Yang Data Model for OAM and Management of ALTO protocol

draft-ietf-alto-oam-yang

Jingxuan Zhang
Dhruv Dhody
Roland Schott
Kai Gao

ALTO WG @ IETF 115
Current Status

Main goal: Define a YANG data model for Operations, Administration, and Maintenance (OAM) & Management of ALTO Protocol.

Editor’s copy on GitHub: https://ietf-wg-alto.github.io/draft-ietf-alto-oam-yang/draft-ietf-alto-oam-yang.html

Current Status (Cont.)

Open discussions and progress since IETF 114:
- **T1**: How to handle data types defined by IANA registries (e.g., ALTO cost modes and metrics)
 - https://mailarchive.ietf.org/arch/msg/alto/S10Ua4tvVhPGu6FFJhbhDGBbPXs/
- **T2**: Whether and how to supply server-to-server communication for multi-domain settings
 - https://mailarchive.ietf.org/arch/msg/alto/MvVDgeZnmi-_0sY8al0hGuWbWU8/
- **T3**: How to build connection between data sources and algorithm data model

Achieved Milestones:
- **IETF 115 Hackathon**
 - Partial implemented ALTO O&M data model in OpenALTO implementation: https://github.com/openalto/alto
Overall Update: Reorganize the Contents

1. Introduction .. 3
2. Requirements Language ... 3
3. Terminology .. 3
 3.1. Tree Diagrams .. 3
3.2. Prefixes in Data Node Names .. 4
4. Design Scope and Requirements 4
 4.1. Scope of Data Model for ALTO O&M 4
 4.2. Basic Requirements .. 6
 4.3. Additional Requirements for Extensibility 6
 4.4. Overview of ALTO O&M Data Model for Reference ALTO 6
 Architecture ... 6
 5. Design of ALTO O&M Data Model 6
 5.1. Overview of ALTO O&M Data Model 7
 5.2. Meta Information of ALTO Server 8
 5.3. ALTO Information Resources Configuration Management 10
 5.4. Data Sources ... 12
 5.4.1. Yang DataStore Data Source 13
 5.4.2. Data Source for Security Data Source 14
 5.5. Model for ALTO Server-to-server Communication 14
 6. Design of ALTO O&M Statistics Data Model 15
 6.1. Model for ALTO Logging and Fault Management 14
 6.2. Model for ALTO-specific Performance Monitoring 14
 7. Extension of ALTO O&M Data Model 16
 8. ALTO O&M YANG Module ... 17
 8.1. The ietf-altomodule .. 17
 8.2. The ietf-altostats Module 34
 9. Security Considerations ... 39
 10. References .. 39
 11.1. Normative References .. 40
 11.2. Informative References 41
Appendix A. Example Module for Information Resource Creation
 A.1. Example Module for Information Resource Creation Algorithm 42
 Acknowledgements ... 43
 Authors’ Addresses .. 43

Exactly align with all the 7 basic requirements in order.

Put implementation-specific data model as an example in appendix.
The decision is to use identity to define data types.

- This allows the data types to be managed in a more modular way, and to guarantee backward compatibility.
- Future documents can define new data types by adding new identities in extension modules. Once a document becomes a standard, the new extension module will also be added to the standard IETF YANG module base.
WG has different opinions about whether to use an IANA-maintained module (e.g., iana-alto-types.yang):

- Support: IANA-maintained module can guarantee compatibility
- Not support: If not expect to have frequent changes, IANA-maintained module is overdesign
T1: Data Types in ALTO Related IANA Registries (Cont.)

- WG has different opinions about whether use an IANA-maintained module (e.g., iana-alto-types.yang):
 - Support: IANA-maintained module can guarantee compatibility
 - Not support: If not expect to have frequent changes, IANA-maintained module is overdesign

```
module1 (iana-alto-types@2022-10-24.yang)  Update to IANA registry
module0 (ietf-alto@2022-07-11.yang)       module2 (priv-alto-perf-metric.yang)

ALTO Server 1

ALTO Server 2
```

No need to update

Update to IANA registry
T2: Server-to-Server Communication

O&M data model to configure server-to-server communication requires the following functionalities:

- **T2.1: Configure how the server to be discovered by another server/client**
 - Status: ready

- **T2.2: Configure how the server to discover another server**
 - Status: in progress

- **T2.3: Configure how the server to communicate to a discovered server**
 - Status: not determined whether should be in the scope

For T2.1, the current data model provide predefined cases for server discovery learned from practical deployment but can be extended through augmentation:

- Reverse DNS: RFC8686
- IRR: RFC2622
- PeeringDB: https://www.peeringdb.com/
T2: Server-to-Server Communication

O&M data model to configure server-to-server communication requires the following functionalities:

- **T2.1: Configure how the server to be discovered by another server/client**
 - Status: ready

- **T2.2: Configure how the server to discover another server**
 - Status: in progress

- **T2.3: Configure how the server to communicate to a discovered server**
 - Status: not determined whether should be in the scope

The model can also be extended by augmentation.

Similar to T2.1, T2.2 provides common model for how to access an existing server discovery system.

Predefined server discovery systems are aligned with mechanism defined in `alto-server-discovery-grouping`.

The model can also be extended by augmentation.
T2: Server-to-Server Communication

O&M data model to configure server-to-server communication requires the following functionalities:

- **T2.1: Configure how the server to be discovered by another server/client**
 - Status: ready

- **T2.2: Configure how the server to discover another server**
 - Status: in progress

- **T2.3: Configure how the server to communicate to a discovered server**
 - Status: not determined whether should be in the scope

There are multiple potential solutions:

- C/S mode using ALTO
- C/S mode using other underlay protocols
- Peering mode using other underlay protocols

None of them has become the standard yet.

Implementation & Deployment updates will discuss more details.
T3: Connection between Data Sources and Algorithms

As suggested by RFC7285 (Sec 16.2.4), data sources and algorithms are two major components to be configured.

\[
\text{ALTO Information Resource} = \text{Algorithm}(\text{Data Source 1, Data Source 2, …})
\]

Configure how to use data

Configure how to get data

O&M: Provide basic, unified model to cover common configuration cases and configuration parameters
T3: Connection between Data Sources and Algorithms (cont.)

From implementation & deployment perspective:
- How to handle heterogeneous formats of data sources
- How to process data collected from data sources

From O&M perspective:
- How to handle heterogeneous mechanisms to access data sources
- How to correctly configure calling flows for information resource creation

<table>
<thead>
<tr>
<th>ALTO Protocol as Frontend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-network Information</td>
</tr>
<tr>
<td>Network Model Abstraction Layer</td>
</tr>
<tr>
<td>Control Plane</td>
</tr>
<tr>
<td>Data Plane: FIB</td>
</tr>
<tr>
<td>Data Plane: Sampling</td>
</tr>
</tbody>
</table>

A real deployment in https://alto.nrp-nautilus.io/directory/default (IRD):

```
λ kubectl get deployments | grep openalto
openalto-agent    1/1  1  1  2d23h
openalto-db       1/1  1  1  2d23h
openalto-frontend 1/1  1  1  2d23h
```
T3: Connection between Data Sources and Algorithms (cont.)

Mapping from O&M perspective to data model:

- **ALTO Protocol Frontend: Message Layer**
- **ALTO Protocol Backend: Algorithm Layer**
- **Aggregated Data Source: Backend Database with Conflict Resolution**
- **On-demand Data Source**
- **Polling Data Source**
- **Pub-sub Data Source**

O&M: Common information resource configuration (resource-id, resource-type, capabilities, used algorithm …)

O&M: Implementation-specific configuration parameters (used data sources, PID granularity, cost precision, …)

O&M: Configuration parameters for algorithms to access data sources (southbound protocol, update mechanism, conflict resolution, …)
T3: Connection between Data Sources and Algorithms (cont.)

A main lesson learned from real implementation & deployment: Different data sources may have conflicts.

- Special data source type: aggregated data source
 - An aggregated data source provides a unified data lookup API to other data sources
 - Conflict resolution policy can be configured to automatically resolve data source conflicts
 - An algorithm can decide whether to use an aggregated data source to resolve conflicts, or handle conflicts by itself.
A main lesson learned from real implementation & deployment:
Different data sources may have conflicts.

```
augment /alto:alto-server/alto:data-source
    /alto:source-params
  +--:(redis-db)
    +--rw redis-params
      +--rw host inet:host
      +--rw port inet:port-number
      +--rw db uint16
    +--rw inputs
      |   -> /alto:alto-server/data-source
      |     /source-id
    +--u conflict-resolver-grouping

  grouping conflict-resolver-grouping
    +-- (conflict-resolver)
      +--:(global-conflict-resolver)
        +-- global-priority* [source-id]
          +-- source-id
            |   -> /alto:alto-server/data-source
            |     /source-id
          +-- priority uint16
```
Next Step

- **Standard track**
 - Quickly fix YANG errors and submit a new version.
 - Finish T2.2 and T2.3 soon.
 - YANG doctor review and IESG review?

- **Deployment**
 - Fully implement O&M in OpenALTO by next IETF.
Backup
Implement ALTO O&M YANG modules in OpenALTO