 The User-Access-Group-ID Attribute is of type "string" as defined in
 Section 3.5 of [RFC8044].

Ma, et al. Expires 26 April 2023 [Page 19]

Internet-Draft Policy-based Access Control October 2022

 The User-Access-Group-ID Attribute MAY appear in a RADIUS Access-
 Accept packet. It MAY also appear in a RADIUS Access-Request packet
 as a hint to the RADIUS server to indicate a preference. However,
 the server is not required to honor such a preference.

 The User-Access-Group-ID Attribute MAY appear in a RADIUS CoA-Request
 packet.

 The User-Access-Group-ID Attribute MAY appear in a RADIUS Accounting-
 Request packet.

 The User-Access-Group-ID Attribute MUST NOT appear in any other
 RADIUS packet.

 The User-Access-Group-ID Attribute is structured as follows:

 Type

 241

 Length

 This field indicates the total length, in octets, of all fields of
 this attribute, including the Type, Length, Extended-Type, and the
 "Value".

 Extended-Type

 TBA1

 Value

 This field contains the user group ID.

 The User-Access-Group-ID Attribute is associated with the following
 identifier: 241.TBA1.

7. Table of Attributes

 The following table provides a guide as what type of RADIUS packets
 that may contain User-Access-Group-ID Attribute, and in what
 quantity.

Ma, et al. Expires 26 April 2023 [Page 20]

Internet-Draft Policy-based Access Control October 2022

Access- Access- Access- Challenge Acct. # Attribute
Request Accept Reject Request
 0+ 0+ 0 0 0+ 241.TBA1 User-Access-Group-ID

CoA-Request CoA-ACK CoA-NACK # Attribute
 0+ 0 0 241.TBA2 User-Access-Group-ID

 The following table defines the meaning of the above table entries:

 0 This attribute MUST NOT be present in packet.
 0+ Zero or more instances of this attribute MAY be present in packet.

8. Security Considerations

8.1. YANG

 The YANG modules specified in this document defines schema for data
 that is designed to be accessed via network management protocols such
 as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
 is the secure transport layer, and the mandatory-to-implement secure
 transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
 is HTTPS, and the mandatory-to-implement secure transport is TLS
 [RFC8446].

 The Network Configuration Access Control Model (NACM) [RFC8341]
 provides the means to restrict access for particular NETCONF or
 RESTCONF users to a preconfigured subset of all available NETCONF or
 RESTCONF protocol operations and content.

 There are a number of data nodes defined in this YANG module that are
 writable, creatable, and deletable (i.e., config true, which is the
 default). These data nodes may be considered sensitive or vulnerable
 in some network environments. Write operations to these data nodes
 could have a negative effect on network and security operations.

 <<add-more-about privacy considerations as the modules manipulate PII
 data.>>

8.2. RADIUS

 RADIUS-related security considerations are discussed in [RFC2865].

 This document targets deployments where a trusted relationship is in
 place between the RADIUS client and server with communication
 optionally secured by IPsec or Transport Layer Security (TLS)
 [RFC6614].

Ma, et al. Expires 26 April 2023 [Page 21]

Internet-Draft Policy-based Access Control October 2022

9. IANA Considerations

9.1. YANG

 This document registers a URI in the "IETF XML Registry" [RFC3688].
 Following the format in RFC 3688, the following registration has been
 made.

 URI: urn:ietf:params:xml:ns:yang:ietf-ucl-group
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

 URI: urn:ietf:params:xml:ns:yang:ietf-ucl-acl
 Registrant Contact: The IESG.
 XML: N/A, the requested URI is an XML namespace.

 This document registers a YANG module in the "YANG Module Names"
 registry [RFC6020].

 name: ietf-ucl-group
 namespace: urn:ietf:params:xml:ns:yang:ietf-ucl-group
 prefix: uclg
 maintained by IANA: N
 reference: RFC XXXX

 name: ietf-ucl-acl
 namespace: urn:ietf:params:xml:ns:yang:ietf-ucl-acl
 prefix: uacl
 maintained by IANA: N
 reference: RFC XXXX

9.2. RADIUS

 IANA is requested to assign a new RADIUS attribute typs from the IANA
 registry "Radius Attribute Types" [RADIUS-Types]:

 +==========+======================+===========+===============+
 | Value | Description | Data Type | Reference |
 +==========+======================+===========+===============+
 | 241.TBA1 | User-Access-Group-ID | string | This-Document |
 +----------+----------------------+-----------+---------------+

 Table 1: Encrypted DNS RADIUS Attributes

Ma, et al. Expires 26 April 2023 [Page 22]

Internet-Draft Policy-based Access Control October 2022

10. Acknowledgements

 This work has benefited from the discussions of User-group-based
 Security Policy over the years. In particular, [I-D.you-i2nsf-user-
 group-based-policy] and [I-D.yizhou-anima-ip-to-access-control-
 groups] provide mechanisms to establish the mapping between the IP
 address/prefix of user and access control group ID.

 Jianjie You, Myo Zarny, Christian Jacquenet, Mohamed Boucadair, and
 Yizhou Li contributed to an earlier version of [I-D.you-i2nsf-user-
 group-based-policy]. We would like to thank the authors of that
 draft on modern network access control mechanisms for material that
 assisted in thinking about this document.

11. References

11.1. Informative References

 [I-D.dbb-netmod-acl]
 Dios, O. G. D., Barguil, S., and M. Boucadair, "Extensions
 to the Access Control Lists (ACLs) YANG Model", Work in
 Progress, Internet-Draft, draft-dbb-netmod-acl-01, 29 June
 2022, <https://www.ietf.org/archive/id/draft-dbb-netmod-
 acl-01.txt>.

 [NIST-ABAC]
 Hu, Vincent C., "Guide to Attribute Based Access Control
 (ABAC) Definition and Considerations", January 2014.

 [RADIUS-Types]
 IANA, "RADIUS Types",
 <http://www.iana.org/assignments/radius-types>.

 [RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.,
 and W. Weiss, "An Architecture for Differentiated
 Services", RFC 2475, DOI 10.17487/RFC2475, December 1998,
 <https://www.rfc-editor.org/info/rfc2475>.

 [RFC2868] Zorn, G., Leifer, D., Rubens, A., Shriver, J., Holdrege,
 M., and I. Goyret, "RADIUS Attributes for Tunnel Protocol
 Support", RFC 2868, DOI 10.17487/RFC2868, June 2000,
 <https://www.rfc-editor.org/info/rfc2868>.

 [RFC3198] Westerinen, A., Schnizlein, J., Strassner, J., Scherling,
 M., Quinn, B., Herzog, S., Huynh, A., Carlson, M., Perry,
 J., and S. Waldbusser, "Terminology for Policy-Based
 Management", RFC 3198, DOI 10.17487/RFC3198, November
 2001, <https://www.rfc-editor.org/info/rfc3198>.

Ma, et al. Expires 26 April 2023 [Page 23]

Internet-Draft Policy-based Access Control October 2022

 [RFC6614] Winter, S., McCauley, M., Venaas, S., and K. Wierenga,
 "Transport Layer Security (TLS) Encryption for RADIUS",
 RFC 6614, DOI 10.17487/RFC6614, May 2012,
 <https://www.rfc-editor.org/info/rfc6614>.

11.2. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",
 RFC 2865, DOI 10.17487/RFC2865, June 2000,
 <https://www.rfc-editor.org/info/rfc2865>.

 [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
 DOI 10.17487/RFC3688, January 2004,
 <https://www.rfc-editor.org/info/rfc3688>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <https://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <https://www.rfc-editor.org/info/rfc6241>.

 [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
 Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
 <https://www.rfc-editor.org/info/rfc6242>.

 [RFC6929] DeKok, A. and A. Lior, "Remote Authentication Dial In User
 Service (RADIUS) Protocol Extensions", RFC 6929,
 DOI 10.17487/RFC6929, April 2013,
 <https://www.rfc-editor.org/info/rfc6929>.

 [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types",
 RFC 6991, DOI 10.17487/RFC6991, July 2013,
 <https://www.rfc-editor.org/info/rfc6991>.

 [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
 <https://www.rfc-editor.org/info/rfc8040>.

Ma, et al. Expires 26 April 2023 [Page 24]

Internet-Draft Policy-based Access Control October 2022

 [RFC8044] DeKok, A., "Data Types in RADIUS", RFC 8044,
 DOI 10.17487/RFC8044, January 2017,
 <https://www.rfc-editor.org/info/rfc8044>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8194] Schoenwaelder, J. and V. Bajpai, "A YANG Data Model for
 LMAP Measurement Agents", RFC 8194, DOI 10.17487/RFC8194,
 August 2017, <https://www.rfc-editor.org/info/rfc8194>.

 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
 BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
 <https://www.rfc-editor.org/info/rfc8340>.

 [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
 Access Control Model", STD 91, RFC 8341,
 DOI 10.17487/RFC8341, March 2018,
 <https://www.rfc-editor.org/info/rfc8341>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [RFC8519] Jethanandani, M., Agarwal, S., Huang, L., and D. Blair,
 "YANG Data Model for Network Access Control Lists (ACLs)",
 RFC 8519, DOI 10.17487/RFC8519, March 2019,
 <https://www.rfc-editor.org/info/rfc8519>.

Authors’ Addresses

 Qiufang Ma
 Huawei
 101 Software Avenue, Yuhua District
 Nanjing
 Jiangsu, 210012
 China
 Email: maqiufang1@huawei.com

 Qin Wu
 Huawei
 101 Software Avenue, Yuhua District
 Nanjing
 Jiangsu, 210012
 China
 Email: bill.wu@huawei.com

Ma, et al. Expires 26 April 2023 [Page 25]

Internet-Draft Policy-based Access Control October 2022

 Mohamed Boucadair
 Orange
 35000 Rennes
 France
 Email: mohamed.boucadair@orange.com

 Daniel King
 Old Dog Consulting
 United Kingdom
 Email: daniel@olddog.co.uk

Ma, et al. Expires 26 April 2023 [Page 26]

	draft-davis-netmod-modelling-boundaries-00
	draft-dbb-netmod-acl-03
	draft-ietf-netmod-intf-ext-yang-10
	draft-ietf-netmod-yang-module-versioning-07
	draft-ietf-netmod-yang-semver-08
	draft-ma-netmod-immutable-flag-04
	draft-ma-opsawg-ucl-acl-00

