Native Short Addressing for LLN Expansion Path-Aware Semantic Addressing (PASA) for Low power and Lossy Networks

draft-li-6lo-path-aware-semantic-addressing

IETF 115 – London

Since IETF 114

Path-Aware Semantic Addressing (PASA) for Low power and Lossy Networks

draft-li-6lo-path-aware-semantic-addressing-00

Call for adoption outcome

Three clarification points from the chairs

1. Clarifying and/or better detailing the motivation for the draft and its expected applicability (in terms of use cases, scenarios and underlying technologies).

2. Clarifying the expected advantages of this work in comparison with existing functionality. Two main areas to consider are: i) header compression (e.g. comparing with 6LoWPAN or SCHC header compression), and ii) multihop delivery (e.g. comparing with RPL, use of BIER, etc.).

3. Clarifying whether the work is actually in scope for 6lo (e.g. not rather L2 work).

Additional use-case from Kiran:

Hello,

I have quickly skimmed through the document and would like to see this work progress.

I see that the focus is mainly on wireless constrained devices, however, in industrial networks with field devices it is useful to have short and variable addressing schemes on a factory floor. Variable addressing approach is more interesting here because, on one side the controllers may use IPv6 addresses and field-devices on the other end can very well be shorter addresses.

I support this document and wouldn't mind contributing to the alignment with above mentioned scenario.

Cheers,

Kiran

• Proposal to use a Routing Header from Pascal:

Thinking about it, an easier sell would be to make it an alternate of https://www.rfc-editor.org/rfc/rfc8138#section-5.1, like:

Where bytes 1 .. N are the byte-aligned bitmap that NSA produces, padded with 0s on the left (since apparently the address starts with a 1). This encoding allows the number of bytes to grow with the network

Updates in a Nutshell

Table of Contents

<u>1</u> . Introduction	<u>3</u> 4
<u>3</u> . Comprehensive Use Cases	4
3.1. Smart Grid	4
3.2. Smart Home	6
3.3. Data Center Monitoring	Z
3.4. Industrial Operational Technology Networks	9
4. Architectural Overview	10
5. PASA Allocation	13
5.1. PASA Addresses and IPv6 Addresses	17
5.2. Limitation of Number of Children Nodes	18
<u>ь</u> . The PASA-bLokH Header	18
6.1. PASA-61oRH Sequence	18
6.2. PASA-61oRH Format	19
6.3. PASA-61oRH and LOWPAN IPHC co-existence	20
<u>/</u> . Forwarding in a PASA Network	<u>Z1</u>
7.1. Forwarding toward a local PASA endpoint	22
7.2. Forwarding toward an external IPv6 node	25
8. PASA Control Messages	25
8.1. New Control Message	25
8.2. Address Configuration based on 6LOWPAN-ND	26
8.2.1. PASA Request Address Option (PRAO) Format	27
8.2.2. PASA Assign Address Option (PAAO) Format	27
9. TANA Considerations	28
9.1. Critical 6LowPAN Routing Header Type for PASA-6LoRH	29
9.2. Allocation Eurotion Registry	29
9.3 TCMP PASA Control Message	29
9.4 PASA Neighbor Discovery Ontions	30
10 Reliability Considerations	30
11 Security Considerations	21
Asknowledgements	21
	21
References	51

- New name
 - Better expressing the core approach
- Extensive Use Cases Section
 - Including more explicit connection to draftietf-6lo-use-cases
- New header format
 - 6lo Routing Header

• Allocation function and forwarding algorithm remain unchanged

Main applicability area

From draft-ietf-6lo-use-cases

	Z-Wave	BLE	DECT-ULE	MS/TP	NFC	PLC
Usage	Home Auto- mation	Interact w/ Smart Phone	Meter Reading	Building Auto- mation	Health- care Service	Smart Grid
Topology & Subnet	L2-mesh or L3-mesh	Star & Mesh	Star No mesh	MS/TP No mesh	P2P L2-mesh	Star Tree Mesh
Mobility Requirement	No	Low	No	No	Moderate	No
Buffering Requirement	Low	Low	Low	Low	Low	Low
Latency, QoS Requirement	High	Low	Low	High	High	Low
Transmission Frequency Feature	Infrequ- ent	Infrequ- ent	Infrequ- ent	Frequent	Infrequ- ent	Infrequ- ent
RFC # or Draft	<u>RFC7428</u>	<u>RFC7668</u> , <u>RFC9159</u>	<u>RFC8105</u>	<u>RFC8163</u>	draft- ietf-6lo -nfc	draft- ietf-6lo -plc

4 main uses cases detailed

New Header Sequence

New Header Content

Addr. Type	Address Type in the PASA 6LoRH header
00 	Size is set to 15 and Quad 1 to Quad N carry a full IPv6 address as destination
01	Quad 1 to Quad N carry Mapped Short Address as destination
10 	Quad 1 to Quad N carry PASA as destination and Source Address
11	Quad 1 to Quad N carry PASA as destination

Length of the PASA address in quads (i.e. 2 octets). The length N equals Size plus 1, i.e. the length of the PASA address in is at least 1 quad (2 octets) and no more than 16 octets (equal to a non compressed IPv6 address).

PASA-6loRH and LOWPAN_IPHC Co-existence

- PASA domain the compress/uncompress addresses according to this specification
- The reference prefix of the PASA domain represents a context that can be used to compress addresses in accordance to RFC 6282 and decompress using the context and the coalescence procedure in RFC 8138
- When sending:
 - Create LOWPAN_IPHC compressed header, where the source addresses is statefully compressed using the context and the destination address completely elided
 - The destination address is then encoded in the PASA-6loRH in its shorter form, setting the Address Type and Size accordingly
- When receiving:
 - Since the destination address is completely elided in LOWPAN_IPHC the IID is obtained by its encapsulation, in this case the PASA-6loRH
 - The full destination address, including the IID, can be obtained via a coalescence operation with the PASA prefix in the context as described in Section 4.3.1 of RFC 8138
 - The same coalescence operation is done on the source address, in order to have the full 128-bits length.

Next Steps

- Algorithmic part of the document still stable
- Please send feedback on the new format
 - External communications to be refined

THANKS!