Cryptographically Generated Addresses (CGA) Light

draft-ev-6man-CGA-light-01

Eduard Vasilenko vasilenko.eduard@huawei.com

Problem ai

[ND Trust Model] section 4.1 "Non-router related threats":

- A malicious node could answer DAD for any request of a legitimate node (denial of service attack)
- A malicious node could poison the cache of another node (especially the router) to intercept traffic directed to another node (man in the middle attack)

That leads to Man-in-the-middle attacks (draft-vasilenko-6man-nd-mitm-protection):

- Rewrite cache by unsolicited NA
- Be the first and suppress DAD
- Win the race just after DAD

Solutions

- IPSec was initially supposed as the solution Then [SEND] has been positioned for it
- [CGA] is dependent on [SEND] not a separate solution
- [SEND] has low adoption on the market for the same reason as IPSec: key management (certification authority, public key infrastructure, trust anchor) is difficult to organize
- Blockchain has shown value under the absence of a trust anchor
- IP to MAC mapping is the primary function of [ND] it could be protected with cryptography assurance
- Security at ND may be as good
 as security at the link layer
 (that is typically protected by encryption)

IPv6 IID generation by node ("mining IID")

CGA Light

- "u" and "g" bits are deprecated (RFC 7136). Hence, all 64bits are available.
- Chg parameter occupies 4 high order bits of IID (different levels of security is possible for different nodes/interfaces on the same link).
 Hence, the IID size is 60 bits.
- Randomization is by Nonce++, Time update, fields reordering, or any other method
- IID lifetime SHOULD be limited (? years)

Mining Challenge: order of 2^(8+4*Chg+1-1) hashes

CGA Light Restrictions

Restrictions:

- Encryption could not protect against DoS or DDoS
- All nodes are equal no possibility to restrict router functionality, RA-Guard is needed
- Intruder may claim MAC
 (if link-layer technology permits)
 then claim IP by replay attack,
 but only for the disconnected node.

Advantages/Support:

- LLA/ULA/GUA
- Different addresses per link
- Temporary MAC or IP
- Anycast for nodes on different links
- ND Proxy
- All ND extensions for far

-01 updates

- Reference to very often cryptographic protection in L2 wireless and often cryptographic protection in L2 wireline (802.1x) in business
- Switches would block communication for duplicate addresses at L2 (flapping protection)
- Temporary MAC creates the same challenge as the temporary IP address;
 it would create the same load on IID generation
- Hash-Based Addresses (RFC 5535) are included in the discussion scope
- Editorial changes
- Any reviews, or criticism?
- co-authoring are welcome

Backup Slides

IPv6 IID check by other node

Calculated once.

Result is cached in ND.

Validation Challenge: order of 1 hash

IPv6 IID cracking by malicious node

Hacking Challenge: order of 2^(8+4*Chg+60-1) hashes

ND extensions

- ND option 39 (Crypto-ID Parameters) could be reused for the hash type signaling
- Option "Digest of IID information" is needed: