

CERN/LHCONE/NRP ALTO Deployment Update

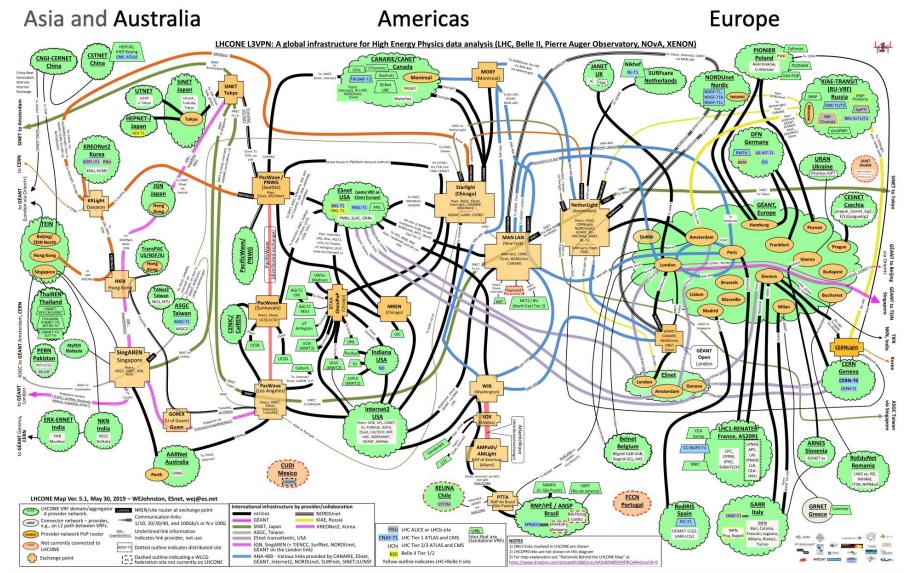
Presenter: Jordi/Kai/Jensen on behalf of the team and collaborators

> IETF 115 Hackathon 11 November 2022, London

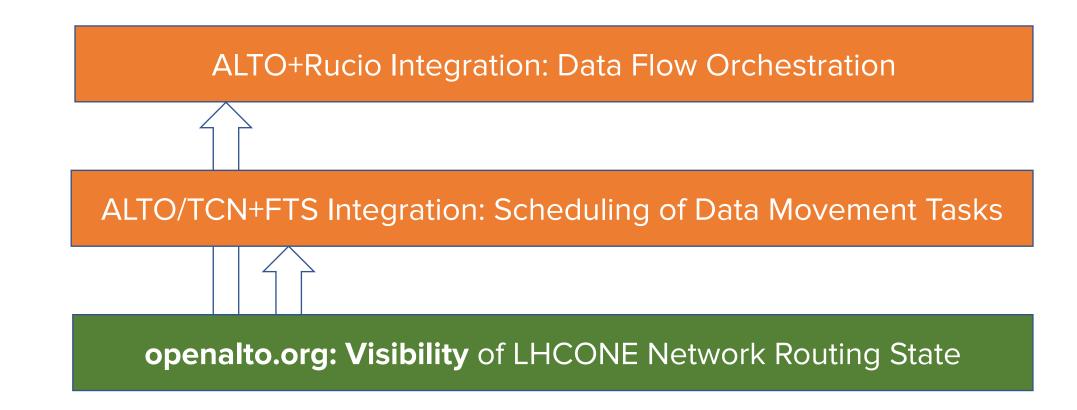
Outline

- Introduction to OpenALTO and openalto.org
- Deployment update at CERN/LHCONE/NRP
- Challenges and lessons

Context: OpenALTO, openalto.org


openalto.org

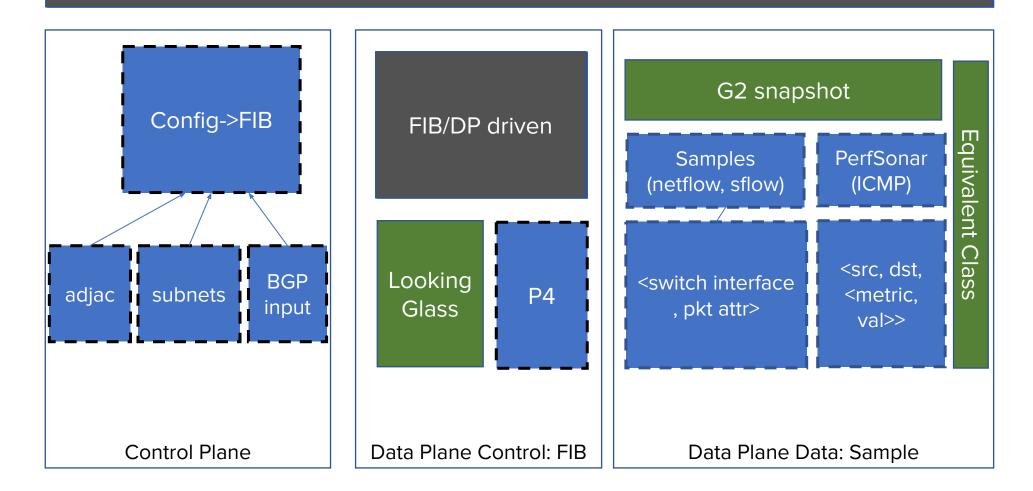
OpenALTO is an open-source **implementation** and platform of ALTO (MIT License).


Available at <u>https://github.com/openalto/alto</u> openalto.org is a running instance of deployment of OpenALTO, providing network information, in particular, in the context of data-intensive sciences, such as LHCONE.

Available at <u>https://{service}.openalto.org</u> (ALTO only)

Context: LHCONE

Context: LHCONE, openalto.org Use Cases

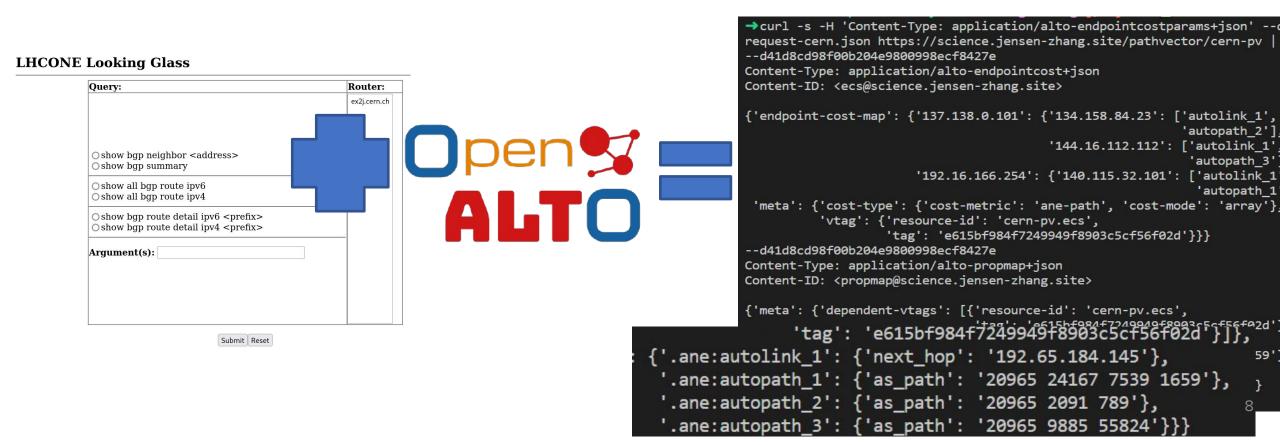

OpenALTO Architecture

Components before IETF 114

Components before IETF 115

Components to be developed

IETF ALTO Protocol as Front End



Deployment Update

- CERN/LHCONE deployment (server)
 - Online: October 25
 - (CERN internal server) https://alto-cern.cern.ch
 - (public mirror) https://as513.openalto.org/pathvector/cern-pv
 - Supported standards: RFC 7285, RFC 9275
- NRP deployment (server)
 - Online: November 6
 - (NRP server) https://alto.nrp-nautilus.io/pathvector/nrp
 - (public mirror) https://nrp.openalto.org/pathvector/nrp-pv
 - Supported standards: RFC 7285, RFC 9240
- Rucio/FTS integration (client)
 - (Forked repository) https://github.com/fno2010/rucio

CERN/LHCONE Deployment Update

- Data source: CRIC database, LHCONE Looking Glass server
- Available information: AS path, next hop router

CERN/LHCONE Deployment

- An agent fetches the prefixes of LHCONE sites from the CRIC database
- and periodically queries the CERN LHCONE Looking Glass server

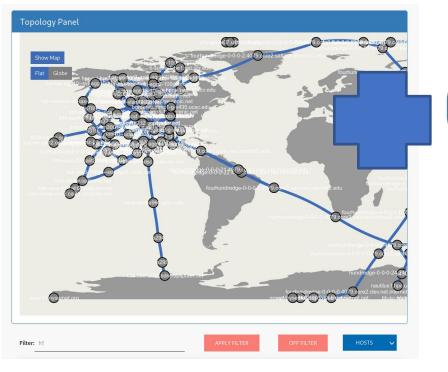
14.139.119.64/26	<pre>*[BGP/170] 4d 02:07:52, localpref 100, from 62.40.126.19 AS path: 20965 9885 55824 I, validation-state: unverified > to 192.65.184.145 via irb.183 [BGP/170] 4d 02:07:52, localpref 100, from 62.40.126.21 AS path: 20965 9885 55824 I, validation-state: unverified > to 192.65.184.145 via irb.183 [BGP/170] 00:12:46, localpref 100, from 192.65.183.30 AS path: 2603 20965 9885 55824 I, validation-state: unverified > to 192.65.183.46 via xe-0/0/29:0.0</pre>	Dest-Prefix: 14.139.119.64/26 AS-PATH: 20965 9885 55824 Next-Hop: 192.65.184.145
18.12.0.0/20	<pre>*[BGP/170] 7w5d 12:38:01, localpref 100, from 198.124.80.21 AS path: 293 3 I, validation-state: unverified > to 192.65.183.46 via xe-0/0/29:0.0 [BGP/170] 1w6d 16:11:46, localpref 100, from o2.40.126.19 AS path: 20965 293 3 I, validation-state: unverified > to 192.65.184.145 via irb.183 [BGP/170] 3w5d 15:42:38, localpref 100, from 62.40.126.21 AS path: 20965 293 3 I, validation-state: unverified > to 192.65.184.145 via irb.183 [BGP/170] 4w0d 20:51:33, localpref 100, from 144.206.255.142 AS path: 57484 293 3 I, validation-state: unverified > to 192.65.183.46 via xe-0/0/29:0.0 [BGP/170] 7w5d 12:38:05, localpref 100 AS path: 20641 293 3 I, validation-state: unverified > to 192.65.183.46 via xe-0/0/29:0.0 [BGP/170] 00:12:46, localpref 100, from 192.65.183.30 AS path: 2603 11537 3 I, validation-state: unverified > to 192.65.183.46 via xe-0/0/29:0.0</pre>	Dest-Prefix: 18.12.0.0/20 AS-PATH: 293 3 Next-Hop: 192.65.183.46


9

CERN/LHCONE Deployment: Examples

Query Example (ECS with path vector extension)

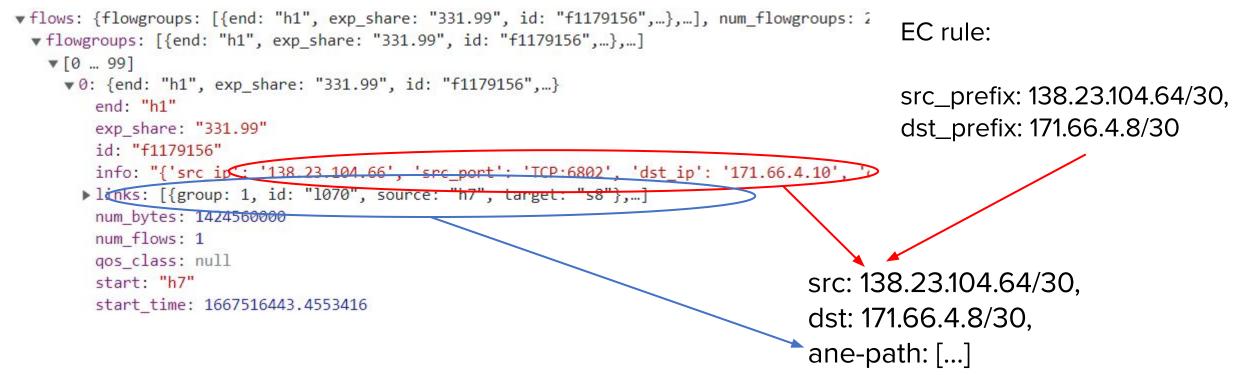
Response Example (ECS with path vector extension)


FIB Retrieval (LG; deployment at CERN and GEANT)

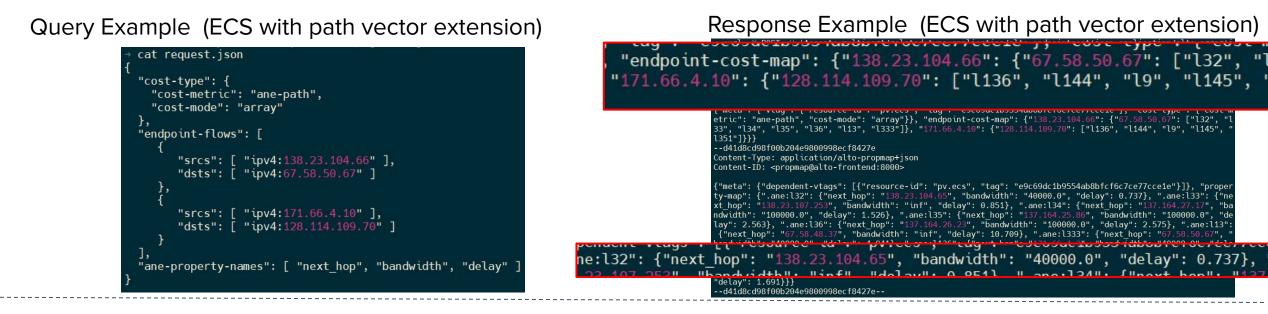
Implementation

NRP Deployment Update

- Data source: G2 snapshot, NRP NetSage
- Available information: link capacity, link delay in the overlay network


→ curl -X POST -H 'Accept: multipart/related;type=application/alto-endpointcost+json, son' -H 'Content-Type: application/alto-endpointcostparams+json' --data-ascii @reques: <u>https://localhost</u>:8444/pathvector/pv --d41d8cd98f00b204e9800998ecf8427e Content-Type: application/alto-endpointcost+json Content-Type: application/alto-endpointcost+json

{"meta": {"vtag": {"resource-id": "pv.ecs", "tag": "e9c69dc1b9554ab8bfcf6c7ce77cce1e" etric": "ane-path", "cost-mode": "array"}}, "endpoint-cost-map": {"138.23.104.66": {" 33", "134", "135", "136", "113", "1333"]}, "171.66.4.10": {"128.114.109.70": ["1136", 1351"]}} --d41d8cd98f00b204e9800998ecf8427e Content-Type: application/alto-propmap+json Content-ID: <propmap@alto-frontend:8000>


{"meta": {"dependent-vtags": [{"resource-id": "pv.ecs", "tag": "e9c69dc1b9554ab8bfcf6c ty-map": {".ane:l32": {"next_hop": "138.23.104.65", "bandwidth": "40000.0", "delay": 6 xt_hop": "138.23.107.253", "bandwidth": "inf", "delay": 0.851}, ".ane:l34": {"next_hop ndwidth": "100000.0", "delay": 1.526}, ".ane:l35": {"next_hop": "137.164.25.86", "band lay": 2.563}, ".ane:l36": {"next_hop": "137.164.26.23", "bandwidth": "100000.0", "delay {"next_hop": "67.58.48.37", "bandwidth": "inf", "delay": 10.709}, ".ane:l333": {"next bandwidth": "40000.0", "delay": 4.941}, ".ane:l136": {"next_hop": "171.66.4.2", "bandwidth": 1.477}, ".ane:l144": {"next_hop": "171.66.0.214", "bandwidth": "inf", "delay": 0.6 hop": "137.164.27.60", "bandwidth": "100000.0", "delay": 1.018}, ".ane:l145": {"next_f bandwidth": "100000.0", "delay": 1.796}, ".ane:l351": {"next_hop": "128.114.109.70", " "delay": 1.691}}

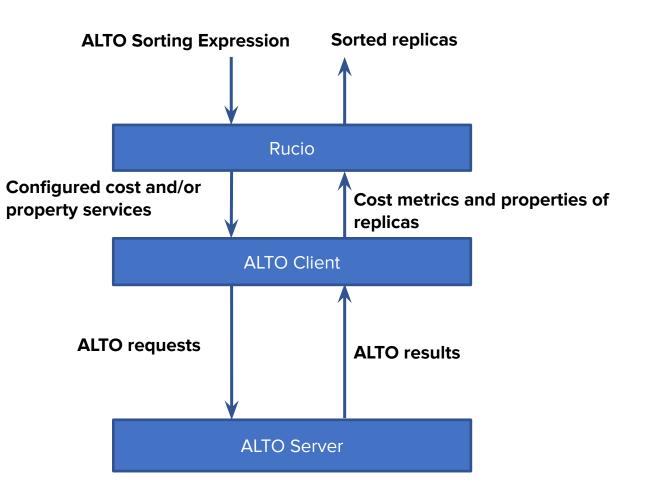
NRP/G2 Deployment

• G2 snapshot contains an overlay topology, overlay paths for active flows, and bottleneck structures


NRP/G2 Deployment: Examples

Agent Configuration: DP sampling and EC configuration

Implementation



Rucio/FTS Integration Update

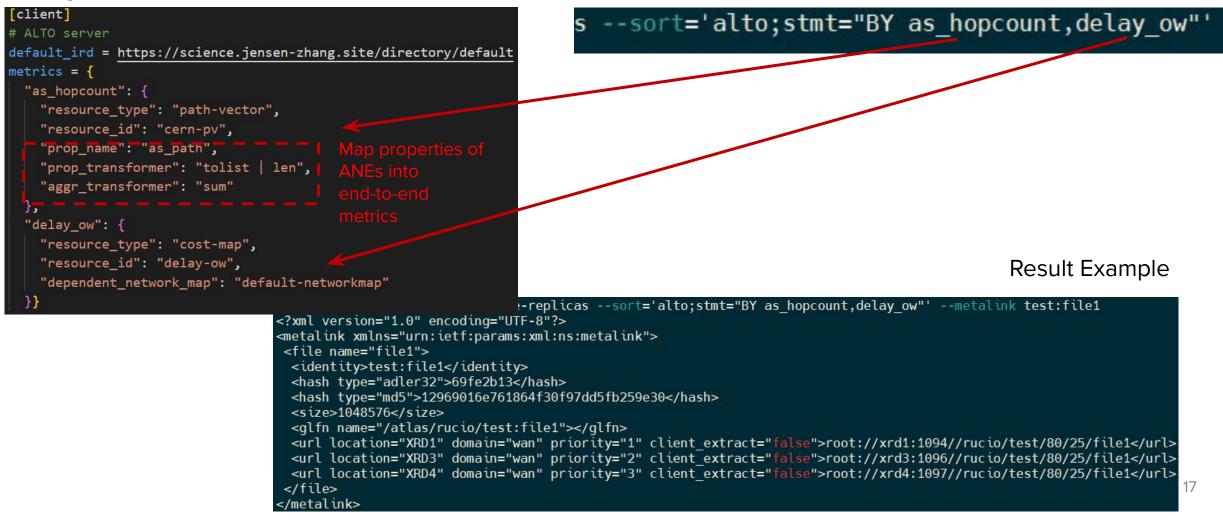
- Recap: In IETF 113, we have added a new option to sort replicas in Rucio based on a single ALTO routing cost
- In IETF 115, we are extending the capability of replica sorting and filtering using multiple ALTO resources
 - Entity properties: geolocation information (country, continent, etc.)
 - Endpoint cost: geo distance, AS hop count
- Additional data sources: Maxmind geoip database

ALTO-based Sorting Expression in Rucio

Currently: replica sorting based on a single metric **Our goal**: replica sorting based on multiple metrics and property constraints ALTO provides a unified interface to query these cost metrics and properties

ALTO Sorting Expression

Example:


BY as_hopcount, geodist WHERE geo_country="UK"

Select replicas in UK and sort them first by AS-level hopcount, and then by geo distance if the AS paths to two replicas have the same number of hops Key Syntax of Sorting Expression

Rucio Integration Example

Configuration Example

Sorting Expression Example

Future Deployment Plans

- CERN/LHCONE:
 - Multi-domain endpoint cost service
 - Milestone: IETF 116
 - Deployment at other LHCONE networks (ESNET, GEANT, etc.)
- NPR/G2:
 - Flow prediction service (exposing fair share as cost)
 - Provide bottleneck structure
 - Milestone: IETF 116
- Rucio/FTS integration:
 - Finalize the unified replica sorting feature and send PR to Rucio
 - ALTO-assisted FTS scheduling for resource control in science networks
 - Milestone: IETF 116

Experiences, Challenges and Lessons

- Data source heterogeneity
- Data source conflicts
- Data fragmentation
- Incomplete information
- Data source availability

Heterogeneous Data Sources

We identify 4 types of heterogeneity during our deployment efforts

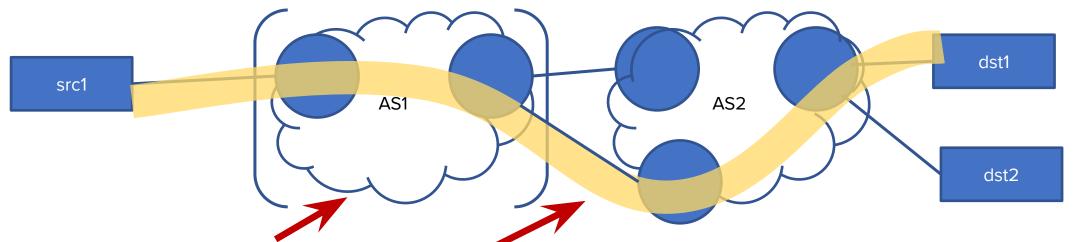
- Heterogeneous information (H1): Different data sources provide different types of information
- Heterogeneous data formats (H2): Different data sources provide the same type of information in different formats
- Heterogeneous collection methodologies (H3): Different data sources collect the same type of information using different methodologies with different authority scopes and levels
- Heterogeneous quality-of-service (H4): Different data sources have different performances

Experiences and lessons

- Engineering-wise: Provide common abstractions/data schemas (e.g., FIB-like abstraction and redis key encoding) and handle heterogeneity through plugins
- Sufficient to handle *H1: heterogeneous information, H2: heterogeneous data formats* when there are no conflicts, and *H4: Heterogeneous quality-of-service*
- Cannot handle H3: Heterogeneous collection methodologies

Data Source Conflicts

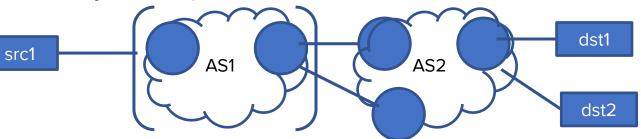
Different data sources provide different values for the same type of information for the same entity or endpoint pairs


- Example: geo-location
 - Source 1: NRP Net Sage
 - Source 2: Maxmind geolocation database
- For IP address 139.182.103.11
 - NetSage: (34.108345, -117.289765)
 - Maxmind: (37.751, -97.822)

Experiences and Lessons

- ALTO server implementations should provide mechanisms to resolve conflicts (e.g., through prioritization)
- A follow-up question: who should set the priorities and how?
 - Solution 1 (simple): Operators of the ALTO servers can manually specify the global priority of data sources
 - Solution 2 (advanced): The priority depends authority levels of the data sources (e.g., NetSage has higher authority than Maxmind for NRP devices), which may be different in different prexies/regions/...
- Suggestion: Include data source prioritization in the ALTO OAM document?

Data Source Fragmentation


We identify two types of fragmentation

- "Vertical fragmentation": Each data source only knows information in its own administrative domain
- "Horizontal fragmentation": Each data source only knows information between some source and destination pairs (especially for sampling-based methods such as traceroute or sflow)
- Example: CERN LookingGlass, GEANT LookingGlass, PerfSonar

Experiences and Lessons

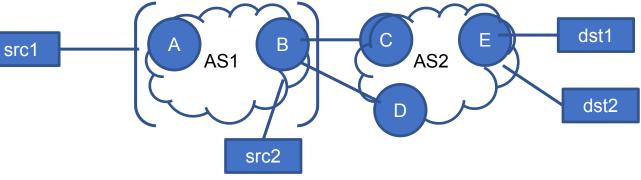
- For vertical fragmentation, cross-domain ALTO coordination is essential, e.g., recursive queries
- Current ALTO query interface (e.g., using src and dst IP addresses) is not sufficient for cross-domain server discovery and queries
- Example: using (src,dst) is not sufficient to determine the path in AS2

• Potential solution and suggestion: Adding extra attributes to support recursive queries, including ingress IP address, virtual network identifier, etc.

Incomplete Information

There are two types of incomplete information

- Type 1: The information does not cover the query space (usually a consequence of horizontal fragmentation caused by sampling-based methods)
 - Example: traceroute/sflow only provides flow-level path information
- Type 2: The information has missing fragments
 - Example: Some routers do not respond to traceroute (i.e., ICMP)


Experiences and Lessons (I)

- For incomplete query space, the basic idea is to map sampled results as representatives of an atomic query space
- A follow-up question: How to determine the mapping?
- Solution 1: Configure ALTO servers to specify atomic query space (motivated by equivalent classes in network verification literature), either manually or based on routing configurations (as in our NRP deployment)
- Solution 2: For some sampling data (e.g., RTT/hop count between src/dst), use learning models to determine the atomic query spaces (e.g., by minimizing prediction error)

Experiences and Lessons (II)

- For missing fragments, the ALTO server may not be able to return a deterministic result
- Example: assume we have the following traceroute results:
 - src1->dst1: A, B, ?, ?, E
 - Both B->C and B->D are potentially on the path
- Solution 1: Synthesize with other samples, e.g., with src2->dst1: B, C, ?, E, the server may infer that B->C is on src1->dst1. But with src2->dst1: B, ?, ?, E, the server cannot determine
- Solution 2: Return all potential results (e.g., as a DAG in this case, see discussion at <u>https://mailarchive.ietf.org/arch/msg/alto/2RMZgqSl2-wQ-eHKcnPyslPnzvs/</u>)

Data Source Availability

Data sources and agents may fail and put the ALTO server out of service

- Case 1: Server returns unexpected results (e.g., server internal errors or inconsistent formats) that crash the agent
- Case 2: Some data sources are not designed for highly frequent queries and may fail/hang upon agent requests

Lessons

- The ALTO server must be able to handle data source failures
- The ALTO server should start with a lower frequency

Feedback to the WG

• OAM

- Prioritization of data sources
- Specification of atomic query spaces
- Protocol extensions
 - Advanced query filters
 - support cross-domain scenarios: server discovery and recursive queries
 - flow-level queries
 - New data formats to efficiently represent non-deterministic query results
- Implementation guideline
 - Handling data source failures

Thanks!

Q&A

alto@ietf.org