Yang Data Model for OAM and Management of ALTO protocol

draft-ietf-alto-oam-yang

Jingxuan Zhang Dhruv Dhody Roland Schott Kai Gao

ALTO WG @ IETF 115

Current Status

Main goal: Define a YANG data model for Operations, Administration, and Maintenance (OAM) & Management of ALTO Protocol.

Latest version: https://datatracker.ietf.org/doc/html/draft-ietf-alto-oam-yang-02

Editor's copy on GitHub: https://ietf-wg-alto.github.io/draft-ietf-alto-oam-yang/draft-ietf-alto-oam-yang.html

YANG modules:

https://github.com/ietf-wg-alto/draft-ietf-alto-oam-yang/tree/main/yang

Current Status (Cont.)

Open discussions and progress since IETT 114:

- T1: How to handle data types defined by IANA registries (e.g., ALTO cost modes and metrics)
 - <u>https://mailarchive.ietf.org/arch/msg/alto/S10Ua4tvVhPGu6FFJhbhDGBbPXs/</u>
- T2: Whether and how to supply server-to-server communication for multi-domain settings
 - https://mailarchive.ietf.org/arch/msg/alto/MvVDgeZnmi-_0sY8al0hGuWbWU8/
- T3: How to build connection between data sources and algorithm data model
 - <u>https://datatracker.ietf.org/doc/html/draft-ietf-alto-oam-yang-02#appendix-A</u>

Achieved Milestones:

- IETF 115 Hackathon
 - Partial implemented ALTO O&M data model in OpenALTO implementation: <u>https://github.com/openalto/alto</u>

Overall Update: Reorganize the Contents

1. Introduction					
2. Requirements Language					
3. Terminology					
3.1. Tree Diagrams					
3.2. Prefixes in Data Node Names					
4. Design Scope and Requirements					
4.1. Scope of Data Model for ALTO O&M					
4.2. Basic Requirements					
4.3. Additional Requirements for Extensibility 6					
4.4. Overview of ALTO O&M Data Model for Reference ALTO					
Architecture					
5. Design of ALTO O&M Data Model 6					
5.1. Overview of ALTO O&M Data Model					
5.2. Meta Information of ALTO Server					
5.3. ALTO Information Resources Configuration Management 10					
5.4. Data Sources					
5.4.1. Yang DataStore Data Source					
5.4.2. Prometheus Data Source					
5.5. Model for ALTO Server-to-server Communication 14					
6. Design of ALTO O&M Statistics Data Model					
6.1. Model for ALTO Logging and Fault Management					
6.2. Model for ALTO-specific Performance Monitoring 14					
7. Extension of ALTO O&M Data Model					
8. ALTO OAM YANG Module					
8.1. The ietf-alto Module					
8.2. The ietf-alto-stats Module					
9. Security Considerations					
10. IANA Considerations					
11. References					
11.1. Normative References					
11.2. Informative References					
Appendix A. Example Module for Information Resource Creation					
Algorithm					
Acknowledgements					
Authors' Addresses					

	1. Introduction					
	2. Requirements Language					
	3. Terminology					
	3.1. Tree Diagrams					
	3.2. Prefixes in Data Node Names					
	4. Design Scope and Requirements					
	4.1. Scope of Data Model for ALTO O&M					
	4.2. Basic Requirements					
	4.3. Additional Requirements for Extensibility					
	4.4. Overview of ALTO O&M Data Model for Reference ALTO					
	Architecture					
	5. Design of ALTO O&M Data Model					
	5.1. Overview of ALTO O&M Data Model					
	5.2. Data Model for Server-level Operation and Management					
	5.2.1. Data Model for ALTO Server Setup					
	5.2.2. Data Model for Logging Management					
	5.2.3. Data Model for ALTO-related Management					
	5.2.4. Data Model for Security Management					
	5.3. Data Model for ALTO Server Configuration Management					
	5.3.1. Data Source Configuration Management					
-	5.3.2. ALTO Information Resources Configuration Management					
	6. Design of ALTO O&M Statistics Data Model					
	6.1. Model for ALTO Server Failure Monitoring					
	6.2. Model for ALTO-specific Performance Monitoring 7. ALTO OAM YANG Module					
	7.1. The ietf-alto Module					
	7.2. The ietf-alto-stats Module					
	8. Security Considerations					
	9. IANA Considerations					
	10. References					
	10.1. Normative References					
	10.2. Informative References					
1	Appendix A. Example: Extending the ALTO O&M Data Model					
	A.1. Example Module for Extended Data Sources					
	A.2. Example Module for Information Resource Creation Algorithm					
	Acknowledgements					
	Authons' Addrossos					

Exactly align with all the 7 basic requirements in order.

Put implementation-specific data model as an example in appendix.

T1: Data Types in ALTO Related IANA Registries

- The decision is to use identity to define data types.
 - This allows the data types to be managed in a more modular way, and to guarantee backward compatibility.
 - Future documents can define new data types by adding new identities in extension modules.
 Once a document becomes a standard, the new extension module will also be added to the standard IETF YANG module base.

T1: Data Types in ALTO Related IANA Registries (Cont.)

- WG has different opinions about whether use an IANA-maintained module (e.g., iana-alto-types.yang):
 - Support: IANA-maintained module can guarantee compatibility
 - Not support: If not expect to have frequent changes, IANA-maintained module is overdesign

T1: Data Types in ALTO Related IANA Registries (Cont.)

- WG has different opinions about whether use an IANA-maintained module (e.g., iana-alto-types.yang):
 - Support: IANA-maintained module can guarantee compatibility
 - Not support: If not expect to have frequent changes, IANA-maintained module is overdesign

T2: Server-to-Server Communication

O&M data model to configure server-to-server communication requires the following functionalities:

- T2.1: Configure how the server to be discovered by another server/client
 - <u>Status: ready</u>
- T2.2: Configure how the server to discover another server
 - Status: in progress
- T2.3: Configure how the server to communicate to a discovered server
 - Status: not determined whether should be in the scope

```
grouping alto-server-discovery-grouping:
```

```
+-- (server-discovery-manner)?
+--:(reverse-dns)
| +-- rdns-naptr-records
| +-- static-prefix* inet:ip-prefix
| +-- dynamic-prefix-source*
| -> /alto-server/data-source/source-id
+--:(internet-routing-registry)
| +-- irr-params
| +-- aut-num? inet:as-number
+--:(peeringdb)
+-- peeringdb-params
+-- org-id? uint32
```

For T2.1, the current data model provide predefined cases for server discovery learned from practical deployment but can be extended through augmentation:

- Reverse DNS: RFC8686
- IRR: RFC2622
- PeeringDB: <u>https://www.peeringdb.com/</u>

T2: Server-to-Server Communication

O&M data model to configure server-to-server communication requires the following functionalities:

- T2.1: Configure how the server to be discovered by another server/client
 - Status: ready
- T2.2: Configure how the server to discover another server
 - Status: in progress
- T2.3: Configure how the server to **communicate to a discovered server**
 - Status: not determined whether should be in the scope

```
grouping alto-server-discovery-client-grouping
+-- (server-discovery-client-manner)?
+--:(rdns)
| +-- rdns-params
| +-- dns-server inet:host
+--:(internet-routing-registry)
| +-- irr-params
| +-- whois-server inet:host
+--:(peeringdb)
+-- peeringdb-params
+--peeringdb-endpoint inet:uri
```

Similar to T2.1, T2.2 provides common model for how to access an existing server discovery system.

Predefined server discovery systems are aligned with mechanism defined in **alto-server-discovery-grouping**.

The model can also be extended by augmentation.

T2: Server-to-Server Communication

O&M data model to configure server-to-server communication requires the following functionalities:

- T2.1: Configure how the server to be discovered by another server/client
 - Status: ready
- T2.2: Configure how the server to **discover another server**
 - Status: in progress
- T2.3: Configure how the server to communicate to a discovered server
 - Status: not determined whether should be in the scope

There are multiple potential solutions:

- C/S mode using ALTO
- C/S mode using other underlay protocols
- Peering mode using other underlay protocols

None of them has become the standard yet.

Implementation & Deployment updates will discuss more details.

C/S mode using ALTO can be the simplest approach to leverage existing ALTO standards.

module: ietf-alto module: ietf-alto +--rw alto-server +--rw alto-server +... +... +--rw alto-client* [id] +...

As suggested by RFC7285 (Sec 16.2.4), data sources and algorithms are two major components to be configured.

From implementation & deployment perspective:

- How to handle heterogeneous formats of data sources
- How to process data collected from data sources

From O&M perspective:

- How to handle heterogeneous • mechanisms to access data sources
- How to correctly configure calling • flows for information resource creation

ALTO Protocol as Frontend ALTO Protocol Frontend: Message Layer Network Model Abstraction Layer Non-network Information Control Data Plane: Data Plane: Plane FIB Sampling

A real deployment in

https://alto.nrp-nautilus.io/directory/default (IRD):

λ kubectl get deplo	yments	grep op	enalto	87 M
openalto- <i>a</i> gent	1/1	1	1	2d23h
openalto-db	1/1	1	1	2d23h
openalto-frontend	1/1	1	1	2d23h

ALTO Protocol Backend: Algorithm Layer

Aggregated Data Source: Backend Database with Conflict Resolution

Mapping from O&M perspective to data model:

ALTO Protocol Frontend: Message Layer

ALTO Protocol Backend: Algorithm Layer

Aggregated Data Source: Backend Database with Conflict Resolution

On-demand Data Source	Polling Data Source	Pub-sub Data Source
-----------------------------	------------------------	------------------------

O&M: Common information resource configuration (resource-id, resource-type, capabilities, used algorithm ...)

O&M: Implementation-specific configuration parameters (used data sources, PID granularity, cost precision, ...)

O&M: Configuration parameters for algorithms to access data sources (southbound protocol, update mechanism, conflict resolution, ...)

A main lesson learned from real implementation & deployment: Different data sources may have conflicts.

Special data source type: aggregated data source

- An aggregated data source provides a unified data lookup API to other data sources
- Conflict resolution policy can be configured to automatically resolve data source conflicts
- An algorithm can decide whether to use an aggregated data source to resolve conflicts, or handle conflicts by itself.

A main lesson learned from real implementation & deployment: Different data sources may have conflicts.

ALTO Protocol Frontend: Message Layer

ALTO Protocol Backend: Algorithm Layer

Aggregated Data Source: Backend Database with Conflict Resolution

On-demand Data Source Polling Data Source

Pub-sub Data Source

```
augment /alto:alto-server/alto:data-source
         /alto:source-params
 +--:(redis-db)
    +--rw redis-params
        +--rw host
                     inet:host
        +--rw port inet:port-number
       +--rw db
                     uint16
        +--rw inputs
                -> /alto:alto-server/data-source
                     /source-id
        +--u conflict-resolver-grouping
grouping conflict-resolver-grouping
  +-- (conflict-resolver)
    +--:(global-conflict-resolver)
        +-- global-priority* [source-id]
```

```
+-- source-id
```

```
-> /alto:alto-server/data-source
```

```
/source-id
+-- priority uint16
```

Next Step

- Standard track
 - Quickly fix YANG errors and submit a new version.
 - Finish T2.2 and T2.3 soon.
 - YANG doctor review and IESG review?
- Deployment
 - Fully implement O&M in OpenALTO by next IETF.

Backup

Implement ALTO O&M YANG modules in OpenALTO

```
{} yang-library-ietf-alto.json > {} ietf-yang-library:modules-state > [] module > {} 2
    "ietf-yang-library:modules-state": {
         "module-set-id": "3de332d13f0da32ea9f00c4b8ae940c6",
         "module": [
                 "name": "ietf-alto",
                 "namespace": "urn:ietf:params:xml:ns:yang:ietf-alto",
                 "revision": "",
                 "conformance-type": "implement"
             },
                 "name": "ietf-alto-stats",
                 "namespace": "urn:ietf:params:xml:ns:yang:ietf-alto-stats"
                 "revision": "",
                 "conformance-type": "implement"
```

alto.conf.template

```
# Configure an ALTO server
************
[server]
# Configuration for server setup
default_namespace = default
base uri = http://openalto.org/
cost types = {
 "path-vector": {
   "cost-mode": "array",
   "cost-metric": "ane-path"}}
# Configuration for information resources
resources = {
 "directory": {
   "type": "ird",
   "path": "directory",
   "namespace": "default",
   "algorithm": "alto.server.components.backend.IRDService",
   "params": {
     "namespaces": []
```